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a b s t r a c t

Bilateral teleoperation systems connected to computer networks such as the internet must be able to
operate with varying time delays since such systems can easily become unstable. A passivity concept
has been used as the framework to solve the stability problem in the bilateral control of teleoperation
systems. Passivity and tracking performance are recovered using a control architecture that incorporates
time varying gains into the transmission path, feedforward, and feedback position control. The proposed
architecture has an inner component that can accommodate any configuration but still remain stable and
passive even with varying time delay. The simulation results for a single degree of freedom master/slave
system demonstrate the performance of the proposed control architecture.

© 2018 Published by Elsevier Ltd on behalf of ISA.

1. Introduction

Since the first master–slave teleoperator was built by Goertz
and Thompson in 1954, a significant amount of research has been
carried out in an attempt to understand and overcome specific
problems in bilateral teleoperation [1]. The various potential ap-
plications of bilateral teleoperations, such as in mobile robots,
telesurgery, space exploration, seabed operations, and virtual re-
ality, continue to attract attention from researchers worldwide.
However, a time delay is incurred in the transmission of data
from one location to another whenever teleoperation is performed
over a large distance. These time delays can easily destabilize
a bilaterally-controlled teleoperation system if no extra control
measures are employed.

Anderson and Spong [2] were the first to propose a solution
to the time-delay problem in 1982 when they employed passiv-
ity [3] and scattering theory to overcome the instability caused
by time delay. Niemeyer and Slotine [4] introduced the use of
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wave variables in teleoperation, which extended the scattering
theory proposed byAnderson and Spong. Lozano et al. [5] extended
Anderson and Spong’s previous approach for a varying time delay
system by adding a small gain to compensate for the energy flow.
Leeraphan et al. [6] proposed a method that could be used for a
varying time delay by introducing a time-varying gain parameter,
b, which varies with the power variables.

Several other methods have been proposed to address the ef-
fects of a constant time delay, including Forouzantabar’s [7] exten-
sion of Lee and Spong’s [8] work, and Hirche’s [9] introduction of a
distributed controller approach for networked control systems to
address the problem of a constant time delay. Varying time delays
have been addressed by Bouknifer [10,11], Fujita [12], Chopra [13–
15], Gu [16], Ryu [17–19], Ye [20], Chen [21], Farooq [22], and
Wang [23]. Feedforward and feedback controllers have been em-
ployed by Hosseini-Suny [24], Hua [25], Lee [26], and Yang [27].

Later works considered nonlinear bilateral teleoperators with
variable time delays that eliminated the need for velocitymeasure-
ments in the position tracking problem. One such solutionwas pro-
posed by Sarras [28], in which utilized the Immersion & Invariance
observer to derive a global exponentially convergent estimate of
unmeasured velocities. Alternatively, Hua [29] addressed the lack
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of velocity information by proposing an output-feedback adaptive
SP+Sd-type controllerwhere the unknown velocitywas estimated
by a new fast terminal sliding-mode velocity observer. The un-
known gravity term was also approximated through an adaptive
method. Sun [30] proposed a new wave-based time-domain pas-
sivity approach (TDPA) which achieved higher transparency while
remaining stable even with random time delays. One of the most
recent works on teleoperation was the development of KONTUR-
2by Artigas [31], where the Earth and International Space Station
(ISS) were used to test and demonstrate a new technology for
space-to-earth real-time manipulation by remotely operating a
robot manipulator in Germany from a force feedback joystick in
the ISS.

The standard approaches for the control of bilateral teleoper-
ators with force feedback based either on Anderson and Spong’s
scattering approach or the equivalent wave variable formulation
of Niemeyer and Slotine [32] generally preserve passivity only for
a constant time delay. However, teleoperation over the Internet,
which can have varying time delays due to several factors such
as congestion, bandwidth, or distance, may severely degrade the
performance or even result in an unstable system [2,4,32–34].
Lozano then carried out the passivation of force reflected bilateral
teleoperations with time varying delays [5].

Since Anderson and Spong [2,35] found that passivity does
not guarantee good performance, in this paper we propose and
analyze a modified control architecture similar to that proposed
by Lawrence [36]. In the proposed architecture, time-varying gains
are introduced to the transformation. These gains explicitly use
the position data from the master to generate feedforward and
feedback position control for the manipulator to recover passivity
and achieve good tracking performance. Passivity and tracking
performance can be recovered through such a configuration. Sim-
ulations using a 1-DOF teleoperator system demonstrated a trade-
off between position tracking and force tracking. Depending on the
value combinations of the gain parameter K and the impedance
parameter b, satisfactory position tracking, force tracking, or both
can be achieved.

The main contributions of this paper are the development of a
control architecture for linear time-varying systems and demon-
stration that the proposed architecture possesses the following
important properties:

• ability to remain passive and stable with any type of configu-
ration in the middle even if there is variable time delay

• position and tracking errors are bounded
• adaptability to varying time delay with time varying control

gains by using position data from themaster feedforward and
feedback.

This research work is presented as follows. Section 2 gives
a brief background on the concept of passivity, while Section 3
presents the theoretical background on bilateral teleoperation. The
proposed architecture for varying time delay is presented in Sec-
tion 4 and the simulation results and corresponding discussion are
given in Section 5 followed by the concluding remarks in Section
6.

2. Basic passivity concepts

Passivity formalism is motivated by the Lyapunov theory, and
provides a powerful tool for system stability analysis and control
law design. It represents a mathematical description of the intu-
itive physical concepts of power and energy. The ‘‘power’’ entering
a system is defined as the scalar product between the input vector

and output vector y of the system. A system is said to be passive if
and only if it obeys (1) as follows [5,6]:

P = xTy =
dE
dt

+ Pdiss (1)

where E is a lower-bounded ‘‘energy storage’’ function and Pdiss
is a non-negative ‘‘power dissipation’’ function. Due to the lower-
boundedness of E without a loss of generality, E is considered to be
a non-negative function.∫ t

0
Pdτ =

∫ t

0
xT ydτ = E(t)−E(0)+

∫ t

0
Pdissdτ ≥ −E(0) = constant (2)

As can be seen in (1), the power is either stored or dissipated.
This implies that the total energy supplied by the systemup to time
t is limited to the initial stored energy, E(0). If the power dissipation
is zero for all time, the system is also termed lossless. In contrast,
if the power dissipation is positive, provided the stored energy has
not reached its lower bound, the system is strictly passive. Using
the stored energy as a Lyapunov-like function, one can quickly
analyze the stability and show that, without an external input, a
passive system is stable.

3. Bilateral teleoperation

The passivity formalism is motivated by the Lyapunov theory,
and provides a powerful tool for system stability analysis and
control law design. It represents a mathematical description of
the intuitive physical concepts of power and energy. The ‘‘power’’
entering a system is defined as the scalar product between the
input vector and the output vector y of the system.

A standard teleoperation system is presented in the block dia-
gram shown in Fig. 1(a). The standard teleoperation system con-
sists of five subsystems: the human operator, the master, the
communication block, the slave, and the environment. In the block
diagram, ẋ represents the velocity and F represents the force. The
subscriptm represents the variables of the master at the local site,
while subscript s represents the variables of the slave at the remote
location.

In general, the local site sends a position or velocity command
to control the slave manipulator. Simultaneously, the remote force
is transmitted back to the local site to provide the desired force
command. The communication block connects the local and the
remote systems, and also introduces time delays, which may be
caused by physical transmission times or communication band-
width limitations. Even small delays can cause a system to be
unstable. Fig. 1(b) presents a model of communication with a
constant time delay. Here, the power variables are given by

ẋs (t) = ẋm (t − T ) , Fm (t) = Fs (t − T ) (3)

where T is the time delay in the communication block, which is
defined as a constant term. It can be easily proved that specific
values for the input variables ẋm and Fs will cause negative power
dissipation, which can make the overall system unstable. Niemey-
eret al. [32] first described the stabilization of a time delay system
bymaking the system sufficiently damped, whereby a damping el-
ement was inserted next to the communication out port to ensure
the system could guarantee that positive power dissipation would
result in a passive system. Fig. 1(c) shows a standard communi-
cation model with sufficient dissipation, in which power variables
are transmitted with time delay T. For passive communication in
Fig. 1(c), the implemented power variables are shown as follows:

F∗

m = Fm + bẋm, ẋ∗

s = ẋs −
1
b
Fs (4)
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Fig. 1. Diagram and schematic of communication in a teleoperation system.

Thus, the modified power flowing into the system at any time t
is computed as: P(t) = ẋm(t)F∗

m(t) − ẋ∗
s (t)Fs(t), that is

ẋm(t)F∗

m(t) − ẋ∗

s (t)Fs(t)

= [
1
2b

F 2
m(t) + ẋm(t)Fm(t) +

b
2
ẋ2m(t)] + [

1
2b

F 2
s (t) − ẋs(t)Fs(t)

+
b
2
ẋ2s (t)] + [

b
2
ẋ2m(t) −

b
2
ẋ2s (t) +

1
2b

F 2
s (t) −

1
2b

F 2
m(t)]

=
1
2b

F∗2
m (t) +

b
2
ẋ∗2
s (t) + [

d
dt

∫ t

t−T

b
2
ẋ2m(τ )dτ

+
d
dt

∫ t

t−T

1
2b

F 2
s (τ )dτ ]

=
dE(t)
dt

+ Pdiss(t). (5)

According to (1), the power dissipation Pdiss(t) and stored energy
E(t) are defined as

Pdiss(t) =
1
2b

F∗2
m (t) +

b
2
ẋ∗2
s (t),

dE(t)
dt

=
d
dt

∫ t

t−T

b
2
ẋ2m(τ )dτ +

d
dt

∫ t

t−T

1
2b

F 2
s (τ )dτ

Therefore, the dissipated energy is non-negative and the system
stays passive. However, the above result does not hold if T=T(t),
i.e. the delay is time-varying. The reason why stability is not guar-
anteed in the time-varying delay case is investigated as follows.
The variable relationship between themaster and slave at any time
in a varying time delay case is given by:

ẋs (t) = ẋm (t − T1 (t)) , Fm (t) = Fs (t − T2 (t)) (6)

The total energy expressed in (2) related to the communications
during the signal transmission at any time can be written as fol-
lows:∫ t

0
P(τ )dτ =

∫ t

0
(ẋm(τ )F∗

m(τ ) − ẋ∗

s (τ )Fs(τ ))dτ

=

∫ t

0
(ẋmFm + bẋ2m − ẋsFs +

1
b
F 2
s )dτ =

∫ t

0
(
1
2b

F∗2
m +

b
2
ẋ∗2
s )dτ

+

∫ t

0
(
b
2
ẋ2m +

1
2b

F 2
s )dτ

−

∫ t

0
(
b
2
ẋ2m(τ − T1(τ )) +

1
2b

F 2
s (τ − T2(τ )))dτ . (7)

From (7), it follows that it cannot be ensured that
∫ t
0 P (τ ) dτ

is always lower-bounded, implying that a controller/manipulator
setup always exists that can cause negative dissipation and can
cause the system to lose passivity and become unstable.

4. Proposed new architecture for varying time delay and its
properties

In order to overcome the potential destabilizing effects of the
time-varying delay, we propose a new architecture shown in
Fig. 2(a). The architecture can be divided into two components, as
shown in Fig. 2(b) and 2(c).

The main difference of this architecture over that of Chopra’s
[37] is its ability to remain passive even when any type of con-
figuration is utilized in the middle, represented by the box with
broken line in Fig. 2(b). Derivations in the latter part of this section
will show that, despite using proof from Chopra’s [33] scheme,
the results in the present study and those of Chopra’s scheme
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Fig. 2. Proposed new architecture for varying time delay.

do not coincide. This is because the variable time delay case was
considered, while the delay in [33] is assumed to be constant and
a different configuration of configuration is utilized in the middle,
represented by the box with broken line in Fig. 2(b). Overlapping
results also occurredwith the time-varying delay version proposed
by Nuno [38] since a similar approachwas used evenwhen deriva-
tions weremade independently and the authors were not aware of
existing results at the time.

The proposed system structure has the feedforward Ffeed =

K (xm (t − T ) − xs) and does not utilize the scattering method to
stabilize the system but relies on the variable gain similar to
Lozano [5] and the impedance matching of Niemeyer [4]. Also, a
stable passive system is achieved regardless of the type of configu-
ration of the inner structure. Mathematical proof showing that the
architecture will remain passive is given in succeeding sections of
this paper.

We impose the following assumptions.

Assumption1. Functions Ti (t) , i = 1, 2 are continuous piecewise-
smooth, and there exist numbers Timax, i = 1, 2 such that 0 ≤

Ti (t) < Timax, t ≥ 0, i = 1, 2, and

Ṫi(t) < 1, i = 1, 2, t ≥ 0. (8)

Assumption 2. Velocities ẋm (t) and ẋ∗
s (t) are 0 if t < 0.

4.1. Passivity of the configuration represented in Fig. 2(c).

Theorem 1. Consider the configuration represented in Fig. 2(c).
Suppose that Assumptions 1 and 2 hold true. If the gains gi (t) , i =

1, 2 satisfy the inequalities

g2
i (t) ≤ 1 − Ṫi (t) , gi (t) ≥ 0, i = 1, 2 (9)

then the configuration in Fig. 2(c) is passive, i.e. the following inequal-
ities hold true

∫ t

0
(F∗

m(τ )ẋm(τ ) − Fs(τ )ẋ∗

s (τ ))dτ ≥ 0 for all t ≥ 0.

Proof. According to the configuration,

F∗

m(t) = g2(t)Fs(t − T2(t)) + bẋm(t) = Fm(t) + bẋm(t),
Fs(t) = b(g1(t)ẋm(t − T1(t)) − ẋ∗

s (t)) = b(ẋs(t) − ẋ∗

s (t)), (10)

where Fm (t) = g2 (t) Fs (t − T2 (t)) and ẋs (t) = g1 (t)
ẋm (t − T1 (t)).

The total energy supplied by the system up to time t can be
calculated according to (5) as:∫ t

0
(ẋm(τ )F∗

m(τ ) − ẋ∗

s (τ )Fs(τ ))dτ

=

∫ t

0

⎧⎪⎨⎪⎩
b
2
ẋ2m(τ ) +

b
2
ẋ∗2
s (τ ) +

1
2b

F 2
s (τ )

+
1
2b

F∗2
m (τ )

⎫⎪⎬⎪⎭ dτ

−

∫ t

0

{
1
2b

g2
2 (τ )F

2
s (τ − T2(τ ))

}
dτ

−

∫ t

0

{
b
2
g2
1 (τ )ẋ

2
m(τ − T1(τ ))

}
dt. (11)

Let us now transform the last two summands in (11) into
another form. To this end, we introduce the functions σi(τ ) =

τ − Ti(τ ), τ ≥ 0.
By Assumption 1, dσi(τ )

dτ = 1 −
dTi(τ )
dτ > 0, τ ≥ 0, i = 1, 2.

Hence, according to the implicit function theorem, for the func-
tions σi(τ ), τ ≥ 0, there exist the inverse functions σ−1

i (α), α ≥

0, i = 1, 2. According to the definitions of these functions we
have σi(σ−1

i (α)) ≡ α, α ≥ 0, i.e. σ−1
i (α) − Ti(σ−1

i (α)) ≡ α.

Consequently, d
dα

(
σ−1
i (α) − Ti(σ−1

i (α))
)

≡ 1, or equivalently,
d
dα

(
σ−1
i (α)

)
− Ṫi(σ−1

i (α)) d
dα

(
σ−1
i (α)

)
≡ 1.

It follows from the previous identity that d
dα

(
σ−1
i (α)

)
=

1
1−Ṫi(σ

−1
i (α))

. Hence,

d
(
σ−1
i (α)

)
=

1
1 − Ṫi(σ−1

i (α))
dα. (12)

Let us consider the last two summands in (11) and show that∫ t

0
g2
2 (τ )F

2
s (τ − T2(τ ))dτ =

∫ t−T2(t)

0

g2
2 (σ

−1
2 (α))

1 − Ṫ2(σ−1
2 (α))

F 2
s (α)dα,∫ t

0
g2
1 (τ )x

2
m(τ − T1(τ ))dτ =

∫ t−T1(t)

0

g2
1 (σ

−1
1 (α))

1 − Ṫ1(σ−1
1 (α))

x2m(α)dα.

(13)

First, consider the integral

∫ t

0

{
1
2b

g2
2 (τ )F

2
s (τ − T2(τ ))

}
dτ . (14)
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In this integral, we make the variable substitution α ≡ τ − T2(τ ),
where τ ≡ σ−1

2 (α). After such a substitution, the integral (14) is
calculated as follows:

∫ t

0

{
1
2b

g2
2 (τ )F

2
s (τ − T2(τ ))

}
dτ

=

∫ t−T2(t)

−T2(0)

{
1
2b

g2
2 (σ

−1
2 (α))F 2

s (α)
}
d(σ−1

2 (α))

=

∫ t−T2(t)

−T2(0)

{
1
2b

g2
2 (σ

−1
2 (α))F 2

s (α)
}

1
1 − Ṫi(σ−1

i (α))
dα

=

∫ t−T2(t)

0

g2
2 (σ

−1
2 (α))

1 − Ṫ2(σ−1
2 (α))

F 2
s (α)dα.

Here, we took into account equality (12) and that T2(0) = 0. There-
fore, we have proved the first equality in (13) while the second
equality is derived analogously. Based on (13), the relationship (11)
can be rewritten as:∫ t

0
(ẋm(τ )F∗

m(τ ) − ẋ∗

s (τ )Fs(τ ))dτ

=

∫ t

0

{
b
2
ẋ∗2
s (τ ) +

1
2b

F∗2
m (τ )

}
dτ +

∫ t

t−T1(t)

b
2
ẋ2m (τ ) dτ

+

∫ t

t−T2(t)

1
2b

F 2
s (τ ) dτ +

b
2

∫ t−T1(t)

0
ξ1(α)ẋ2m(α)dα

+
1
2b

∫ t−T2(t)

0
ξ2(α)F 2

s (α)dα, (15)

where ξi(α) =
1−Ṫi(σ

−1
i (α))−g2i (σ

−1
i (α))

1−Ṫi(σ
−1
i (α))

, i = 1, 2.
Hence, if the functions gi(t), t ≥ 0, i = 1, 2, satisfy the

inequalities in (9), then ξi(α) ≥ 0, α ≥ 0, i = 1, 2, and it can be
concluded from (15) that

∫ t
0 (ẋm(τ )F

∗
m(τ )− ẋ∗

s (τ )Fs(τ ))dτ ≥ 0, ∀t ≥

0. The theorem is thus proven.

Remark. Eq. (7) defines the total energy for the configuration given
by Fig. 1(c) while Eq. (11) defines the total energy for the config-
uration (Fig. 2(c)) proposed in this work. The difference between
(7) and (11) is the presence of the variable gains gi (t) , i = 1, 2.
In Theorem 1, we proved that Eq. (11) is equivalent to Eq. (15).
Eqs. (11) and (15) are reduced to Eq. (7) when the gains gi (t) are
equal to 1.

Remark. The following rules can be used to satisfy the inequalities
in (9):

g2
i (t) = ki(1 − dTi(t)/dt), gi(t) ≥ 0∀t ≥ 0, i = 1, 2, or

g2
i (t) = min 1, ki(1 − dTi(t)/dt), gi(t) ≥ 0∀t ≥ 0, i = 1, 2,

(16)

with any fixed constants 0 ≤ ki ≤ 1, i = 1, 2.

4.2. Stability Property of the configuration in Fig. 2(b)

The theorem related to Fig. 2(b) will now be proved. Suppose
that master and slave dynamics are described as:

Mmẍm(t) + Bmẋm(t) = Fh(t) + Fback(t) − F∗

m(t),
Msẍ∗

s (t) + Bsẋ∗

s (t) = Fs(t) + Ffeed(t) − Fe(t) (17)

where
Fback(t) = K (x∗

s (t − T2(t)) − xm(t)),
Ffeed(t) = K (xm(t − T1(t)) − x∗

s (t)) (18)

and functions F∗
m(t), Fs(t) are defined according to (10), with gi(t),

t ≥ 0, i = 1, 2, satisfying (9).

Theorem 2. Suppose that Assumptions 1 and 2 hold true, and
consider the system of (17) under the controls (10) and (18) satisfying
condition (9), and

K 2 <
(2Bm + b̃ξ1)(2Bs + b)
(T1max + T2max)2

, (19)

where ξ̃1 = min 1, ξ1(τ ), τ ≥ 0. (Note that if the rules in (16) are
used, then ξ̃1 = (1 − k1)). Suppose a finite constant d∗ exists, such
that∫ t

0
(Fe(τ )ẋ∗

s (τ ) − Fh(τ )ẋm(τ ))dτ ≥ d∗, ∀t ≥ 0. (20)

Then, the velocities ẋm(t), ẋ∗
s (t), norms

∥ẋm∥
2

=

∫ t

0
ẋ2m(τ )dτ , ∥ẋ∗

s ∥
2

=

∫ t

0
ẋ∗2
s (τ )dτ (21)

and position tracking errors e1(t) = xm(t − T1(t)) − x∗
s (t), e2(t) =

x∗
s (t − T2(t)) − xm(t), t ≥ 0, are bounded.

Proof. Assume V : C → R+
= [0, ∞) is a continuous semi-definite

storage function for systems (17) (18) [39].

V (t) =
1
2
Mmẋ2m(t) +

1
2
Mmẋ∗2

s (t) + K (xm(t) − x∗

s (t))
2. (22)

Therefore,

V̇ (t) = ẍm(t)Mmẋm(t) + ẍ∗

s (t)Msẋ∗

s (t)
+ K (ẋm(t) − ẋ∗

s (t))(xm(t) − x∗

s (t))
= (−Bmẋm(t) + Fh(t) − F∗

m(t) + Fback(t))ẋm(t)
+ (−Bsẋ∗

s (t) + Fs(t) − Fe(t) + Ffeed(t))ẋ∗

s

+ (ẋm(t) − ẋ∗

s (t))K (xm(t) − x∗

s (t))

= −Bmẋ2m(t) − Bsẋ∗2
s (t) + K (x∗

s (t − T2(t)) − x∗

s (t))ẋm(t)
+ K (xm(t − T1(t)) − xm(t))ẋ∗

s (t)
+ (Fh(t)ẋm(t) − Fe(t)ẋs(t)) + (−F∗

m(t)ẋm(t) + Fs(t)ẋ∗

s (t)).

(23)

Integrating (21) over interval (0, t),we get∫ t

0
V̇ (τ )dτ = −Bm∥ẋm∥

2
− Bm∥ẋ∗

s ∥
2

+ K
∫ t

0
(x∗

s (τ − T2(τ )) − x∗

s (τ ))ẋm(τ )dτ

+ K
∫ t

0
(xm(τ − T1(τ )) − xm(τ ))ẋ∗

s (τ )dτ

+

∫ t

0
(Fh(τ )ẋm(τ ) − Fe(τ )ẋs(τ ))dτ

+

∫ t

0
(−F∗

m(τ )ẋm(τ ) + Fs(τ )ẋ∗

s (τ ))dτ . (24)

where norms ∥ẋm∥
2 ,

ẋ∗
s

2 are defined in (21).
Evaluate

∫ t
0 (x

∗
s (τ − T2(τ )) − x∗

s (τ ))ẋm(τ )dτ , taking into account
equality

∫ T2(τ )
0 ẋ∗

s (τ − µ)dµ = x∗
s (τ ) − x∗

s (τ − T2(τ )), to obtain∫ t
0 (x

∗
s (τ − T2(τ )) − x∗

s (τ ))ẋm(τ )dτ = −
∫ t
0 ẋm(τ )

∫ T2(τ )
0 ẋ∗

s (τ −

µ)dµ dτ .
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Using the inequality 2aTb ≤ α2aTa +
1
α2

bTb, α2 > 0, and the
above equation, we get the inequality∫ t

0
(x∗

s (τ − T2(τ )) − x∗

s (τ ))ẋm(τ )dτ

≤
α2

2

∫ t

0
ẋ2m(τ )dτ +

1
2α2

∫ t

0

(∫ T2(τ )

0
ẋ∗

s (τ − µ)dµ
)2

dτ . (25)

Using Holder’s inequality,
(∫ t

0 f (τ )g(τ )dτ
)2

≤
∫ t
0 f 2(τ )dτ∫ t

0 g2(τ )dτ , we can evaluate the term
(∫ T2(τ )

0 ẋ∗
s (τ − µ)dµ

)2
as

follows(∫ T2(τ )

0
ẋ∗

s (τ − µ)dµ
)2

≤ T2(τ )
∫ T2(τ )

0
ẋ∗2
s (τ − µ)dµ. (26)

It follows from (25) and (26) that∫ t

0

(
x∗

s (τ − T2 (τ )) − x∗

s (τ )
)
ẋm (τ ) dτ

≤
α2

2

∫ t

0
ẋ2m (τ ) +

1
2α2

∫ t

0
T2 (τ )

∫ T2(τ )

0
ẋ∗2
s (τ − µ) dµdτ

≤
α2

2
∥ẋm∥

2
+

1
2α2

∫ T

0
T2max

∫ T2max

0
ẋ∗2
s (τ − µ) dµdτ

≤
α2

2
∥ẋm∥

2
+

1
2α2

T2max

∫ T2max

0

∫ t

0
ẋ∗2
s (τ − µ) dτdµ

≤
α2

2
∥ẋm∥

2
+

1
2α2

T 2
2max

ẋ∗

s

2
. (27)

Similarly, it can be shown that∫ t

0
(xm(τ −T1(τ ))−xm(τ ))ẋ∗

s (τ )dτ ≤
α1

2
∥ẋ∗

s ∥
2
+

1
2α1

T 2
1max∥ẋm∥

2.

(28)

It follows from (20), (27), (28), (24) and (15) that∫ t

0
V̇ (τ ) dτ ≤ −Bm ∥ẋm∥

2
− B

ẋ∗

s

2
+ K (

α1

2
∥ẋ∗

s ∥
2

+
1

2α1
T 2
1max∥ẋm∥

2) + K (
α2

2
∥ẋm∥

2
+

1
2α2

T 2
2max∥ẋ

∗

s ∥
2)

−

∫ t

0

{
b
2
ẋ∗2
s (τ ) +

1
2b

F∗2
m (τ )

}
dτ −

∫ t

t−T1(t)

b
2
ẋ2m(τ )dτ

−

∫ t

t−T2(t)

1
2b

F 2
s (τ )dτ −

b
2

∫ t−T1(t)

0
ξ1(α)ẋ2m(α)dα

=

∫ t

0
[−Bm + KT 2

1max
1

2α1
+ K

α2

2
−

b
2
ξ̄1(t, τ )]ẋ2m(τ )dτ

+

∫ t

0
[−Bs + KT 2

2max
1

2α2
+ K

α1

2
−

b
2
]ẋ∗2

s (τ )dτ

−
1
2b

∫ t

0
F∗2
m (τ )dτ −

1
2b

∫ t

0
ξ̄2(t, τ )F 2

s (τ )dτ − d∗,

where ξ̄i(t, τ ) = ξi(τ ) ≥ 0ifτ ≤ t − Ti(t), ξ̄i(t, τ ) = 1ifτ >

t − Ti(t), t ≥ 0, i = 1, 2.
Suppose gain K > 0 and satisfies the inequalities,

B̃m:= −Bm +
1
2
K (α2 +

T 2
1max

α1
) −

b
2
ξ̃1 < 0,

B̃s:= −Bs +
1
2
K (α1 +

T 2
2max

α2
) −

b
2

< 0,

where ξ̃1 = min 1, ξ1(τ ), τ ≥ 0.

It follows from the latter inequalities that

K < K ∗(α1, α2):= min
{
(2Bm + b̃ξ1)α1

T 2
1max + α1α2

,
(2Bs + b)α2

T 2
2max + α1α2

}
. (29)

It can then be shown that (2Bm+b̃ξ1)(2Bs+b)
(T1max+T2max)2

=

maxα1>0,α2>0 K ∗(α1, α2).
Let (α∗

1, α
∗

2 ) be a solution of the latter optimization problem.
Without losing generality, consider that the parametersα1, α2 take
their best values, i.e. α1 = α∗

1, α2 = α∗

2 . Inequality (29) is then
equivalent to inequality (19). Hence,∫ t

0
V̇ (τ )dτ ≤ B̃m ∥ẋm∥

2
+ B̃s

ẋ∗

s

2
−

1
2b

∫ t

0
F∗2
m (τ )dτ

−
1
2b

∫ t

0
ξ̄2(t, τ )F 2

s (τ )dτ − d∗

where B̃m < 0, B̃s < 0, ξ̄2(t, τ ) ≥ 0, τ ≥ 0. Therefore,

V (t) ≤ V (0) + B̃m ∥ẋm∥
2
+ B̃s

ẋ∗

s

2
− d∗ (30)

where V (t), V (0) are positive, B̃m ∥ẋm∥
2 , B̃s

ẋ∗
s

2 are negative,
and d∗ is a constant. It can be concluded from (22) and (30) that
functions ẋm(t), ẋ∗

s (t), and (xm(t) − x∗
s (t)), t ≥ 0, and norms

∥ẋm∥
2 ,

ẋ∗
s

2 are bounded.
Note that, from (30), it follows that (xm(t) − x∗

s (t))
2

≤ (xm(0) −

x∗
s (0))

2
+

Mm ẋ2m(0)+Ms ẋ∗2s (0)−d∗

2K .

Then, to show that the tracking errors e1(t) = xm(t − T1(t)) −

x∗
s (t), e2(t) = x∗

s (t − T2(t)) − xm(t), t ≥ 0, are bounded, the errors
are presented in the following forms:

e1(t) = xm(t − T1(t)) − x∗

s (t) = xm(t) − x∗

s (t) −

∫ t

t−T1(t)
ẋm(τ )dτ ,

e2(t) = x∗

s (t − T2(t)) − xm(t)

= x∗

s (t) − xm(t) −

∫ t

t−T2(t)
ẋ∗

s (τ )dτ , t ≥ 0.

(31)

The functions ẋm(t), ẋ∗
s (t), e(t) = (xm(t)−x∗

s (t)), Ti(t), t ≥ 0, are
bounded; consequently, from (31), it follows that ei(t), t ≥ 0, i =

1, 2, are also bounded. The theorem is thus proven.

4.3. Some additional properties of the proposed configuration

Theorem 3. Let the assumptions of Theorem 2 be fulfilled.

(A) If the human operator and slave environment satisfy the inequal-
ities

|Fh(t)| ≤ gh(ẋm(t)), |Fe(t)| ≤ ge(ẋ∗

s (t)), t ≥ 0, (32)

where gh(s), ge(s), s ∈ R, are continuous functions, then

ẋm(t) → 0, ẋ∗

s (t) → 0, ė1(t) → 0, ė2(t) → 0when t → ∞.

(33)

(B) If Fh(t) = 0, Fe(t) = 0∀t ≥ 0 then e1(t) → 0, e2(t) → 0 when
t → ∞.

(C) If ẋm(t) → 0, ẍm(t) → 0, ẋ∗
s (t) → 0, ẍ∗

s (t) → 0 when t → ∞,

then Fh(t) → Fe(t) → −K (xm(t) − x∗
s (t))when t → ∞.

Proof. (A). Show that functions d
dt ẋm(t) = ẍm(t), d

dt ẋ
∗
s (t) = ẍ∗

s (t),
t ≥ 0 are bounded. From (17) and (18), we have

ẍm(t) =
1
Mm

(−Bmẋm(t) + Fh(t) + Ke2(t) − F∗

m(t)). (34)
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Relations (10), (32), and (34), and the boundedness of ẋm(t),
ẋ∗
s (t), e2(t) imply the boundedness of ẍm(t), t ≥ 0. Similarly, it can
be shown that function ẍ∗

s (t), t ≥ 0, is also bounded. The bounded-
ness of functions ẋm(t), ẋ∗

s (t), ẍm(t), ẍ
∗
s (t),

∫ t
0 ẋ2m(τ )dτ ,

∫ t
0 ẋ∗2

s (τ )dτ
∀t ≥ 0, implies relation (33).

Proof. (B). From Fh(t) = 0, Fe(t) = 0∀ t ≥ 0, we have

ẍm(t) =
1
Mm

(−Bmẋm(t) + K (x∗

s (t) − xm(t) −

∫ t

t−T2(t)
ẋ∗

s (τ )dτ ) − F∗

m(t)),

ẍ∗

s (t) =
1
Ms

(−Bsẋ∗

s (t) + K (xm(t) − x∗

s (t) −

∫ t

t−T1(t)
ẋm(τ )dτ ) + Fs(t)).

Hence,

ë(t) = −S2e(t) + q(t), t ≥ 0, (35)

where e(t) = xm(t) − x∗
s (t), S

2
= K ( 1

Mm
+

1
Ms

),

q(t) =
1
Mm

(−Bmẋm(t) − K
∫ t

t−T2(t)
ẋ∗

s (τ )dτ − F∗

m(t))

−
1
Ms

(−Bsẋ∗

s (t) − K
∫ t

t−T1(t)
ẋm(τ )dτ + Fs(t)).

It follows from assertion (A) of this corollary that

ė(t) → 0, q(t) → 0 when t → ∞. (36)

It follows from (35) that for any t ≥ 0 and ∆t ≥ 0,

ė(t + ∆t) = −S sin(S∆t)e(t) + cos(S∆t)ė(t)

+

∫ t+∆t

t
cos(S(t + ∆t − τ ))q(τ )dτ . (37)

Suppose that e(t), t ≥ 0, does not converge to 0. (Note that
the function e(t), t ≥ 0, is bounded.) Then there exists a sequence
ti, i = 1, 2, . . . , such that

ti → ∞, e(ti) → β ̸= 0 when i → ∞. (38)

Declaring that ∆t =
π
2S , we get form (37)

ė(ti+
π

2S
) = −S e(ti)−

∫ ti+π/2S

ti

sin(S(ti−τ ))q(τ )dτ , i = 1, 2, . . . .

(39)

Passing to the limit in (39) and taking into account conditions
(36) and (38), we obtain 0 = −Sβ . However, S > 0, and by
assumption β ̸= 0. This contradiction proves that e(t)→0 when
t → ∞. Consequently e1(t) → 0, e2(t) → 0 if t → ∞.

Proof. (C). Suppose that ẋm(t) → 0, ẍm(t) → 0, ẋ∗
s (t) →

0, ẍ∗
s (t) → 0 when t → ∞. Then, xm(t − T1(t)) → xm(t), x∗

s (t −

T2(t)) → x∗
s (t), and from system dynamic (17), (18) and controls

(11) and (19) we have Fh(t) → Fe(t) → K (xm(t) − x∗
s (t)) when

t → ∞. The corollary is thus proven.

5. Simulation

The proposed modified control architecture introduces time-
varying gains into the transformation and explicitly uses the po-
sition data from the master to generate feedforward and feedback
position control for the slave manipulator. In order to verify the
efficacy of the proposed scheme, simulations to investigate the de-
pendence of position tracking and force tracking on the parameter
gain K and impedance parameter b were performed on a 1-DOF
system (10), (17), (18).

Different values of K and b were used, where b was chosen
as arbitrary and non-negative, while K is a positive number with
an upper bound

√
K∗ (b), K 2 < K∗(b):=

(2Bm+b̃ξ1)(2Bs+b)
(T1max+T2max)2

. If b is
large enough, then gain K can be set to a large value, noting that
K∗(b) → ∞ when b → ∞.

5.1. Position and force tracking error simulation

Three models (I–III) were set up for simulation with different
combinations of human (Fh (t)) and environmental (Fe (t)) forces
modeled as a spring and adamper, respectively. Thesemodelswere
designed to focus on the position and force tracking errors for the
master and the slave, in addition to checking the compliance of the
passivity condition (20).

The setup for Models I to III use xm (0) = −5, ẋm (0) =

10, x∗
s (0) = 10, ẋ∗

s = 0 as the initial conditions, and in system
(17) we set Mm = Ms = Bm = Bs = 1. The human, Fh(t), t ≥ 0,
and environmental, Fe(t), t ≥ 0, forces are modeled as follows:

for Model I: Fh (t) = 30/xm (t) − xm (t) − 2.5, Fe (t) = x∗

s (t) ,

for Model II: Fh (t) = xm (t) − 0.5ẋm (t) − 10 − sin t,
Fe (t) = 5x∗

s (t) + ẋ∗

s (t) ,

for Model III: Fh (t) = −xm (t) − 0.5ẋm (t) − 10,
Fe (t) = 5x∗

s (t) + ẋ∗

s (t) .

The time-delay functions of Models I to III are the following

T1(t) =
2t
5

+ 1, t ∈ [0, 10], T1(t) =
−2t
5

+ 9, t ∈ [10, 20],

T1(t) =
t
5

− 3, t ∈ [20, 30],

T1(t) =
−t
5

+ 9, t ∈ [30, 40],

T1(t) =
2t
5

− 15, t ∈ [40, 50],

T1(t) =
−2t
5

+ 25, t ∈ [50, 60],

T1(t) =
t
5

− 11, t ∈ [60, 70],

T1(t) =
−3t
20

+
27
2

, t ∈ [70, 90],

T1(t) =
t
5

− 18, t ∈ [90, 100];

T2(t) =
−t
20

+ 1, t ∈ [0, 10],

T2(t) =
t
20

, t ∈ [10, 20],

T2(t) =
3t
10

− 5, t ∈ [20, 30],

T2(t) =
−3t
20

+
17
2

, t ∈ [30, 50],

T2(t) =
t
10

− 4, t ∈ [50, 100].

Different values for K and bwere used to investigate the passiv-
ity and tracking performance using the proposed scheme, and the
results for varying K and b values are shown in Fig. 3, 4, and 5. The
position tracking is given in column (A) of Figs. 3–5 with the plots
for xm(t − T1(t)), xs(t), t ∈ [0100], while plots in column (B) show
the force tracking for the different Fe (t) and Fh (t) of each model,
i.e. Fig. 3 for Model I, Fig. 4 for Model II, and Fig. 5 for Model III.

It can be analytically shown that for all values ofK and b, Models
I and III satisfy the passivity condition (20). ForK and bpresented in
Fig. 4, the simulation results showed that Model II also satisfies the
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Fig. 3. Model I (A) Position & (B) Force tracking.

passivity condition (20). However, there exists parameter values,
e.g. K = 1, b = 50, such that the passivity condition (20) is not
satisfied for Model II.

The simulation results for position tracking showed that there
is a function K ∗ (b) , K∗ (b) < K ∗ (b) < ∞ such that for K < K ∗ (b),

the limits e∗

i (K ) , i = 1, 2: exists:

lim
t→∞

|ei(t)| → e∗

i (K ), i = 1, 2, (40)

which depend on K. However, the speed of the convergence in (40)
depends on b. For K > K ∗ (b), no limit exists in (40). If b is fixed,
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Fig. 4. Model II (A) Position & (B) Force tracking.

a larger K value corresponds to a smaller limit of e∗

i (K ) , i = 1, 2&
larger vibration in

xm(t), x∗

s (t), ei(t), i = 1, 2. (41)

If K is fixed, a larger b value corresponds to a smaller vibration in
(41) (i.e., the functions aremore stable), and limits in (40) converge
slowly. If b is small, it is not possible to make the limits e∗

i (K ) , i =

1, 2 small, due to the restriction K 2 < K∗(b) on K. Therefore, large
values for K and b are needed in order to achieve good position
tracking.

Simulation results for force tracking showed that the limit

lim(Fh(t) − Fe(t)) when t → ∞ (42)

depends on K and b.



O. Kostyukova, F.P. Vista, IV and K.T. Chong / ISA Transactions 85 (2019) 200–213 209

Fig. 5. Model III (A) Position & (B) Force tracking.

If b is fixed and K decreases, then the force tracking error is
improved and vibration in Fh (t) , Fe (t) is smaller. However, notice
that the force tracking error can sometimes deteriorate if K is too
small. This can be explained by the following:

• for small values of K, position tracing error can be too large,
• forces Fh (t) , Fs (t) depend on positions xm (t) , xs (t) .

For a fixed parameter K , the force tracking error is enhanced if
b is smaller (but the inequality K < K ∗(b) should be satisfied). If
parameter value b is large, it is not possible to achieve

Fh(t) − Fe(t) → 0 when t → ∞ (43)

Hence for (43) we need a small b.
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Fig. 6. Models IV–VI (A) Position & (B) Force tracking errors.

The simulation results shows a trade-off between position and
force tracking.

5.2. Investigation of position and force tracking dependence on gain
coefficient values

To illustrate the advantage of using varying gain coefficients
gi(t) < 1, i = 1, 2 over the traditionally used constant gain
coefficients, let us present the results of the following experiment.

Using the same set of data, we simulate with the constant gain
coefficients

gi (t) = 1, i = 1, 2 (44)

which are used, e.g. in [40,41], and with the varying gain coeffi-
cients proposed here:

gi(t) =

√
1 − Ṫi(t) if Ṫi(t) > 0, gi(t) = 1 if Ṫi(t) ≤ 0, i = 1, 2.

(45)

In simulations, we consider different forces Fh (t) , Fe (t) and
different values for K, b. The initial states xm(0) = −5, ẋm(0) =

−10, xs(0) = 10, ẋs(0) = 50 & Mm = Ms = 1, Bm = Bs = 0.1 are
used for all models.

Three Models (IV–VI) were considered with:

for Model IV : Fh(t) = −3,

Fe(t) = − (5xs(t) + ẋs(t)) , K = 4, b = 10,

for Mode lV : Fh(t) = 0.01(−ẋm(t) − xm(t) − 3),

Fe(t) = 0.01(5x(t) − ẋs(t)), K = 0.2, b = 2,

for Model VI: Fh(t) = −3.8(xm(t) − ẋm(t) − 3),

Fe(t) = 0.01(5x(t) + ẋs(t)), K = 1, b = 4.

The time-delay functions for Models IV–VI are:
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Fig. 7. Schematic of Models I–III.

T1(t) = 0.9t − 36i, t ∈ [40i, 40i + 20], i = 0, 1, 2;

T1(t) = −0.9t + 18i + 18, t ∈ [20i, 20i + 20], i = 1, 2;

T2(t) = 0.95(t − 30i), t ∈ [30i, 30i + 20], i = 0, 1, 2;

T2(t) = −1.9(t − 30i − 20) + 19, t ∈ [30i + 20, 30i + 00],

i = 0, 1, 2;

T2(t) = 0.95(t − 90), t ∈ [90, 100].

The results of the experiments are presented in Fig. 6, wherein
the position tracking error is given in column (A) through plots of
xm (t − T1 (t)) − xs (t) with solid lines referring to the known Rule
(44), while the proposed Rule (45) is represented by dashed lines.
On the other hand, the force tracking error is shown in column (B)
through the plots for Fh (t)−Fe (t)with the Rule (44) and Rule (45)
representation. It can be seen that the position and force tracking

performance of the proposed Rule (45) are superior to those of the
known Rule (44). The schematics forModels I–III andModels IV–VI
are given in Fig. 7 and Fig. 8 for reference, respectively.

6. Conclusion

A new modified control architecture composed of two major
parts that can maintain passivity in a bilateral teleoperator was
proposed with the following characteristics:

• a new architecture for varying time delay by using position
data from the master feedforward and feedback;

• mathematical proof of the passivity for the proposed control
architecture through Lyapunov-like function theorems; and

• explicit simulation experiments for position tracking control
and force tracking control by using various models with var-
ious gains.

Passivity is preserved by dissipating energy via two time-varying
gains inserted after the communication blocks on both the master
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Fig. 8. Schematic of Models IV–VI.

and the slave sides. This architecture explicitly uses the position
data from the master to generate feedforward and feedback po-
sition control to preserve passivity and for good tracking perfor-
mance.

The simulation results for the proposed configuration, which
modeled human and environmental forces as a spring and a
damper, showed that passivity and good tracking performance
can be obtained. The results verified the dependence of the po-
sition and force tracking errors on the parameter gain K and the
impedance parameter b. They also demonstrated the resulting
trade-off between position tracking and force tracking, both of
which depend on the value combinations of K and b to obtain satis-
factory force tracking, position tracking or both. The feedback con-
trol scheme was developed to improve the position tracking per-
formance of a system without a constant delay (without destabi-
lization). A change in the value of the time-delay in a variable time-
delay scenario will lead to changes in the velocity, force, and data
which in turn will result in a lower tracking performance. Thus,
extra effort should be used to improve the tracking performance.
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