INTEGRALS RELATED TO THE MULTIDIMENSIONAL-MATRIX GAUSSIAN DISTRIBUTION

V.S. MUKHA, N.F. KAKO

Belarusian State University of Informatics and Radioelectronics

Minsk, Republic of Belarus

e-mails: mukha@bsuir.by, kako.nancy@gmail.com

Abstract

The three integrals, total probability formula and Bayes' formula connected with the multidimensional-matrix Gaussian distribution are presented. These results can be used in the various tasks of the statistical decision theory, particularly in the dual control theory.

1 Introduction

Integrals related to the probability distributions are the part of the statistical decision theory. One example of using of the statistical decision theory is the dual control [4], [2]. Some integrals related to the vector Gaussian distribution are developed in the paper [2]. More complicated problems in the framework of the statistical decision theory require generalizations of the results of the paper [2] in various directions. In this paper, such generalizations for the multidimensional-matrix Gaussian distribution are developed. The three integrals, total probability formula and Bayes' formula related to the multidimensional-matrix Gaussian distribution are presented.

2 The integrals related to the multidimensionalmatrix Gaussian distribution

The random q-dimensional matrix $\xi = (\xi_{\bar{i}_q})$, $\bar{i}_q = (i_1, i_2, ..., i_q)$, $i_\alpha = 1, 2, ..., m_\alpha$, $\alpha = 1, 2, ..., q$, is distributed according to the normal or Gaussian law if its probability density is defined by the following expression [3]:

$$f(\xi) = \frac{1}{\sqrt{(2\pi)^{r_q}|d_{\xi}|}} exp\left(-\frac{1}{2} {}^{0,2q}\left(d_{\xi}^{-1}(\xi - \nu_{\xi})^2\right)\right), \ \xi \in E^{r_q},\tag{1}$$

where: ν_{ξ} , d_{ξ} are the parameters of the Gaussian multidimensional-matrix distribution, herewith $\nu_{\xi} = (\nu_{\xi,\bar{i}_q})$, $\bar{i}_q = (i_1,i_2,...,i_q)$, $i_{\alpha} = 1,2,...,m_{\alpha}$, $\alpha = 1,2,...,q$, is the mathematical expectation of the random q-dimensional matrix ξ and $d_{\xi} = (d_{\xi,\bar{i}_q,\bar{j}_q})$, $\bar{i}_q = (i_1,i_2,...,i_q)$, $\bar{j}_q = (j_1,j_2,...,j_q)$, $i_{\alpha},j_{\alpha} = 1,2,...,m_{\alpha}$, $\alpha = 1,2,...,q$, is the dispersion matrix of the random q-dimensional matrix ξ ; d_{ξ}^{-1} is the matrix (0,q)-inverse to the matrix d_{ξ} ; $|d_{\xi}|$ is the determinant of the matrix d_{ξ} ; $r_q = \prod_{i=1}^q m_i$ is the number of the

elements of the matrix ξ ; E^{r_q} is the r_q -dimensional Euclidean space; $\bar{i}_q = (i_1, i_2, ..., i_q)$, $\bar{j}_q = (j_1, j_2, ..., j_q)$ are the multi-indexes either of which contains q indexes.

The mathematical expectation of the random q-dimensional matrix ξ is the q-dimensional matrix with the same size as the matrix ξ . It is defined by the expression

$$\nu_{\xi} = E(\xi) = (E(\xi_{\bar{i}_q})) = (\nu_{\xi,\bar{i}_q}), \ \bar{i}_q = (i_1, i_2, ..., i_q), \ i_{\alpha} = 1, 2, ..., m_{\alpha}, \ \alpha = 1, 2, ..., q,$$

so that $\nu_{\xi,\bar{i}_q} = E(\xi_{\bar{i}_q})$, E is the symbol of the mathematical expectation [3].

The dispersion matrix d_{ξ} of the random q-dimensional matrix ξ is the 2q-dimensional matrix defined by the expression

$$d_{\xi} = E\left((\xi - \nu_{\xi})^{2}\right) = \left(E\left((\xi_{\bar{i}_{q}} - \nu_{\xi,\bar{i}_{q}})(\xi_{\bar{j}_{q}} - \nu_{\xi,\bar{j}_{q}})\right)\right) = (d_{\xi,\bar{i}_{q},\bar{j}_{q}}),$$

$$\bar{i}_q = (i_1, i_2, ..., i_q), \ \bar{j}_q = (j_1, j_2, ..., j_q), i_\alpha, j_\alpha = 1, 2, ..., m_\alpha, \ \alpha = 1, 2, ..., q,$$

so that $d_{\xi,\bar{i}_q,\bar{j}_q} = E\left((\xi_{\bar{i}_q} - \nu_{\xi,\bar{i}_q})(\xi_{\bar{j}_q} - \nu_{\xi,\bar{j}_q})\right)$, E is the symbol of the mathematical expectation, and $(\xi - \nu_{\xi})^2 = \left((\xi_{\bar{i}_q} - \nu_{\xi,\bar{i}_q})(\xi_{\bar{j}_q} - \nu_{\xi,\bar{j}_q})\right)$ is the (0,0)-rolled square of the matrix ξ [3].

The determinant $|d_{\xi}|$ of the matrix d_{ξ} is defined as the determinant of the two-dimensional matrix $\tilde{d}_{\xi,q,0,q}$ that is the (q,0,q)-associated matrix with the 2q-dimensional matrix d_{ξ} [3].

We have proved the following equalities connected with the function (1):

$$\int_{E^{r_q}} exp\left(-\frac{1}{2} {}^{0,2q}(A\xi^2) + {}^{0,q}(B\xi)\right) d\xi = \sqrt{(2\pi)^{r_q}|A^{-1}|} \exp\left(\frac{1}{2} {}^{0,2q}(A^{-1}B^2)\right),$$

$$\int_{E^{r_q}}^{0,q} (C\xi) exp\left(-\frac{1}{2} {}^{0,2q} (A\xi^2) + {}^{0,q} (B\xi)\right) d\xi =$$

$$= \sqrt{(2\pi)^{r_q} |A^{-1}|} exp\left(\frac{1}{2} {}^{0,2q} (A^{-1}B^2)\right) {}^{0,q} \left(C^{0,q} (A^{-1}B)\right),$$

$$\int_{E^{r_q}} {}^{0,2q}(U\xi^2) exp\left(-\frac{1}{2} {}^{0,2q}(A\xi^2) + {}^{0,q}(B\xi)\right) d\xi =$$

$$= \sqrt{(2\pi)^{r_q}|A^{-1}|} \exp\left(\frac{1}{2} {}^{0,2q} (A^{-1}B^2)\right) {}^{0,2q} \left(U\left(A^{-1} + {}^{0,0} ({}^{0,q} (A^{-1}B))^2\right)\right),$$

where: $\xi = (\xi_{\bar{i}_q}), \ \bar{i}_q = (i_1, i_2, ..., i_q)$, is the q-dimensional $(m_1 \times m_2 \times ... \times m_q)$ -matrix; $r_q = \prod_{i=1}^q m_i$ is the number of the elements of the matrix ξ ; $B = (b_{\bar{i}_q}), C = (c_{\bar{i}_q})$ are the q-dimensional $(m_1 \times m_2 \times ... \times m_q)$ -matrices of the parameters; $A = (a_{\bar{i}_q,\bar{j}_q}), \ U = (u_{\bar{i}_q,\bar{j}_q})$ are the 2q-dimensional $(m_1 \times m_2 \times ... \times m_q \times m_1 \times m_2 \times ... \times m_q)$ -matrices of the parameters that are positive-definite and symmetric relative their q-multi-indexes \bar{i}_q , \bar{j}_q ; A^{-1} is the matrix (0,q)-inverse to the matrix A; $|A^{-1}|$ is the determinant of the matrix A^{-1} .

3 The total probability formula for the multidimensionalmatrix Gaussian distributions

Theorem 1 (the total probability formula for multidimensional-matrix Gaussian distributions). Let ξ is the q-dimensional $(m_1 \times m_2 \times ... \times m_q)$ -matrix, x is the p-dimensional $(s_1 \times s_2 \times ... \times s_p)$ -matrix, $r_q = \prod_{i=1}^q m_i$ is the numbers of the elements of the matrix ξ , $r_p = \prod_{i=1}^p s_i$ is the numbers of the elements of the matrix x, $f(\xi)$ is the probability density of the matrix ξ , $f(x/\xi)$ is the conditional probability density of the matrix x, R^{r_q} is the r_q -dimensional Euclidean space. If in the total probability formula

$$f(x) = \int_{E^{r_q}} f(x/\xi)f(\xi)d\xi \tag{2}$$

the probability density $f(x/\xi)$ is represented in the form

$$f(x/\xi) = \frac{1}{\sqrt{(2\pi)^{r_p}|d_x|}} exp\left(-\frac{1}{2}{}^{0,2q}(S\xi^2) + {}^{0,q}(V\xi) - \frac{1}{2}W\right),\,$$

and probability density $f(\xi)$ is represented in the form

$$f(\xi) = \frac{1}{\sqrt{(2\pi)^{r_q}|d_{\xi}|}} exp\left(-\frac{1}{2} {}^{0,2q}(d_{\xi}^{-1}\xi^2) + {}^{0,q}\left({}^{0,q}(d_{\xi}^{-1}\nu_{\xi})\xi\right) - \frac{1}{2} {}^{0,2q}(d_{\xi}^{-1}\nu_{\xi}^2)\right),$$

then the probability density f(x) (2) (total probability formula) determine by the expression

$$f(x) = \frac{1}{\sqrt{(2\pi)^{r_p}|d_x||d_\xi||A|}} exp\left(-\frac{1}{2}{}^{0,2q}(A^{-1}B^2) - \frac{1}{2}C\right),$$

where

$$A = d_{\xi}^{-1} + S,$$

$$B = {}^{0,q} (d_{\xi}^{-1} \nu_{\xi}) + V,$$

$$C = {}^{0,2q} (d_{\xi}^{-1} \nu_{\xi}^{2}) + W,$$

 $|d_x|$, $|d_{\xi}|$, |A| are the determinants of the corresponding multidimensional matrices, and A^{-1} is the matrix (0,q)-inverse to the matrix A.

We denote that the matrices d_{ξ} , d_{ξ}^{-1} , S, A, A^{-1} are 2q-dimensional symmetrical relative their q-multi-indexes, ν_{ξ} , V, B are q-dimensional, d_x is the 2p-dimensional symmetrical relative its p-multi-indexes, W, C are zero-dimensional (scalars).

4 The Bayes' formula for the multidimensional-matrix Gaussian distributions

Theorem 2 (Bayes' formula for multidimensional-matrix Gaussian distributions). Let ξ is the q-dimensional $(m_1 \times m_2 \times ... \times m_q)$ -matrix, x is the p-dimensional $(s_1 \times s_2 \times ... \times s_p)$ -matrix, $r_q = \prod_{i=1}^q m_i$ is the numbers of the elements of the matrix ξ , $r_p = \prod_{i=1}^p s_i$ is the numbers of the elements of the probability density of the matrix ξ , $f(x/\xi)$ is the conditional probability density of the matrix x, R^{r_q} is the r_q -dimensional Euclidean space. If in the Bayes' formula

$$f(\xi/x) = \frac{f(x/\xi)f(\xi)}{\int_{E^{r_q}} f(x/\xi)f(\xi)d\xi}$$
(3)

the probability density $f(x/\xi)$ is represented in the form

$$f(x/\xi) = \frac{1}{\sqrt{(2\pi)^{r_p}|d_x|}} exp\left(-\frac{1}{2}{}^{0,2q}(S\xi^2) + {}^{0,q}(V\xi) - \frac{1}{2}W\right),\,$$

and the probability density $f(\xi)$ is represented in the form

$$f(\xi) = \frac{1}{\sqrt{(2\pi)^{r_q}|d_\xi|}} exp\left(-\frac{1}{2}{}^{0,2q}(d_\xi^{-1}\xi^2) + {}^{0,q}\left({}^{0,q}(d_\xi^{-1}\nu_\xi)\xi\right) - \frac{1}{2}{}^{0,2q}(d_\xi^{-1}\nu_\xi^2)\right),$$

then the posteriori probability density $f(\xi/x)$ of the random vector ξ determined by the Bayes' formula (3), haves the following form

$$f(\xi/x) = \frac{1}{\sqrt{(2\pi)^{r_q}|A^{-1}|}} exp\left(-\frac{1}{2} {}^{0,2q}\left(A\left(\xi - {}^{0,q}(A^{-1}B)\right)^2\right)\right),$$

where $A = d_{\xi}^{-1} + S$, $B = {}^{0,q} (d_{\xi}^{-1} \nu_{\xi}) + V$.

References

- [1] Mukha V.S., Sergeev E.V. (1976). Dual control of the regression objects. *Proceedings of the LETI*. Issue **202**, pp. 58-64. (In the Russian).
- [2] Mukha V.S. (1974). Calculation of integrals connected with the multivariate Gaussian distribution. *Proceedings of the LETI*. Issue **160**, pp. 27-30. (In the Russian).
- [3] Mukha V.S. (2004). Analysis of multidimensional data. Technoprint, Minsk, 368 p. (In the Russian).
- [4] Feldbaum A.A. (1965). Optimal Control Systems. Academic Press, New York and London, 452 p.