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Abstract. The system of 10 radial equations, derived from the Duffin–

Kemmer–Petiau equation for a spin 1 particle in the external Coulomb field,

is studied. With the use of the space reflection operator, the whole system is

split to independent subsystems, consisting of 4 and 6 equations, respectively.

The most simple subsystem of 4 equations is solved in terms of hypergeometric

functions, which gives the known energy spectrum. Also, the solutions and en-

ergy spectrum are found for the minimal value of the total angular momentum,

j = 0. The second subsystem is expected to give the description of the other

two series of bound states. With the use of the Lorentz generalized condition

in presence of the Coulomb field, we prove that one of 6 radial function turns

to be equal to zero. This simplifies the explicit form of the system of 6 equa-

tions, which contains only 5 unknown functions. Combining this system, we

derive a new separated of 2-nd order system of differential equations for three

radial functions. In particular, one of the equations turns out to be a rather

simple one, and may be recognized as a confluent Heun equation. A series of

bound states is constructed in terms of the so called transcendental confluent

Heun functions, which provides us with solutions for the second class of bound

states, with corresponding formula for energy levels. The subsystem of 6 equa-

tions, with no use of additional constraints due to the Lorentz condition, after

excluding two non-differential relations reduces to the system of 1-st order dif-

ferential equations for 4 functions fi, i = 1, 2, 3, 4. We derive the explicit form

of a corresponding of 4-th order equation for each function. Among them, there

are equations with two substantially different sets of singular points: 3 regular

(or 2) and 2 irregular of rank 2. Any of these functions may be considered as a

main one, and all remaining functions may be found in explicit form, in terms of

the main one. From the four independent solutions of each 4-th order equation,

only two solutions may be referred to series of bound states.
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1 Introduction

Till now, the known quantum-mechanical problem of a spin 1 particle in presence of
the external Coulomb field remains unsolved. The first of three expected sub-classes
of bound states was described by I.E. Tamm [1]. The incompleteness of the study
relates to two other sub-classes of expected bound states. The main conclusion from
I.E. Tamm considerations consists in the statement that in two remaining sub-classes
of states, the particle should fall to the center. However, the study of the non-
relativistic problem of spin 1 particle in the Coulomb field showed [2] that there exist
three correctly defined series of bound states, which are described by the formulas
similar to the one of the spinless Schrödinger particle in Coulomb field. In [3, 4], it
was shown a possibility for some radial functions to confine to different 2-nd order
differential equations, instead the expected equations of the 4-th order1.

In Section 2, the system of 10 radial equations, derived from the Duffin–Kemmer–
Petiau equation for a spin 1 particle in the external Coulomb field, is studied. With
the use of the space reflection operator, the whole system is split to independent sub-
systems, consisting of 4 and 6 equations, respectively. The most simple subsystem
of 4 equations is solved in terms of hypergeometric functions, which gives the known
energy spectrum. Also, the solutions and energy spectrum are found for the mini-
mal value of total angular momentum, j = 0. The second subsystem should give a
description of the two other series of bound states.

In Section 3, with the use of the Lorentz generalized condition in presence of the
Coulomb field, we prove that one of the 6 radial functions turns to equal to zero.
This simplifies the explicit form of the system of 6 equations, which contain only 5
unknown functions.

In Section 4, by combining the equations in the 6-equation system, we derive for
several radial functions the 2-nd order differential equations, and we derive a more
simple 2-nd order equation for one of the radial functions. The qualitative analysis
of this equation indicates that it may have solutions which describe bound states.

In Section 5, this simple equation is related to a confluent Heun equation. Its
Frobenius solutions have been constructed and convergence of the involved power
series is proved. The functions relevant to bound states are constructed in terms
of the so called transcendental confluent Heun functions. This provides us with the
second class of bound states for spin 1 particle in the external Coulomb field, with a
corresponding formula for energy levels.

In Section 6, the subsystem of 6 equations, with no use of additional constraints
due to the Lorentz condition, after excluding two non-differential relations reduces
to the system of 1-st order differential equations for four functions, fi, i = 1, 2, 3, 4.
We elaborate a method which permits to examine projections of the whole set of
solutions – the curve {f1(r), f2(r), f3(r), f4(r)} in the 4-dimensional space – on the
different planes fi = 0 of the space. In each case, such a projection consists of two
parts (branches), which are determined by different 2-nd order differential equations.
In particular, the constraint f1(x) = 0 coincides with that derived previously from
the Lorentz condition. In this way we obtain explicit form of four pairs of 2-nd order

1Unfortunately, one technical error appeared in [3, 4], so some part of intermediate formulas turns
to be incorrect, though the main final result is the right one. In the present paper, we repair this
error.
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equations, all of them having the structure of singularities more complicated than the
class of hypergeometric functions.

In section 7, we derive the explicit form of the 4-th order equation for each function.
Among them there arise two substantially different sets of singular points: 3 regular
(or 2) and 2 irregular of the rank 2. Any of these four functions may be considered as
a main one, then all the remaining functions may be found in explicit form through
the main one. From four independent solutions of the main 4-th order equation, only
two solutions may be referred to series of bound states.

Section 8 contains a general discussion and prospects the further research of the
problem.

2 The separation of variables

We apply the matrix Duffin–Kemmer–Petiau form of the wave equation for spin 1
particle, adjusted to tetrad based formalism [5]; in spherical coordinates and tetrads,
the main equation reads

{

β0(ǫ+
α

r
) + i

[

β3∂r +
1

r
(β1j31 + β2j32)

]

+
1

r
Σθ,φ −m

}

Φ(x) = 0 ,(2.1)

where ǫ = E/c~, m = Mc/~, α = e2/(c~) = 1/137; and Σθ,φ stands for the angular
operator

Σθ,φ = i β1∂θ + β2 i∂φ + i j12 cos θ

sin θ
.(2.2)

Wave functions Ψ(x) = { Φ0(x), ~Φ(x), ~E(x), ~H(x) } with the quantum numbers
(ǫ, j,m) are searched in the form [5]:

Φ0(x) = e−iǫtΦ0(r)D0 , ~Φ(x) = e−iǫt





Φ1(r)D−1

Φ2(r)D0

Φ3(r)D+1



 ,

~E(x) = e−iǫt





E1(r)D−1

E2(r)D0

E3(r)D+1



 , ~H(x) = e−iǫt





H1(r)D−1

H2(r)D0

H3(r)D+1



 ;(2.3)

The Wigner functions are defined as follows: Dσ = Dj
−m,σ(φ, θ, 0) , σ = 0, +1, −1;

quantum number j takes on the values 0, 1, 2, ... Applying the known recurrent for-
mulas for Wigner functions, after simple calculation we arrive at the radial system of
10 equations [3,4]:

− (
d

dr
+

2

r
) E2 −

ν

r
(E1 + E3) = mΦ0 , +i(ǫ+

α

r
) E1 + i (

d

dr
+

1

r
) H1 + i

ν

r
H2 = mΦ1 ,

+i(ǫ+
α

r
) E2 − i

ν

r
(H1 −H3) = mΦ2 , +i(ǫ+

α

r
) E3 − i (

d

dr
+

1

r
) H3 − i

ν

r
H2 = m Φ3 ,

−i(ǫ+
α

r
) Φ1 +

ν

r
Φ0 −mE1 = 0 , −i(ǫ+

α

r
) Φ2 − d

dr
Φ0 −mE2 = 0 ,

−i(ǫ+
α

r
) Φ3 +

ν

r
Φ0 − mE3 = 0 , −i (

d

dr
+

1

r
) Φ1 − i

ν

r
Φ2 − mH1 = 0 ,

+i
ν

r
(Φ1 − Φ3)−mH2 = 0 , +i (

d

dr
+

1

r
) Φ3 + i

ν

r
Φ2 −mH3 = 0 ,(2.4)
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where ν =
√

j(j + 1)/2, j = 1, 2, ... .

Together with the operators ~J 2, J3 we will diagonalize the space reflection operator
Π̂. After transforming it from usual Cartesian tetrad to a spherical one and to a cyclic
representation of the matrices βa, for this discrete operator we get the following
expression

Π̂ =









1 0 0 0
0 Π3 0 0
0 0 Π3 0
0 0 0 −Π3









P̂ , Π3 =





0 0 −1
0 −1 0

−1 0 0



 .(2.5)

The eigenvalue equation Π̂Ψ = P Ψ gives two possibilities:

P = (−1)j+1, Φ0 = Φ2 = 0 , Φ3 = −Φ1, E3 = −E1 , E2 = 0 , H3 = H1 ;(2.6)

P = (−1)j , Φ3 = Φ1 , E3 = +E1 , H3 = −H1 , H2 = 0 .(2.7)

Correspondingly, the system of 10 equation (2.4) gives two more simple subsystems.
The first is

P = (−1)j+1, +i(ǫ+
α

r
) E1 + i(

d

dr
+

1

r
)H1 + i

ν

r
H2 = mΦ1 ,

−i(ǫ+
α

r
) Φ1 = mE1 , −i(

d

dr
+

1

r
)Φ1 = mH1 , 2i

ν

r
Φ1 = mH2 .(2.8)

After excluding the variables E1, H1, H2, we get a 2-nd order equation for Φ1:

[
d2

dr2
+

2

r

d

dr
+ (ǫ+

α

r
)2 −m2 − j(j + 1)

r2
]Φ1 = 0 .(2.9)

In fact, this coincides with the radial equation arising for scalar Klein–Fock–Gordon particle
in external Coulomb field. Solutions are constructed in terms of confluent hypergeometric
functions, and we can write down only the energy spectrum

E =
Mc2

√

1 + α2/N2
, N = n+

1

2
+

√

(j + 1/2)2 − α2 .(2.10)

For states with parity P = (−1)j , we have the system of 6 equations:

1) (
d

dr
+

2

r
)E2 + 2

ν

r
E1 +mΦ0 = 0 , 2) + i(ǫ+

α

r
) E1 + i(

d

dr
+

1

r
)H1 −mΦ1 = 0 ,

3) + i(ǫ+
α

r
)E2 − 2i

ν

r
H1 −mΦ2 = 0 , 4) − i(ǫ+

α

r
) Φ1 +

ν

r
Φ0 −mE1 = 0 ,

5) i(ǫ+
α

r
)Φ2 +

d

dr
Φ0 +mE2 = 0 , 6) i(

d

dr
+

1

r
)Φ1 + i

ν

r
Φ2 +mH1 = 0 .(2.11)

The states with j = 0 should be considered separately, because in this case we should start
with the more simple substitution

Φ0(x) = e−iǫtΦ0(r) , ~Φ(x) = e−iǫt





0
Φ2(r)
0



 ,

~E(x) = e−iǫt





0
E2(r)
0



 , ~H(x) = e−iǫt





0
H2(r)

0



 .(2.12)
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The angular operators Σθ,φ act as follows: Σθ,φΨ = 0; the parity is P = (−1)0+1 = −1. In
order to exclude the imaginary unit from the arising four equations, we will use the variables
Φ0 = ϕ0, −iΦ1 = ϕ1, −iΦ2 = ϕ2. Then the radial system reads

(2.13) H2 = 0 , −(
d

dr
+

2

r
)E2 = mϕ0 , (ǫ+

α

r
)E2 = mϕ2 , (ǫ+

α

r
)ϕ2 −

d

dr
ϕ0 = mE2,

whence it follows a 2-nd order equation for the main function E2:

(2.14) [
d2

dr2
+

2

r

d

dr
− 2

r2
+ (ǫ+

α

r
)2 −m2 ]E2 = 0 .

Its solutions are constructed in terms of confluent hypergeometric functions. We write down
only the relevant energy spectrum

E = Mc2
(

1 +
α2

(n+ Γ)2

)−1/2

, Γ =
1 +

√
9− 4α2

2
, n = 0, 1, 2, ...(2.15)

3 Lorentz-like condition for particle wave functions

It is known that for a massive spin 1 particle in external electromagnetic field there exists
a generalized Lorentz constraint for the wave function of the particle. To get its form, it is
convenient to start with the tensor equations in Proca form [5]:

Dα Φβ −Dβ Φα = m Φαβ , Dα Φαβ = m Φβ ,(3.1)

where Dα = ∇α + ieAα. Acting on the second equation in (3.1) by the operator Dα, we
derive the following relationship

(∇α + ieAα) Φ
α =

iα

2m
Fαβ Φαβ .(3.2)

This can be transformed to the usual form of the wave functions, and leads to the following
radial relationship [5]:

−i (ǫ+
α

r
) Φ0 − (

d

dr
+

2

r
) Φ2 −

ν

r
(Φ1 +Φ3) =

iα

2mr2
E2 .(3.3)

For states with parity P = (−1)j+1, the relation (3.3) holds identically. For states with
parity P = (−1)j , it reads

−i (ǫ+
α

r
) Φ0 − (

d

dr
+

2

r
) Φ2 −

2ν

r
Φ1 =

iα

2mr2
E2 .(3.4)

With the use of relation (3.4), from the system (2.11) we can derive a more simple constraint
on the radial functions. To this end, from eq. (3.4) let us exclude the function Φ2 with the
help of the third equation in (2.11); this yields

(3.5) i (ǫ+
α

r
) mΦ0 + i(ǫ+

α

r
)(

d

dr
+

2

r
)E2 −

2iν

r
(
d

dr
+

1

r
)H1 +

2mν

r
Φ1 =

iα

2r2
E2 .

Transforming the second and the third terms with the help of the first and second equations
from (2.11), we obtain

i (ǫ+
α

r
) mΦ0 − im(ǫ+

α

r
)Φ0 =

iα

2r2
E2 =⇒ E2 = 0 .

Thus, we have the following constraint:

E2 = 0 .(3.6)

In fact, it means that in the subsystem of 6 equations we have only 5 independent functions.
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4 Differential 2-order equation for Φ0

From the system (2.11) with the relation E2 = 0 taken into account:

(4.1)

1) mE1 = −m2

2ν
rΦ0 , 2) (ǫ+ α

r
) mE1 + ( d

dr
+ 1

r
)mH1 +m2ϕ1 = 0 ,

3) 2ν
mr

H1 = ϕ2 , 4) − (ǫ+ α
r
)ϕ1 +

ν
r
Φ0 = mE1 ,

5) (ǫ+ α
r
)ϕ2 +

d
dr
Φ0 = 0 , 6) ( d

dr
+ 1

r
)ϕ1 +

ν
r
ϕ2 +mH1 = 0,

we can derive a rather simple equation for the function Φ0.
To this end, first by applying eqs. 3) and 4), we exclude the functions ϕ2 and E1:

(4.2)

1) − 2ν
r
(ǫ+ α

r
)ϕ1 + ( 2ν

2

r2
+m2)Φ0 = 0 ,

2) ( d
dr

+ 1
r
)H1 + (ǫ+ α

r
) 1
m

ν
r
Φ0 +

1
m
[m2 − (ǫ+ α

r
)2]ϕ1 = 0 ,

5) d
dr
Φ0 +

2ν
mr

(ǫ+ α
r
)H1 = 0 ,

6) ( d
dr

+ 1
r
)ϕ1 +

1
m
[(m2 + 2ν2

r2
)H1 = 0 .

By acting over eq. 5) in (4.2) by the operator d
dr
, we infer:

d2

dr2
Φ0 −

2ν

mr2
(ǫ+

α

r
)H1 −

2ν

mr

α

r2
H1 +

2ν

mr
(ǫ+

α

r
)
d

dr
H1 = 0 .

Now, with the help of eq. 2) in (4.2), we get

d

dr
H1 = −

[

1

r
H1 + (ǫ+

α

r
)
1

m

ν

r
Φ0 +

1

m
[m2 − (ǫ+

α

r
)2]ϕ1

]

,

and
d2

dr2
Φ0 −

2ν

mr2
(ǫ+

α

r
)H1 −

2ν

mr

α

r2
H1−

− 2ν

mr
(ǫ+

α

r
)

[

1

r
H1 + (ǫ+

α

r
)
1

m

ν

r
Φ0 +

1

m
[m2 − (ǫ+

α

r
)2]ϕ1

]

,= 0

or
[

d2

dr2
− 2ν2

m2r2
(ǫ+

α

r
)2
]

Φ0−

−
[

2ν

mr2
(ǫ+

α

r
) +

2ν

mr

α

r2
+

2ν

mr2
(ǫ+

α

r
)

]

H1
2ν

m2r
(ǫ+

α

r
)
[

m2 − (ǫ+
α

r
)2
]

ϕ1 = 0 .

In order to exclude the function ϕ1, we use eq. 1) in (4.2):

2ν

mr
(ǫ+

α

r
)ϕ1 =

1

m
(m2 +

2ν2

r2
)Φ0 ;

hence producing
[

d2

dr2
+ (ǫ+

α

r
)2 −m2 − 2ν2

r2

]

Φ0 −
4ν

mr2
(ǫ+

α

r
)H1 −

2ν

mr

α

r2
H1 = 0 .(4.3)

Now, we use eq. 5) from (4.2)

d

dr
Φ0 +

2ν

mr
(ǫ+

α

r
)H1 = 0 ;

and further obtain
[

d2

dr2
+ (ǫ+

α

r
)2 −m2 − 2ν2

r2
+

2

r

d

dr

]

Φ0 −
2ν

mr

α

r2
H1 = 0 .
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Finally, we apply again eq. 5) from (4.2), and yield:

−mr

2ν

1

(ǫ+ α
r
)

d

dr
Φ0 = H1 ,

so arriving at the equation for a single function Φ0:

[

d2

dr2
+ (

3

r
− ǫ

ǫr + α
)
d

dr
+ ǫ2 −m2 +

2ǫα

r
+

α2 − 2ν2

r2

]

Φ0 = 0 .(4.4)

In the variable

z = − ǫ

α
r < 0 , r = −α

ǫ
z(4.5)

the last equation takes the form

d2Φ0

dz2
+ (

3

z
− 1

z − 1
)
dΦ0

dz
+ (α2 − α2

E2
0

− 2α2

z
− 2ν2 − α2

z2
)Φ0 = 0 ,(4.6)

where all quantities are dimensionless: m2/ǫ2 = M2c4/E2 = 1/E2
0 . For shortness, we will

apply the notations

Γ2 = 2ν2 − α2 = j(j + 1)− α2 > 0 , −Λ2 = −(−α2 +
α2

E2
0

) = −α2 1− E2
0

E2
0

< 0 ;

then eq. (4.6) reads

d2Φ0

dz2
+ (

3

z
− 1

z − 1
)
dΦ0

dz
+ (−Λ2 − 2α2

z
− Γ2

z2
)Φ0 = 0 .(4.7)

Let us define the squared linear momentum

(4.8) P 2(z) = (−Λ2 − 2α2

z
− Γ2

z2
);

in physical singular points it behaves as follows

z → 0 P 2(x) ∼ −Γ2

z2
∼ −∞, z → ∞ P 2(x) ∼ −Λ2 < 0 .

Two turning points, the root of the equation Λ2z2 + 2α2z + Γ2 = 0, are

z1,2 =
−α2 ±

√
α4 − Γ2Λ2

Λ2
.(4.9)

They both are negative, and belong to the physical region, if

α4 − Γ2Λ2 < 0 =⇒ E2
0 < 1− α2

Γ2 + α2
.(4.10)

This qualitative consideration shows that we may expect existence of solutions associated
with bound states.
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5 Analytical study of the 2-nd order ODE for Φ0

Equation (4.7) has two regular singularities, z = 0 and z = 1 and one irregular singularity,
z = ∞ of the rank 2. In the vicinity of the point z = 0, we have

d2Φ0

dz2
+

3

z

dΦ0

dz
− Γ2

z2
Φ0 = 0 , Φ0 ∼ zA,

A1 = −1 +
√

1 + Γ2 > 0 , A2 = −1−
√

1 + Γ2 < 0 ;(5.1)

to bound state may correspond only solutions with positive A. When z → ∞, the solutions
behave in accordance with the formulas

d2Φ0

dz2
+

2

z

dΦ0

dz
− Λ2Φ0 = 0 , Φ0 = e+

√
Λ2 z = e−

√
M2c4−E2 r/~c ;(5.2)

to bound state may correspond only solutions which vanish at infinity. Near the nonphysical
point z = 1, the solutions behave in a quite regular manner:

Φ0(z) ∼ (z − 1)σ, σ = 0, 2 .(5.3)

The general solutions of eq. (4.6) should be constructed in the form Φ0(z) = zAeBzf(z); the
equation for f is

f ′′ + (2B +
2A+ 3

z
− 1

z − 1
)f ′+

+

[

(B2 − Λ2) +
A2 + 2A− Γ2

z2
+

2AB +A+ 3B − 2α2

z
− A+B

z − 1

]

f = 0 .

We take A and B as shown

A = −1 +
√

1 + Γ2 , B = +
√
Λ2 ;(5.4)

then the last equation reduces to the more simple structure

f ′′ + (2B +
2A+ 3

z
− 1

z − 1
)f ′ + (

2AB +A+ 3B − 2α2

z
− A+B

z − 1
)f = 0 .(5.5)

This can be recognized as a confluent Heun equation [7]

H ′′ + (−t+
c

z
+

d

z − 1
)H ′ +

λ− ta z

z(z − 1)
H = 0 ,(5.6)

with parameters

t = −2B , c = 2A+ 3 , d = −1 ,

−λ = 2AB + 3B +A− 2α2 , −ta = 2BA+ 2B − 2α2 .(5.7)

In particular, a = A+ 1− α2/B; and further (see (5.4)) we get

a = +
√

1 + Γ2 − α2/Λ .(5.8)

Solutions for function f may be searched in the form of power series: f =
∑∞

k=0 dkz
k.

Taking in mind the equation

∞
∑

n=2

n(n− 1)dnz
n −

∞
∑

n=1

(n+ 1)ndn+1z
n−

−t
∞
∑

n=2

(n− 1)dn−1z
n + (t+ d+ c)

∞
∑

n=1

ndnz
n − c

∞
∑

n=0

(n+ 1)dn+1z
n+
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+λ
∞
∑

n=0

dnz
n − ta

∞
∑

n=1

dn−1z
n = 0 ,

we arrive at the 3-term recurrent relations

n = 0 , c d1 + λ d0 = 0 ;

n ≥ 1, 2, 3, ... t (n− 1 + a) dn−1

−[ n(n− 1 + t+ d+ c) + λ ] dn + (n+ 1) (n+ c) dn+1 = 0 .(5.9)

The main recurrent formula may be re-written as

n = 0, c d1 + λ d0 = 0 ,

n = 1, 2, ... Pndn − (Qn + λ) dn+1 +Rn dn+2 = 0 ,(5.10)

where

Pn = t (n− 1 + a) , Qn = n(n− 1 + t+ d+ c) , Rn = (n+ 1) (n+ c) .(5.11)

The relations (5.10) are equivalent to

1

n2
Pn − 1

n2
(Qn + λ)

dn+1

dn
+

1

n2
Rn

dn+2

dn+1

dn+1

dn
= 0 ;

whence for n → ∞ we get a simple algebraic equation,

−r + r2 = 0, lim
n→∞

dn+1

dn
= lim

n→∞

dn+2

dn+1
= r .

According to the Poincaré–Perrone method, we yield that the minimal convergence radius
is Rconv = 1. Another possibility is R′

conv = ∞. We may expect that the series converges in
the domain with R′

conv = ∞, because near the third singular point z = 1 on the bound of
the circle with radius 1 solutions behave themselves regularly2.

It is known the possibility to get solutions of the confluent Heun equation in terms of
polynomials [6]. To this end, we need to impose the first restriction

Pn+1 = 0 =⇒ a = −n , n ∈ {0, 1, 2, ...} .(5.12)

and the second restriction dn+1 = 0; in this way, from the recurrent formulas there follows
the breaking of the series to polynomials of power n

0 · dn − (Qn+1 + λ) · 0 +Rn+1 dn+2 = 0 =⇒ dn+2 = 0 ;

Indeed, two above restrictions lead to the linear system































−λ c 0 0 0 · · · 0 0 0
P1 ν1 R1 0 0 · · · 0 0 0
0 P2 ν2 R2 0 · · · 0 0 0
0 0 P3 ν3 R3 · · · 0 0 0
0 0 0 P4 ν4 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · νn−2 Rn−2 0
0 0 0 0 0 · · · Pn−1 νn−1 Rn−1

0 0 0 0 0 · · · 0 Pn νn





























































d0
d1
d2
d3
d4
...

dn−2

dn−1

dn































= 0 ,

2However, this issue should be studied more accurately.
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where νk = −(Qk + λ), k = 1, n, and its solutions exist if the determinant of the system
equals to zero; in this way we get an algebraic equation of power n with respect to the
parameter λ.

When imposing only the first constraint, a = −n, and ignoring the second one dn+1 = 0,
we obtain the so called transcendental confluent Heun functions (which are not polynomials):

a = −n, n = 0, 1, 2, 3...(5.13)

Using the notation

N ≡ n+
√

1 + Γ2 = n+
√

1 + j(j + 1)− α2,

the constraint (5.13) leads to

N =
α2

Λ
≡ α

√

E2
0

1− E2
0

,

whence it follows the quantization rule for energy levels:

E0 =
1

√

1 + α2/N2
, N = n+

√

1 + j(j + 1)− α2 .(5.14)

This formula seems to be reasonable from physical point of view. It may be considered as
representing the second series of bound stated from expected three.

Further analysis shows that proceeding combining 6 equations from the system we are
able to get 2-order equations for separate functions, which are characterized by only a few
sets of singular points3. It may be understood as a good feature. However, still remains
a number of questions with no replies. We do not know which spectra may arise from
studying various 2-nd order equations for different functions. Variety of spectra should not
be considered as a good result. Another difficult point consists in the following: in general we
have no reliable method to derive the quantization rules for equation with complicated sets
of singularities. Also, we should get an answer to the question – which forms of presenting
the Lorentz condition are possible, does the form E2 =0 is unique.

In the following, we will turn back to the initial system of 6 equation, ignoring the above
constraint E2 = 0, in fact this established form may be rather accidental.

6 The system of 4 differential equations

Let us turn back to the system of 6 equations for states with the parity P = (−1)j , j = 1, 2, ...:

+i(ǫ+
α

r
)E2 − 2i

ν

r
H1 −MΦ2 = 0 , −i(ǫ+

α

r
) Φ1 +

ν

r
Φ0 −ME1 = 0 ;

(
d

dr
+

2

r
)E2 + 2

ν

r
E1 +MΦ0 = 0 , +i(ǫ+

α

r
) E1 + i(

d

dr
+

1

r
)H1 −MΦ1 = 0 ,

i (ǫ+
α

r
)Φ2 +

d

dr
Φ0 +ME2 = 0 , i(

d

dr
+

1

r
)Φ1 + i

ν

r
Φ2 +MH1 = 0 .(6.1)

We note the physical dimensions of the involved quantities

M =
mc

~
=

1

λ
, [M ] =

1

L
, ǫ =

E

~c
, [ǫ] =

1

L
, α =

e2

~c
=

1

137
.

3Within this article we cannot detail these various equations.
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It is convenient to work with the equations in dimensionless form, by taking the Compton
wave length λ as a unit for the length, and the rest energy of a particle as a unit for energy.
We further denote

rM  x, ǫ/M = E/mc2  ǫ,

i(ǫ+
α

x
)E2 − 2i

ν

x
H1 − Φ2 = 0 , −i(ǫ+

α

x
) Φ1 +

ν

x
Φ0 − E1 = 0 ;

(
d

dx
+

2

x
)E2 + 2

ν

x
E1 +Φ0 = 0 , +i(ǫ+

α

x
) E1 + i(

d

dx
+

1

r
)H1 − Φ1 = 0 ,

i(ǫ+
α

x
)Φ2 +

d

dx
Φ0 + E2 = 0 , i(

d

dx
+

1

x
)Φ1 + i

ν

x
Φ2 +H1 = 0 .(6.2)

With the use of the substitutions

Φ1 =
1

x
ϕ1, E2 =

1

x2
e2, H1 =

1

x
h1

the system reduces to a more simple and symmetrical form

Φ2 = i(ǫ+
α

x
)
1

x2
e2 − 2i

ν

x2
h1 , E1 = −i(ǫ+

α

x
)
1

x
ϕ1 +

ν

x
Φ0 ;

d

dx
e2 = −2νxE1 − x2Φ0 ,

d

dx
h1 = −(xǫ+ α) E1 − iϕ1 ,

d

dx
Φ0 = −i(ǫ+

α

x
)Φ2 −

1

x2
e2 ,

d

dx
ϕ1 = −νΦ2 + ih1 .(6.3)

Applying the two first (non-differential) equations, we exclude the functions Φ2 and E1:

d

dx
e2 = 2iν(ǫ+

α

x
)ϕ1 − (2ν2 + x2)Φ0 ,

d

dx
h1 = +i[(ǫ+

α

x
)2 − 1]ϕ1 − ν(ǫ+

α

x
)Φ0 ;(6.4)

d

dx
ϕ1 = − iν

x2
(ǫ+

α

x
)e2 + i(

2ν2

x2
+ 1)h1 ,

d

dx
Φ0 =

1

x2
[(ǫ+

α

x
)2 − 1]e2 −

2ν

x2
(ǫ+

α

x
)h1 .(6.5)

It is convenient to use the following notations

a = 2iν
ǫx+ α

x
, c = −(2ν2 + x2) , d = i

(ǫx+ α)2 − x2

x2
, b = −ν(ǫx+ α)

x
,

A = −i
ν(ǫx+ α)

x3
, C = +i

(2ν2 + x2)

x2
, D =

(ǫx+ α)2 − x2

x4
, B = −2ν(ǫx+ α)

x3
,

ab− cd = i p(x) , AB − CD = −i
p(x)

x4
, p(x) = [(ǫ2 − 1)x2 + 2αǫx− (2ν2 − α2)] .

Also, we re-designate the functions: e2 = f1, h1 = f2, ϕ1 = f3, Φ0 = f4. Then the system
under consideration reads

d

dx
f1 = af3 + cf4 ,

d

dx
f2 = df3 + bf4 ;

d

dx
f3 = Af1 + Cf2 ,

d

dx
f4 = Df1 +Bf2 .(6.6)

In Section 3, with the use of the Lorentz condition, we derived the simple constraint E2 =
0 (f1 = 0). We examine the same constraint again, and extend this approach by imposing
similar constraints on the other functions.
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By requiring for the system (6.6) the restriction f1 = 0, we get4

af3 + cf4 = 0 , df3 + bf4 =
d

dx
f2 ,

d

dx
f3 = Cf2 ,

d

dx
f4 = Bf2 .(6.7)

Considering tho first equations as a linear system with respect to f3 and f4, we get

f3 =
−c

ab− cd

d

dx
f2, f4 =

a

ab− cd

d

dx
f2 .(6.8)

Substituting these formulas into the two remaining equations in (6.7), we obtain two different
2-nd order equations for the variable f2:

d

dr

−c

ab− cd

d

dr
fI
2 = CfI

2 , (
d

dx

2ν2 + x2

p(x)

d

dx
+

2ν2 + x2

x2
)fI

2 = 0 ;(6.9)

d

dr

a

ab− cd

d

dr
fII
2 = BfII

2 , (
d

dx

ǫx+ α

x p(x)

d

dx
+

(ǫx+ α)

x3
)fII

2 = 0 ;(6.10)

Thus, the system (6.7), describing the projection of the whole solution {f1, ..., f4} onto the
plane f1 = 0, may be solved on the base of the two main functions f1 = fI

1 , f
II
1 ; they obey

different 2-order equations, which lead to the different non-zero remaining functions f3, f4.
In other words, the projection of the whole solution – the curve {fi(x)} onto the plane f1 = 0
consists of the parts (branches), related respectively to the functions fI

2 and fII
2 . In fact,

the concept of projection is determined by definition, and this definition permits us to get
additional information about the needed whole solutions {fi(x)}.

Similarly, by imposing the constraint f2 = 0, we get the equations

af3 + cf4 =
d

dx
f1, 0 = df3 + bf4 ,

d

dx
f3 = Af1,

d

dx
f4 = Df1 .(6.11)

which result in

(6.12) f3 =
b

ab− cd

d

dx
f1 , f4 =

−d

ab− cd

d

dx
f1 ,

d

dx
f3 = Af1,

d

dx
f4 = Df1 ,

and the two equations for f1:

d

dx

b

ab− cd

d

dx
fI
1 = AfI

1 , (
d

dx

(ǫx+ α)

x p(x)

d

dx
+

(ǫx+ α)

x3
)fI

1 = 0 ;(6.13)

(6.14)
d

dx

−d

ab− cd

d

dx
fII
1 = DfII

1 , (
d

dx

(ǫx+ α)2 − x2

x2p(x)

d

dx
+

(ǫx+ α)2 − x2

x4
)fII

1 = 0 .

By imposing the constraint f3 = 0, we get the equations

d

dx
f1 = cf4,

d

dx
f2 = bf4 , Af1 + Cf2 = 0, Df1 +Bf2 =

d

dx
f4 ,

which result in

(6.15) f1 =
−C

AB − CD

d

dx
f4, f2 =

A

AB − CD

d

dx
f4

d

dx
f1 = cf4,

d

dx
f2 = bf4,

and the following two equations for f4:

(6.16)
d

dx

−C

AB − CD

d

dx
fI
4 = cfI

4 , (
d

dx

(2ν2 + x2)x2

p(x)

d

dx
+ (2ν2 + x2))fI

4 = 0 ;

4Thereby we examine the projection of the curve {f1, ..., f4} on the plane f1 = 0.
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(6.17)
d

dx

A

AB − CD

d

dx
fII
4 = b fII

4 , (
d

dx

(ǫx+ α)x

p(x)

d

dx
+

(ǫx+ α

x
)fII

4 = 0

By imposing the constraint f4 = 0, we get the equations

Af1 + Cf2 =
d

dr
f3, Df1 +Bf2 = 0 ,

d

dx
f1 = af3,

d

dr
f2 = df3 .

these yield

(6.18) f1 =
B

AB − CD

d

dx
f3, f2 =

−D

AB − CD

d

dx
f3 ,

d

dx
f1 = af3,

d

dx
f2 = df3 ,

and the two equations for f3:

d

dx

B

AB − CD

d

dx
fI
3 = a fI

3 , (
d

dx

2ν(ǫx+ α)x

p(x)

d

dx
+

2ν(ǫx+ α

x
)fI

3 = 0 ;(6.19)

(6.20)
d

dx

−D

AB − CD

d

dx
fII
3 = d fII

3 , (
d

dx

(ǫx+ α)2 − x2

p(x)
+

(ǫx+ α)2 − x2

x2
)fII

3 = 0 .

Let us write down the explicit form of all the derived 2-order differential equations, and fix
their singular points. We recall that

p(x) = (ǫ2 − 1)x2 + 2ǫαx− (2ν2 − α2) ≡ (ǫ2 − 1)(x− x1)(x− x2) .

x1,2 =
ǫ±

√

2ν2ǫ2 − (2ν2 − α2)

1− ǫ2
;

these roots are complex-valued in the case of bound states: 0 < ǫ < 1.
The projection f1 = 0.
We have

(

d

dx

2ν2 + x2

p(x)

d

dx
+

2ν2 + x2

x2

)

fI
2 = 0,

[
d2

dx2
+ (

2x

x2 + 2ν2
− p′

p
)
d

dx
+

p

x2
] fI

2 = 0 ,(6.21)

and the singular points x1, x2, x3,4 = ±i
√
2ν2, 0, ∞[2] .

Further, the equation

[
d2

dx2
+ (

ǫ

ǫx+ α
− 1

x
− p′

p
)
d

dx
+

p

x2
] fII

2 = 0 ;(6.22)

has the singular points x1, x2, x5 = −α
ǫ
, 0, ∞[2] .

The projection f2 = 0.

We have

[
d2

dx2
+ (

ǫ

ǫx+ α
− 1

x
− p′

p
)
d

dx
+

p

x2
] fI

1 = 0 .(6.23)

and

[
d2

dx2
+ (

2(ǫx+ α)ǫ− 2x

(ǫx+ α)2 − x2
− 2

x
− p′

p
)
d

dx
+

p

x2
] fII

1 = 0 ,(6.24)
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(ǫx+ α)2 − x2 = 0 =⇒ x3,4 = − α

ǫ+ 1
,

α

1− ǫ
,

with the singular points x1, x2, x3, x4, 0, ∞[2] .

The projection f3 = 0.

We get

[
d2

dx2
+

(

2x

2ν2 + x2
+

2

x
− p′

p

)

d

dx
− p

x2
] fI

4 = 0 ,(6.25)

and the singular points x1, x2, x3,4 = ±i
√
2ν2, 0, ∞[2] .

Further, we get

[
d2

dx2
+ (

ǫ

ǫx+ α
+

1

x
− p′

p
) +

p

x2
] fII

4 = 0,(6.26)

and the singular points x1, x2, x5 = −α
ǫ
, 0, ∞[2] .

The Projection f4 = 0.

We have

[
d2

dx2
+ (

ǫ

ǫx+ α
+

1

x
− p′

p
)
d

dx
+

p

x2
] fI

3 = 0 ,(6.27)

and the singular points x1, x2, x5 = −α
ǫ
, 0, ∞[2] .

Further, we obtain

[{ d2

dx2
+ (

2(ǫx+ α)ǫ− 2x

(ǫx+ α)2 − x2
− p′

p
)
d

dx
+

p

x2
] fII

3 = 0 ,(6.28)

and the singular points x1, x2, x3, x4, 0, ∞[2] .

7 The 4-th order differential equations

We start with the system

d

dx
f1 = af3 + cf4 ,

d

dx
f2 = df3 + bf4 ,

d

dx
f3 = Af1 + Cf2 ,

d

dx
f4 = Df1 +Bf2 .(7.1)

It is equivalent to the following

f1 =
Bf ′

3 − Cf ′
4

AB − CD
, f2 =

−Df ′
3 +Af ′

4

AB − CD
, f3 =

bf ′
1 − cf ′

2

ab− cd
, f4 =

−df ′
1 + af ′

2

ab− cd
.(7.2)

First, we exclude functions f3 and f4:

f1 =
B

(AB − CD)

d

dx

bf ′
1 − cf ′

2

ab− cd
− C

(AB − CD)

d

dx

−df ′
1 + af ′

2

ab− cd
,

f2 = − D

(AB − CD)

d

dx

bf ′
1 − cf ′

2

ab− cd
+

A

(AB − CD)

d

dx

−df ′
1 + af ′

2

ab− cd
,

Taking in mind the expressions for a(x), ..., D(x), the last equations may be written as:
(

K2(x)
d2

dx2
+K1(x)

d

dx
+K0(x)

)

f1 =
df2
dx

,

(

L2(x)
d2

dx2
+ L1(x)

d

dx
+ L0(x)

)

f2 =
df1
dx

,(7.3)
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where the following notations are used

K2(x) =
1

2

−x5ǫ2 − 2x4α ǫ+ 2 ν2x3 + x5 − x3α2

x (2 ǫ x3 + 3αx2 + 2αν2) ν
,

K1(x) =
1

2

ǫ2 − 1

ǫ ν
+

1

2

α
(

3x2 − x2ǫ2 − ǫ xα+ 2 ν2
)

ǫ ν (2 ǫ x3 + 3αx2 + 2αν2)
+

1

2

α

xν
,

K0(x) = −1

4

((

ǫ2 − 1
)

x2 + 2 ǫ xα− 2 ν2 + α2
)2

ν (ǫ x3 + 3/2αx2 + αν2)
,

L2(x) =

(

x5ǫ2 + 2x4α ǫ− x5 + x3α2 − 2 ν2x3
)

x

(x2 + x2ǫ2 + 2 ǫ xα+ α2) ν α
,

L1(x) =

(

2 ǫ xα ν2 + 2x3ǫ α+ 2x2α2 + 2 ν2α2
)

x

(x2 + x2ǫ2 + 2 ǫ xα+ α2) ν α
,

L0(x) =

((

ǫ2 − 1
)

x2 + 2 ǫ xα− 2 ν2 + α2
)2

x2

ν (x2 + x2ǫ2 + 2 ǫ xα+ α2)α
.

Let us exclude the function f2 from equations (7.3):

f2(x) =

∫ (

K2(x)
d2

dx2
+K1(x)

d

dx
+K0(x)

)

f1 ,

(L2
d

dx
+ L1)(K2

d2

dx2
+K1

d

dx
+K0) f1 + L0

∫

dx(K2
d2

dx2
+K1

d

dx
+K0)f1 = 0

The second relation should be divided by L0(x) and the result be differentiated. In this way,
we obtain a 4-order equation for f1(x):

{

d

dx
(
L2

L0

d

dx
+

L1

L0
)(K2

d2

dx2
+K1

d

dx
+K0) + (K2

d2

dx2
+K1

d

dx
+K0)

}

f1(x) = 0 .(7.4)

Similarly, we obtain a 4-order equation for f2:

{

d

dx
(
K2

K0

d

dx
+

K1

K0
)(L2

d2

dx2
+ L1

d

dx
+ L0) + (L2

d2

dx2
+ L1

d

dx
+ L0)

}

f2(x) = 0 .(7.5)

Now, we shall exclude the functions f1 and f2 from the equations

f1 =
Bf ′

3 − Cf ′
4

AB − CD
, f2 =

−Df ′
3 +Af ′

4

AB − CD
, f3 =

bf ′
1 − cf ′

2

ab− cd
, f4 =

−df ′
1 + af ′

2

ab− cd
.

This results in

f3 =
b

ab− cd

d

dx

Bf ′
3 − Cf ′

4

AB − CD
− c

ab− cd

d

dx

−Df ′
3 +Af ′

4

AB − CD
,

f4 = − d

ab− cd

d

dx

Bf ′
3 − Cf ′

4

AB − CD
+

a

ab− cd

d

dx

−Df ′
3 +Af ′

4

AB − CD
.

Taking into account the expressions for a(x), ..., D(x), we reduce the last equations to the
form

(

P2(x)
d2

dx2
+ P1(x)

d

dx
+ P0(x)

)

f3 =
df4
dx

,

(

Q2(x)
d2

dx2
+Q1(x)

d

dx
+Q0(x)

)

f4 =
df3
dx

,(7.6)
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where the following notations were used

P2(x) =
ix2

(

2 ν2 − ǫ2x2 − 2 ǫ xα− α2 + x2
)

ν (2x3ǫ+ 2 ν2α+ 3x2α)
,

P1(x) =
2 iν

(

ǫ xα+ α2 + 2x2
)

x (2x3ǫ+ 2 ν2α+ 3x2α)
,

P0(x) =
−i

((

ǫ2 − 1
)

x2 + 2 ǫ xα− 2 ν2 + α2
)2

2 ν ǫ x3 + 3 ν αx2 + 2 ν3α
,

Q2(x) =
1

2

ix4
(

2 ν2 − ǫ2x2 − 2 ǫ xα− α2 + x2
)

ν α (2 ǫ xα+ x2 + ǫ2x2 + α2)
,

Q1(x) =
ix

(

2 ν2x2 − ν2α2 − ν2ǫ xα− x4ǫ2 − 2x2α2 + x4 − 3x3ǫ α
)

ν α (2 ǫ xα+ x2 + ǫ2x2 + α2)
,

Q0(x) =
−1/2 i

((

ǫ2 − 1
)

x2 + 2 ǫ xα− 2 ν2 + α2
)2

x2

ν α (x2 + ǫ2x2 + 2 ǫ xα+ α2)
.

By acting in accordance with the above method (see (7.4)–(7.5)) we derive 4-order equations
for functions f1 , f2 , f3 , f4.

The equations for f1 and f3 have the same set of singular points (3 regular and 2 irregular
of the rank 3, and 2, respectively):

(7.7) (2ǫx3 + 3αx2 + 2ν2α) = 2ǫ(x− x1)(x− x2)(x− x3) , x = 0[2], x = ∞[2] ;

f
′′′′

1 +

[

−

12x (ǫx + α)

2ǫx3 + 2ν2α + 3αx2
+

6

x

]

f
′′′

1 +

+






−2 + 2ǫ

2
−

18α
(

2ν2α + 4ǫν2x − αx2
)

(

2ǫx3 + 2ν2α + 3αx2
)2

+
6 + 2α2

− 4ν2

x2
+

−30α − 12ǫx

2ǫx3 + 2ν2α + 3αx2
+

4ǫα

x






f
′′

1 +

+







72αx (ǫx + α)
(

2ǫx3 + 2ν2α + 3αx2
)2

+
8ǫα

x2
+

−4ν2 + 2α2

x3
+

6ν2
− 6α2

− 12 + 6ǫ2ν2

xν2
+

+
24ν4ǫ − 36ǫα2ν2

− 24xν2α + 18α3x − 36αxǫ2ν2 + 36αx − 12x2ν2ǫ3 + 24x2ǫ − 12x2ǫν2 + 12x2ǫα2

(

2ǫx3 + 2ν2α + 3αx2
)

ν2



 f
′

1+

+



1 − 2ǫ
2

+ ǫ
4

+
−6α2 + 6ǫ2ν2 + 6ǫ2α2ν2 + 6ν2

− 4ǫ2ν4 + 4ν4
− 2α2ν2

x2ν2
−

4ǫα
(

2ν2
− α2

)

x3
+

+
−18 ǫ2α2ν2 + 18α4

− 18α2ν2
− 84αǫxν2 + 120α3ǫx − 12αǫ3xν2

− 48x2ǫ2ν2 + 72x2ǫ2α2

(

2ǫx3 + 2ν2α + 3αx2
)

ν2α
+

+
72α4

− 180ǫ2α2ν2
− 108α2ν2

− 72αǫ3xν2
− 216αǫxν2 + 288α3ǫx − 144x2ǫ2ν2 + 162x2ǫ2α2

− 18x2α2

(

2ǫx3 + 2, ν2α + 3αx2
)2

+

+
−4α2 + α4 + 4ν4

− 4α2ν2

x4
−

2α2ν2

x6
+

4ǫ
(

−9α2
− α2ν2 + 6ν2 + ǫ2α2ν2

)

xν2α



 f1 = 0 ,(7.8)

f
′′′′

3 +

[

−

12x (ǫx + α)

2x3ǫ + 3αx2 + 2ν2α
+

10

x

]

f
′′′

3 +

+






2ǫ

2
− 2 +

2α2
− 4ν2 + 24

x2
+

−66α − 48ǫx

2x3ǫ + 3αx2 + 2ν2α
−

18α
(

2ν2α + 4 xν2ǫ − αx2
)

(

2x3ǫ + 3αx2 + 2ν2α
)2

+
4αǫ

x






f
′′

3 +

+







16αǫ

x2
+

12 + 6α2
− 12ν2

x3
−

72α
(

2ǫν2
− 3αx − 2ǫx2

)

(

2x3ǫ + 3αx2 + 2ν2α
)2

+

+
24ǫν4

− 36ǫα2ν2
− 24ǫν2 + 18α3x − 24αxν2

− 36αxǫ2ν2 + 162αx − 12x2ν2ǫ3 + 108ǫx2 + 12x2ǫα2
− 12x2ǫν2

(

2x3ǫ + 3αx2 + 2ν2α
)

ν2
+
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+
−54 − 6α2 + 2ν2 + 10ǫ2ν2

xν2



 f
′

3+

+



−2ǫ
2

+ ǫ
4

+ 1 +
−12α2 + 12ǫ2ν2 + 6ǫ2α2ν2 + 4ν4

− 2α2ν2
− 4ν4ǫ2 + 12ν2

x2ν2
+

+
−54ǫ2α2ν2

− 42α2ν2 + 36α4
− 132ǫxα ν2 + 186α3ǫx − 24ǫ3xαν2

− 72x2ǫ2ν2 + 108α2ǫ2x2

(

2x3ǫ + 3αx2 + 2ν2α
)

ν2α
−

−

4αǫ
(

−2 − α2 + 2ν2
)

x3
−

2α2ν2

x6
+

+
72α4

− 180ǫ2α2ν2
− 108α2ν2

− 72ǫ3xαν2
− 216ǫxαν2 + 288α3ǫx + 162α2ǫ2x2

− 18α2x2
− 144x2ǫ2ν2

(

2x3ǫ + 3αx2 + 2ν2α
)2

+

+
2ǫ

(

−27α2
− 2α2ν2 + 18ν2 + 2ǫ2α2ν2

)

αxν2
+

−2α2
− 4α2ν2

− 4ν2 + α4 + 4ν4

x4



 f3 = 0 ,(7.9)

The equations for f2 and f4 have the same set of singular points (2 regular and 2 irregular
of the rank 3 and 2, respectively):

(7.10) (1 + ǫ2)x2 + 2ǫαx+ α2 = (1 + ǫ2)(x− x5)(x− x6) , x = 0, x = ∞ ;

f
′′′′

2 +





−4ǫα − 4 xǫ2 − 4x

2ǫxα + x2 + α2 + ǫ2x2
+

10

x



 f
′′′

2 +



−2 + 2ǫ
2

+
22 − 4ν2 + 2α2

x2
−

−

8α2

(

2ǫxα + x2 + α2 + ǫ2x2
)2

+
32ǫ2α − 16α + 24xǫ3 + 24ǫx
(

2ǫxα + x2 + α2 + ǫ2x2
)

α
+ 4

ǫ
(

−6 + α2
)

αx






f
′′

2 +

+







4ǫ
(

2ν2
− 6 + 3α2

)

αx2
+

24ǫα − 8ǫ3α − 8xǫ4 + 8x
(

2ǫxα + x2 + α2 + ǫ2x2
)2

+

+
−72ǫ3α + 8ν2ǫ3α + 56ǫα + 8ǫα3

− 24ν2ǫα − 48xǫ4 + 8xν2ǫ4 − 32xǫ2 + 8ǫ2α2x − 8xν2 + 16x + 8α2x
(

2ǫxα + x2 + α2 + ǫ2x2
)

α2
+

+
8ν2

− 8ν2ǫ2 − 16 + 48ǫ2 − 14α2 + 6ǫ2α2

α2x
+

−12ν2 + 8 + 6α2

x3



 f
′

2+

+



ǫ
4

− 2ǫ
2

+ 1 +
24ν2 + 6ǫ2α2 + 6ǫ2α4

− 24ν2ǫ2 − 4ν2ǫ2α2
− 30α2

− 2α4 + 4α2ν2

x2α2
+

+
16α3

− 16αν2 + 48αν2ǫ2 + 32ǫxν2 + 32ǫ3xν2

(

2ǫxα + x2 + α2 + ǫ2x2
)2

α

−

2α2ν2

x6
+

+
−40αν2ǫ4 − 40α3ǫ2 + 192αν2ǫ2 + 24α3

− 24αν2
− 32xν2ǫ5 + 64ǫ3xν2

− 32xǫ3α2
− 32ǫα2x + 96ǫxν2

(

2ǫxα + x2 + α2 + ǫ2x2
)

α3
+

+
4ǫ

(

−24ν2 + ǫ2α4 + 8ν2ǫ2 + 8α2
− α4

)

α3x
+

−8ν2
− 4α2ν2 + α4 + 4ν4

x4
−

−

4ǫ
(

2α2ν2
− α4

− 4ν2
− 2α2

)

αx3



 f2 = 0 ,(7.11)

d4f4

dx4
+





−4ǫα − 4 xǫ2 − 4x

x2 + α2 + 2ǫxα + ǫ2x2
+ 14x

−1





d3f4

dx3
+

+






2ǫ

2
− 2 −

8α2

(

x2 + α2 + 2ǫxα + ǫ2x2
)2

+
−4ν2 + 2α2 + 52

x2
+

+
44αǫ2 − 28α + 36xǫ3 + 36ǫx
(

x2 + α2 + 2ǫxα + ǫ2x2
)

α
+ 4

ǫ
(

α2
− 9

)

αx





d2f4

dx2
+

+







−8ǫ3α + 56ǫα − 8xǫ4 + 16xǫ2 + 24x
(

x2 + α2 + 2ǫxα + ǫ2x2
)2

+
4ǫ

(

−16 + 5α2 + 2ν2
)

αx2
+

48 + 10α2
− 20ν2

x3
+
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+
8ν2ǫ3α − 136ǫ3α − 24ǫαν2 + 8α3ǫ + 184ǫα − 100xǫ4 + 8xν2ǫ4 − 40xǫ2 + 8α2xǫ2 + 60x + 8α2x − 8xν2

(

x2 + α2 + 2ǫxα + ǫ2x2
)

α2
+

+
100ǫ2 − 60 + 10α2ǫ2 − 18α2

− 8ǫ2ν2 + 8ν2

α2x





df4

dx
+

+



ǫ
4

− 2ǫ
2

+ 1 +
−20ν2 + α4 + 6α2 + 4ν4

− 4α2ν2

x4
+

+
48αǫ2ν2 + 16α3

− 16αν2 + 32ǫ3xν2 + 32ǫ xν2

(

x2 + α2 + 2ǫxα + ǫ2x2
)2

α

+

+
32ν2

− 44α2 + 12α2ǫ2 + 4α2ν2
− 2α4

− 4α2ǫ2ν2
− 32ǫ2ν2 + 6ǫ2α4

x2α2
−

−

4ǫ
(

−α4
− 5α2

− 6ν2 + 2α2ν2
)

αx3
−

2α2ν2

x6
+

+
−48αν2ǫ4 − 48α3ǫ2 + 240αǫ2ν2 + 32α3

− 32αν2
− 40xǫ5ν2

− 40xǫ3α2 + 80, ǫ3xν2
− 40ǫxα2 + 120ǫxν2

(

x2 + α2 + 2ǫxα + ǫ2x2
)

α3
+

+
4 ǫ

(

−30 ν2 + 10α2
− α4 + 10 ǫ2ν2 + ǫ2α4

)

α3x



 f4 = 0 ,(7.12)

Any of the four functions f1 , f2 , f3 , f4 may be considered as a main functions, and then
all the remaining ones can be calculated in straightforward manner.

Let the function f1 be the main one. We should take into account the 6 equations (7.2),
(7.3):

f1 =
Bf ′

3 − Cf ′
4

AB − CD
, f2 =

−Df ′
3 +Af ′

4

AB − CD
, f3 =

bf ′
1 − cf ′

2

ab− cd
, f4 =

−df ′
1 + af ′

2

ab− cd
,

(K2
d2

dx2
+K1

d

dx
+K0)f1 =

df2
dx

, (L2
d2

dx2
+ L1

d

dx
+ L0)f2 =

df1
dx

.(7.13)

From the fifth equation we find f2; then from the 3-rd and 4-th, we express f3 and f4.

If we choose f2 as a main function, then from the 6-th equation we express f1 and, after
that, from the 3-rd and 4-th equations we obtain the functions f3 and f4. Let the main
function be f3; then we use the 6 equations

f1 =
Bf ′

3 − Cf ′
4

AB − CD
, f2 =

−Df ′
3 +Af ′

4

AB − CD
, f3 =

bf ′
1 − cf ′

2

ab− cd
, f4 =

−df ′
1 + af ′

2

ab− cd
,

(P2
d2

dx2
+ P1

d

dx
+ P0)f3 =

df4
dx

, (Q2
d2

dx2
+Q1

d

dx
+Q0)f4 =

df3
dx

,(7.14)

from the fifth equation, we get f4; then from the 1-st and 2-nd equations we obtain expres-
sions for f1, f2. If the main function is f4, we get f3 from the 6-th equation, and after that,
from from the 1-st and 2-nd equations we find f1, f2.

We conclude that the formal Frobenuis solutions of each of the derived 4-order differential
equations are constructed, and the convergence of the involved power series, is studied. From
four independent solutions of any 4-order equations, only two solutions may be referred to
independent series of bound states.
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8 Conclusions

In fact, in the paper it is shown that in the system which is described completely by 4-th
order differential equations, some 2-order differential equations associated with this system
play an important role as well.

The system of 10 radial equations, derived from the Duffin–Kemmer–Petiau equation for
a spin 1 particle in the external Coulomb field, is studied. With the use of the space reflection
operator, the whole system is split to independent subsystems, consisted of 4 and 6 equations
respectively. The most simple subsystem of 4 equations is solved in terms of hypergeometric
functions, which gives yet known energy spectrum. Also solutions and energy spectrum are
found for minimal value of the total angular momentum, j = 0.

The second subsystem should give description of two other series of bound states. With
the use of the Lorentz generalized condition in presence of the Coulomb field, we prove that
one of 6 radial functions turns to be identically zero. This simplifies the explicit form of the
system of 6 equations, which contain only 5 unknown functions. Combining this system, we
derive a 2-nd order differential equation for one radial function, which may be recognized
as a confluent Heun equation. A series of bound states is constructed in terms of so called
transcendental confluent Heun functions, which provides us with the second class of bound
states for spin 1 particle in the external Coulomb field, with corresponding formula for energy
levels.

The subsystem of 6 equations, with no use of additional constraints due to the Lorentz
condition, after excluding two non-differential relations reduces to a system of 1-st order
differential equation for 4 independent functions fi, i = 1, 2, 3, 4. We derive the explicit form
of 4-th order equation for each function. Among them there arise two substantially sets
of singular points: 3 regular (or 2 ) and 2 irregular of the rank 2. Their formal Frobenius
solutions have been constructed, and convergence of the involved power series is studied. Any
of these four functions may be considered as a main one, and then all remaining functions
may be found in explicit form through the main one. From four independent solutions of
the main function, governed by 4-th order equation, only two solutions may be referred to
independent series of bound states.
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