
mathematics

Article

The Optimality Region for a Single-Machine
Scheduling Problem with Bounded Durations
of the Jobs and the Total Completion Time Objective

Yuri N. Sotskov * and Natalja G. Egorova

United Institute of Informatics Problems, National Academy of Sciences of Belarus, Surganova Street 6,
220012 Minsk, Belarus; NataMog@yandex.ru
* Correspondence: sotskov48@mail.ru; Tel.: +375-17-284-2120

Received: 28 February 2019 ; Accepted: 19 April 2019; Published: 26 April 2019
����������
�������

Abstract: We study a single-machine scheduling problem to minimize the total completion time of the
given set of jobs, which have to be processed without job preemptions. The lower and upper bounds
on the job duration is the only information that is available before scheduling. Exact values of the job
durations remain unknown until the completion of the jobs. We use the optimality region for the
job permutation as an optimality measure of the optimal schedule. We investigate properties of the
optimality region and derive O(n)-algorithm for calculating a quasi-perimeter of the optimality set
(i.e., the sum of lengths of the optimality segments for n given jobs). We develop a fast algorithm for
finding a job permutation having the largest quasi-perimeter of the optimality set. The computational
results in constructing such permutations show that they are close to the optimal ones, which can be
constructed for the factual durations of all given jobs.

Keywords: single-machine scheduling; uncertain job durations; total completion time objective;
optimality region

1. Introduction

A lot of real-life scheduling problems involve different forms of uncertainties. For dealing with
uncertain scheduling problems, several approaches have been developed in the literature. In a stochastic
approach, job durations are assumed to be random variables with the specific probability distributions
known before scheduling [1,2]. If there is no sufficient information to determine the probability
distribution for each random duration of the given job, other approaches have to be used [3–5]. In the
approach of seeking a robust schedule [3,6], a decision-maker prefers a schedule that hedges against
the worst-case scenario. A fuzzy approach [7–9] allows a scheduler to find best schedules with respect
to fuzzy durations of the given jobs. A stability approach [10] is based on the stability analysis of
the optimal schedules to possible variations of the job durations. In this paper, we apply the stability
approach to the single-machine scheduling problem with interval durations of the given jobs.

In Section 2, we present settings of the uncertain scheduling problems, the related literature and
closed results. In Section 3, we investigate properties of the optimality region for the job permutation,
which is used for processing given jobs. Efficient algorithms for calculating a quasi-perimeter of the
optimality region are derived in Section 4. In Section 5, we show how to find a job permutation with
the largest quasi-perimeter of the optimality region and develop algorithm for finding an approximate
solution for the uncertain scheduling problem. In Section 6, we report on the computational results for
finding solutions for the tested instances. The paper is concluded in Section 7.

Mathematics 2019, 7, 382; doi:10.3390/math7050382 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/7/5/382?type=check_update&version=1
http://dx.doi.org/10.3390/math7050382
http://www.mdpi.com/journal/mathematics

Mathematics 2019, 7, 382 2 of 21

2. Problem Descriptions, The Related Literature and Closed Results

There is given a set of jobs J = {J1, J2, ..., Jn} to be processed on a single machine. The duration
pi of the job Ji ∈ J can take any real value from the given segment [pL

i , pU
i], where the inequalities

pU
i ≥ pL

i > 0 hold. The exact value pi ∈ [pL
i , pU

i] of the job duration remains unknown until the
completion time of the job Ji ∈ J .

Let Rn
+ denote a set of all non-negative n-dimensional real vectors, Rn

+ ⊆ Rn, where Rn is space
of n-dimensional real vectors. The set of all vectors (p1, p2, . . . , pn) = p ∈ Rn

+ of the feasible durations
is presented as the Cartesian product of the segments [pL

i , pU
i]:

T = [pL
1 , pU

1]× [pL
2 , pU

2]× . . .× [pL
n , pU

n] = {p : p ∈ Rn
+, pL

i ≤ pi ≤ pU
i , i ∈ {1, 2, . . . , n}}.

A vector p ∈ T of the job durations is called a scenario. Let S = {π1, π2, . . . , πn!} denote a set of
all permutations πk = (Jk1 , Jk2 , . . . , Jkn) of the given jobs J .

Given a scenario p ∈ T and a permutation πk ∈ S, let Ci = Ci(πk, p) denote the completion
time of the job Ji in the schedule determined by the permutation πk. The criterion ∑ Ci denotes the
minimization of the following sum of the completion times:

∑
Ji∈J

Ci(πt, p) = min
πk∈S

{
∑

Ji∈J
Ci(πk, p)

}
, (1)

where the permutation πt = (Jt1 , Jt2 , . . . , Jtn) ∈ S is optimal. From the equality (1), it follows that
only semi-active schedule [11] may be optimal. Each permutation πk ∈ S determines exactly one
semi-active schedule.

The above uncertain scheduling problem is denoted as 1|pL
i ≤ pi ≤ pU

i |∑ Ci using the three-field
notation α|β|γ [12], where α denotes the processing system, β characterizes conditions for processing
the jobs and γ determines the criterion.

2.1. The Related Literature

If a scenario p ∈ T is fixed before scheduling (i.e., the equality [pL
i , pU

i] = [pi, pi] holds for each
job Ji ∈ J), then the uncertain problem 1|pL

i ≤ pi ≤ pU
i |∑ Ci is turned into the deterministic one

1||∑ Ci. In what follows, we use the notation 1|p|∑ Ci to indicate an instance of the deterministic
problem 1||∑ Ci with scenario p ∈ T. Any instance 1|p|∑ Ci is solvable in O(n log n) time [13] due to
the following necessary and sufficient condition for the optimality of the job permutation πk ∈ S.

Theorem 1. The job permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S is optimal for the instance 1|p|∑ Ci if and only
if the following inequalities hold:

pk1 ≤ pk2 ≤ . . . ≤ pkn . (2)

If the strict inequality pku < pkv holds, then the job Jku precedes the job Jkv in any optimal job
permutation πk.

Since the scenario p ∈ T is not fixed in the uncertain problem 1|pL
i ≤ pi ≤ pU

i |∑ Ci,
the completion time Ci of the job Ji ∈ J cannot be determined for the permutation πk ∈ S
before completing the job Ji. Thus, the value of the objective function ∑Ji∈J Ci(πt, p) for the
permutation πk remains uncertain until all jobs J have been completed. Since for the uncertain
problem α|pL

i ≤ pi ≤ pU
i |γ, there does not usually exist an optimal schedule for all feasible scenarios p

from the set T, an additional objective or some agreements are used in the literature.
A robust schedule minimizing the worst-case regret has been developed in [3,8,14–18]. For any

permutation πk ∈ S and any feasible scenario p ∈ T, the difference γk
p − γt

p =: r(πk, p) is called the
regret for the permutation πk. In the above notation r(πk, p), the objective function γ is equal to γk

p
for the permutation πk under scenario p and the optimal value of the objective function γ is equal to

Mathematics 2019, 7, 382 3 of 21

γt
p for the optimal permutation πk under scenario p. The value of Z(πk) = max{r(πk, p) : p ∈ T}

is called the worst-case absolute regret. The value of Z∗(πk) = max{ r(πk ,p)
γt

p
: p ∈ T} is called the

worst-case relative regret.
While the deterministic problem 1||∑ Ci is polynomially solvable [13], finding a permutation

πt ∈ S minimizing the worst-case absolute regret Z(πk) or the relative regret Z∗ for the problem
1|pL

i ≤ pi ≤ pU
i |∑ Ci are binary NP-hard even for two possible scenarios {p1, p2} [3,17,19]. Discrete

sets {p1, p2, . . . , pm} of the uncertain scenarios have been investigated in [3,17,19].
The complexity of minimizing the total flow time with continues data T is characterized in [20],

where it is proven that finding a permutation πt ∈ S minimizing the worst-case absolute regret
Z(πk) for the problem 1|pL

i ≤ pi ≤ pU
i |∑ Ci is binary NP-hard. For a special case of this problem,

where all intervals of uncertainty have the same center, it is shown that this problem can be solved in
O(n log n) time if the number of jobs is even, and remains NP-hard if the number of jobs is odd [20].
In [6], a branch-and-bound algorithm was developed for finding a permutation πk minimizing the
absolute regret for the problem 1|pL

i ≤ pi ≤ pU
i |∑ wiCi, where the jobs Ji ∈ J have different weights

wi > 0. The computational experiments showed that the developed algorithm is able to find such a
permutation πk for the instances with up to 40 jobs.

The fuzzy scheduling technique was used in [7–9,21] to develop a fuzzy analogue of dispatching
rules or to solve mathematical programming problems to determine a schedule that minimizes a
fuzzy-valued objective function.

In [22], several heuristics were developed for the problem 1|pL
i ≤ pi ≤ pU

i |∑ wiCi.
The computational experiments including different probability distributions of the job durations
showed that there was at least one heuristic among all performing heuristics with the error 1.1% of the
optimal objective function value ∑ wiCi obtained after completing the given jobs when their factual
durations became known.

In Sections 3–6, we adopt the stability approach [5,10,23–25] to the uncertain problem 1|pL
i ≤

pi ≤ pU
i |∑ Ci with the additional criterion of maximizing a quasi-perimeter of the optimality region

introduced in Section 3.

2.2. The Stability Approach to Single-Machine Scheduling Problems

Let M denote a subset of the set N = {1, 2, . . . , n}. In [23,24], an optimality box for the job
permutation πk ∈ S for the uncertain problem 1|pL

i ≤ pi ≤ pU
i |∑ Ci is defined as follows.

Definition 1. The maximal rectangular box OB(πk, T) = ×ki∈M[l∗ki
, u∗ki

] ⊆ T is called an optimality box for
the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S (with respect to T), if the permutation πk being optimal for the
instance 1|p|∑ Ci with the scenario p = (p1, p2, . . . , pn) ∈ T remains optimal for the instance 1|p′|∑ Ci with
any scenario p′ ∈ OB(πk, T)

⋃{×kj∈N\M[pkj
, pkj

]}. If there does not exist a scenario p ∈ T such that the
permutation πk is optimal for the instance 1|p|∑ Ci, it is assumed that OB(πk, T) = ∅.

In Section 3, we use the following remark for the definition of the optimality segment for the job
Jki
∈ J in the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S.

Remark 1. Any variation p′ki
of the duration pki

of the job Jki
∈ J within the maximal segment [l∗ki

, u∗ki
]

indicated in Definition 1 cannot violate the optimality of the permutation πk ∈ S provided that the inclusion
p′ki
∈ [l∗ki

, u∗ki
] holds. The non-empty maximal segment [l∗ki

, u∗ki
] indicated in Definition 1 with the inequality

l∗ki
≤ u∗ki

and the length u∗ki
− l∗ki

≥ 0 is called an optimality segment for the job Jki
∈ J in the permutation πk.

We denote the optimality segment as follows: [lopt
ki

, uopt
ki

].

If the maximal segment [l∗ki
, u∗ki

] indicated in Definition 1 is empty for the job Jki
∈ J , we say that

this job has no optimality segment in the permutation πk. It is clear that if the job Jki
has no optimality

segment in the permutation πk, then the strict inequality l∗ki
> u∗ki

holds. In [23,24], it is shown that

Mathematics 2019, 7, 382 4 of 21

for calculating the optimality box OB(πk, T), one can calculate the optimality box for the modified
instance 1| p̂L

i ≤ pi ≤ p̂U
i |∑ wiCi, where the segments [pL

i , pU
i] for the possible job durations pi are

reduced, [p̂L
i , p̂U

i] ⊆ [pL
i , pU

i], based on the following formulas:

wi

p̂L
i
= min

1≤j≤i≤n

{
wj

pL
j

}
,

wi

p̂U
i

= max
1≤i≤j≤n

{
wj

pU
j

}
. (3)

The following theorem has been proven in [24].

Theorem 2. The optimality box for the permutation πk ∈ S for the problem 1|pL
i ≤ pi ≤ pU

i |∑ Ci is equal
to the optimality box for the same permutation πk for the problem 1| p̂L

i ≤ pi ≤ p̂U
i |∑ Ci with the feasible

segments [p̂L
i , p̂U

i], Ji ∈ J , determined in (3).

In [23], it is shown that Theorem 2 remains correct for the problem 1|pL
i ≤ pi ≤ pU

i |∑ wiCi with
the different weights wi > 0 prescribed to the jobs Ji ∈ J .

Following [23,24], the notion of a block for the jobs J is determined for the problem 1|pL
i ≤ pi ≤

pU
i |∑ Ci as follows.

Definition 2. A maximal subset Br = {Jr1 , Jr2 , . . . , Jr|Br |
} of the set J , for which the inequality maxJri∈Br pL

ri
≤

minJri∈Br pU
ri

holds, is called a lock. The segment [bL
r , bU

r], where equalities bL
r = maxJri∈Br pL

ri
and bU

r =

minJri∈Br pU
ri

hold, is called a core of the block Br.

The following claim was proven in [23].

Lemma 1. For the problem 1|pL
i ≤ pi ≤ pU

i |∑ wiCi, the set B = {B1, B2, . . . , Bm} of all blocks can be
uniquely determined in O(n log n) time.

If the job Ji ∈ J belongs to a single block, we say that the job Ji is fixed in this block. We say that
the block Bv is virtual, if there is no fixed job in this block. We say that the job Jk is non-fixed, if the job
Jk ∈ J belongs to two or more blocks and at least one of these blocks is not virtual.

Remark 2. Any permutation πk ∈ S determines a distribution of all non-fixed jobs to the blocks. Due to such
fixings of the positions of the non-fixed jobs, some virtual blocks from the set B may be destroyed for the fixed
permutation πk. Furthermore, the cores of some non-virtual blocks may be increased in the permutation πk.

Each block in the set B has the following properties proven in [23].

Lemma 2. At most two jobs in the block Br ∈ B may have optimality segments in the permutation πk ∈ S.

Lemma 3. If OB(πk, T) 6= ∅, then any two jobs Jv ∈ Br and Jw ∈ Bs, which are fixed in different blocks,
r < s, must be ordered in the permutation πk ∈ S with decreasing left bounds (and right bounds as well) of the
cores of their blocks, i.e., the permutation πk looks as follows: πk = {. . . , Jv, . . . , Jw, . . .}, where the inequality
bL

r < bL
s holds.

In what follows, we assume that all blocks in the set B = {B1, B2, . . . , Bm} are numbered according
to decreasing left bounds of their cores, i.e., the strict inequality bL

v < bL
u implies the strict inequality

v < u. Due to Definition 2, each block Br = {Jr1 , Jr2 , . . . , Jr|Br |
} may include jobs of the four types

as follows.
If pL

ri
= bL

r and pU
ri

= bU
r , we say that job Jri is a core job in the block Br. If pL

ri
< bL

r , we say
that job Jri is a left job in the block Br. If pU

ri
> bU

r , we say that job Jri is a right job in the block Br.
Let B∗r denote the set of all core jobs. The set B−r (the set B+

r) is the set of all left (right) jobs in the

Mathematics 2019, 7, 382 5 of 21

block Br. Some jobs Jri ∈ Br may be left-right jobs in the block Br, since it is possible that condition
B \ {B∗r ∪ B−r ∪ B+

r } 6= ∅ holds.
The jobs Jv and Jw are identical if both equalities pL

v = pL
w and pU

v = pU
w hold. If the set Br ∈ B is a

singleton, |Br| = 1, then the equality Br = B∗r holds. The following theorem was proven in [24].

Theorem 3. For the problem 1|pL
i ≤ pi ≤ pU

i |∑ Ci, any permutation πk ∈ S has an empty optimality box,
OB(πk, T) = ∅, if and only if for each block Br ∈ B, either condition |Br| = |B∗r | ≥ 2 holds or condition
Br = B−r ∪ B+

r holds and all jobs in the set B−r (in the set B+
r) are identical and both inequalities |B−r | ≥ 2 and

|B+
r | ≥ 2 hold.

The following criterion was proven in [23].

Theorem 4. Let all jobs from the set J be fixed in their blocks from the set B. Then the permutation πk with
the largest optimality box OB(πk, T) may be constructed in O(n log n) time.

The rest of this paper is devoted to an optimality set (it is called an optimality region), which is a
superset of the optimality box OB(πk, T) for the same permutation πk.

3. The Optimality Region

For the permutation πk ∈ S, we formally define the optimality region OR(πk, T) such that the
inclusion OB(πk, T) ⊆ OR(πk, T) holds.

Definition 3. The maximal closed subset OR(πk, T) ⊆ T of the set Rn
+ is called the optimality region for the

permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S (with respect to T) if the permutation πk is optimal for the instance
1|p|∑ Ci with any scenario p = (p1, p2, . . . , pn) ∈ OR(πk, T). If there does not exist a scenario p ∈ T such
that the permutation πk is optimal for the instance 1|p|∑ Ci, it is assumed that OR(πk, T) = ∅.

We demonstrate the above definitions and notions on the instance of the problem 1|pL
i ≤ pi ≤

pU
i |∑ Ci with n = 8 jobs. The segments [pL

i , pU
i] defining all possible durations of the jobs Ji ∈ J =

{J1, J2, . . . , J8} are given in Table 1. The segments [pL
i , pU

i] of the job durations are also represented in a
coordinate system in Figure 1 for the permutation π1 = (J1, J2, . . . , J8) ∈ S. The abscissa axis indicates
the segments [pL

i , pU
i] determining durations of the jobs. The ordinate axis indicates all jobs J . There

are three blocks in this instance. The jobs J1, J2, J3, J4, J5 and J7 belong to the block B1. The segment
[6, 7] is a core of the block B1. The jobs J2, J3, J4, J5, J6 and J7 belong to the block B2. The one-point
segment [8, 8] is a core of the block B2. The jobs J4, J5, J6, J7 and J8 belong to the block B3. The segment
[10, 11] is a core of the block B3. The jobs J2, J3, J4, J5, J6 and J7 are non-fixed jobs. The jobs J1 and J8

are fixed in their blocks.
Due to the optimality criterion (2) for the permutation πk ∈ S given in Theorem 1, one can

distinguish three types of segments for each job Jkr ∈ J , which characterize a possibility for the
permutation πk = (Jk1 , Jk2 , . . . , Jkn) to be optimal, namely:

the segment of optimality [lopt
kr

, uopt
kr

] ⊆ [pL
kr

, pU
kr
];

the segment of conditional optimality [lcopt
kr

, ucopt
kr

] ⊆ [pL
kr

, pU
kr
];

and the segment of non-optimality [lnon
kr

, unon
kr

] ⊆ [pL
kr

, pU
kr
].

The segment of optimality [lopt
kr

, uopt
kr

] for the job Jkr in the permutation πk is formally determined
in Definition 1 and Remark 1.

Mathematics 2019, 7, 382 6 of 21

Table 1. Input data for the instance of the problem 1|pL
i ≤ pi ≤ pU

i |∑ Ci.

i 1 2 3 4 5 6 7 8
pL

i 5 5 6 4 2 8 3 10
pU

i 7 8 9 11 14 11 17 12

-

6

J1

J2

J3

J4

J5

J6

J7

J8

Jobs Ji

2 3 4 5 6 7 8 9 101112 14 17

Durations pi

Figure 1. The segments of non-optimality (double-shaded) and the segments of conditional optimality
(shaded) for the jobs Ji ∈ J in the permutation π1 = (J1, J2, . . . , J8) ∈ S.

The segment of non-optimality for the job Jkr in the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S
is a maximal (with respect to the inclusion) segment [lnon

kr
, unon

kr
] ⊆ [pL

kr
, pU

kr
] such that for any point

p∗kr
∈ (lnon

kr
, unon

kr
), the permutation πk = (Jk1 , Jk2 , . . . , Jkn) cannot be optimal for an instance 1|p∗|∑ Ci

with any scenario p∗ = (. . . , p∗kr
, . . .) ∈ T. Thus, due to the necessary and sufficient condition (2) for

the permutation πk ∈ S to be optimal for the instance 1|p|∑ Ci, we conclude that either there exists a
job Jkv ∈ J such that the inequality r < v holds along with the following condition:

pU
kv

= lnon
kr

< pU
kr
= unon

kr
(4)

or there exists a job Jkw ∈ J such that w < r and the following condition holds:

lnon
kr

= pU
kr
< unon

kr
= pL

kw
. (5)

Furthermore, due to Definition 1, the segment [lnon
kr

, unon
kr

] of non-optimality for the job Jkr in

the permutation πk = (Jk1 , Jk2 , . . . , Jkn) has no common point with the open interval (lopt
kr

, uopt
kr

) of
optimality for the job Jkr :

[lnon
kr

, unon
kr

]
⋂
(lopt

kr
, uopt

kr
) = ∅. (6)

In Figure 1, the segments of non-optimality for all jobs Ji ∈ J in the permutation π1 =

(J1, J2, . . . , J8) are double-shaded.
The segment of conditional optimality for the job Jkr in the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S

is a maximal (with respect to the inclusion) segment [lcopt
kr

, ucopt
kr

] ⊆ [pL
kr

, pU
kr
] such that each point

p∗kr
∈ [lcopt

kr
, ucopt

ki
] does not belong to the open interval of non-optimality, p∗kr

6∈ (lnon
kr

, unon
kr

), and there
exists a job Jkd

∈ J , d 6= r, with the following inclusion: p∗kr
∈ [pL

kd
, pU

kd
]. Thus, one can conclude that

for some points pku ∈ [lcopt
kr

, ucopt
kr

], the permutation πk ∈ S is optimal for the instance 1|p′|∑ Ci, where

p′ = (. . . , pku , . . .) ∈ T, while for other points pkv ∈ [lcopt
kr

, ucopt
kr

], the permutation πk ∈ S cannot be
optimal for the instance 1|p′′|∑ Ci, where p′′ = (. . . , pkv , . . .) ∈ T.

Mathematics 2019, 7, 382 7 of 21

The segment [lcopt
kr

, ucopt
kr

] of conditional optimality for the job Jkr in the permutation πk =

(Jk1 , Jk2 , . . . , Jkn) ∈ S has no common point with the open interval of optimality (lopt
kr

, uopt
kr

) and no
common point with the open interval of non-optimality (lnon

kr
, unon

kr
):

[lcopt
kr

, ucopt
kr

]
⋂
(lopt

kr
, uopt

kr
) = ∅; (7)

[lcopt
kr

, ucopt
kr

]
⋂
(lnon

kr
, unon

kr
) = ∅. (8)

If the segment [lcopt
kr

, ucopt
kr

] of conditional optimality is empty for the job Jkr ∈ J , we say that this
job Jkr has no conditional optimality in the permutation πk.

In Figure 1, all segments of conditional optimality for the jobs Ji ∈ J in the permutation π1 =

(J1, J2, . . . , J8) are shaded.

Remark 3. Due to Theorem 1, for each job Ji ∈ J in the permutation πk ∈ S, there may exist at most one
segment of optimality, at most two segments of conditional optimality and at most two segments of non-optimality.

In Figure 1, job J4 has one segment [4, 6] of non-optimality and one segment of conditional
optimality [6, 11]. Job J5 has two segments of non-optimality [2, 6] and [11, 14] and one segment of
conditional optimality [6, 11].

The following claim is based on Remark 3 and the above definitions of the segments of optimality,
non-optimality and conditional optimality.

Lemma 4. Each segment [pL
kr

, pU
kr
] of possible durations of the job Jkr ∈ J is the union of the segments of

optimality, non-optimality and conditional optimality for the job Jkr in the permutation πk = (Jk1 , Jk2 , . . . Jkn) ∈ S.

We next show that for constructing the optimality region OR(πk, T) for the permutation πk =

(Jk1 , Jk2 , . . . , Jkn) ∈ S, it is sufficient to construct the optimality region for the instance 1| p̂L
i ≤ pi ≤

p̂U
i |∑ Ci with the reduced segments of job durations: [p̂L

i , p̂U
i] ⊆ [pL

i , pU
i]. To construct the reduced

segments for the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S, we use the equalities (9) for all jobs Jkr ∈
{Jk1 , Jk2 , . . . , Jkn} = J :

p̂L
kr
= max

1≤j≤r≤n
pL

kj
, p̂U

kr
= min

1≤r≤j≤n
pU

kj
. (9)

We denote T̂ = [p̂L
1 , p̂U

1]× [p̂L
2 , p̂U

2]× . . .× [p̂L
n , p̂U

n]. One can prove the following claim similarly
to the proof of Theorem 2 proven in [24].

Theorem 5. The optimality region for the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S for the instance 1|pL
i ≤

pi ≤ pU
i |∑ Ci is equal to the optimality region for the same permutation for the instance 1| p̂L

i ≤ pi ≤ p̂U
i |∑ Ci

with the reduced segments [p̂L
i , p̂U

i] of the possible durations of jobs Ji ∈ J determined in (9).

Figure 2 represents the segments of non-optimality and conditional optimality for jobs Ji ∈ J
in the permutation π2 = (J1, J2, J4, J5, J6, J8, J7, J3) ∈ S for the instance 1|pL

i ≤ pi ≤ pU
i |∑ Ci with the

input data T given in Table 1.
From Definition 3 and Theorem 5, one can directly derive the following claim.

Lemma 5. For the instance 1| p̂L
i ≤ pi ≤ p̂U

i |∑ Ci with the reduced segments [p̂L
i , p̂U

i], Ji ∈ J , of the
job durations determined in (9), the open interval of optimality (lopt

kr
, uopt

kr
) for the job Jkr in the permutation

πk ∈ S has no common point with the segment [pL
kd

, pU
kd
] of possible durations of any job Jkd

∈ J , d 6= r,
i.e., the following equality holds:

(lopt
kr

, uopt
kr

)
⋂
[pL

kd
, pU

kd
] = ∅. (10)

We next prove a criterion for the extreme case when the equality OR(πk, T) = ∅ holds.

Mathematics 2019, 7, 382 8 of 21

-

6

J1

J2

J4

J5

J6

J8

J7

J3

Jobs Ji

2 3 4 5 6 7 8 9 101112 14 17

Durations pi

Figure 2. The segments of non-optimality (double-shaded) and the segments of conditional optimality
(shaded) for the jobs Ji ∈ J in the permutation π2 = (J1, J2, J4, J5, J6, J8, J7, J3) ∈ S.

Theorem 6. The optimality region OR(πk, T) for the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S is empty,
if and only if there exists at least one job Jkr ∈ J with the inequality pL

kr
< pU

kr
in the permutation πk, which has

no segment of optimality and no conditional optimality.

Proof. Sufficiency. Let there exist a job Jkr ∈ J in the permutation πk = (Jk1 , Jk2 , . . . , Jkn), which has
no segment of optimality and no conditional optimality. Due to the inequality pL

kr
< pU

kr
and Lemma 4,

the relations [lnon
kr

, unon
kr

] = [pL
kr

, pU
kr
] 6= ∅ hold, and either there exists a job Jkv ∈ J such that r < v and

the condition (4) holds or there exists a job Jkw ∈ J such that w < r and the condition (5) holds.
In the former case, the inequality pkv < pkr holds for each duration pkr ∈ [pL

kr
, pU

kr
] of the job Jkr

and for each duration pkv ∈ [pL
kv

, pU
kv
] of the job Jkv . In the latter case, the inequality pkw > pkr holds

for each duration pkr ∈ [pL
kr

, pU
kr
] of the job Jkr and for each duration pkw ∈ [pL

kw
, pU

kw
] of the job Jkw .

Due to Theorem 1, in both cases the permutation πk cannot be optimal for the instance 1|p|∑ Ci
with any scenario p ∈ T. Hence, the optimality region for the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S
is empty: OR(πk, T) = ∅. Sufficiency is proven.

Necessity. We prove necessity by a contradiction. Let the equalityOR(πk, T) = ∅ hold. However,
we assume that there is no job Jkr ∈ J with the inequality pL

kr
< pU

kr
in the permutation πk =

(Jk1 , Jk2 , . . . , Jkn) ∈ S, which has no segment of optimality and no conditional optimality.
Due to Definition 3, the equality OR(πk, T) = ∅ means that there is no scenario p ∈ T such that

the permutation πk is optimal for the instance 1|p|∑ Ci with the scenario p.
However, we show next how to construct a scenario p∗ ∈ T̂ with the inclusion p∗ ∈ OR(πk, T̂).

If the segment [lopt
ki

, uopt
ki

] of optimality of the job Jki
in the permutation πk is not empty, then there

exists a point p∗ki
∈ [lopt

ki
, uopt

ki
]. We choose the value of p∗ki

as the duration of the job Jki
.

If the segment [lopt
kj

, uopt
kj

] of optimality of the job Jkj
in the permutation πk is empty, then due to the

above assumption, the segment [lcopt
kj

, ucopt
kj

] of conditional optimality for the job Jkj
in the permutation

πk is not empty. We choose the value of lcopt
kj

as the duration of the job Jkj
, i.e., p∗kj

= lcopt
kj

. Thus,

we determine the scenario p∗ = (p∗k1
, p∗k2

, . . . , p∗kn
). From the equalities (7) and (8) and Lemma 5 with

the equality (10), it follows that the permutation πk is optimal for the instance 1|p∗|∑ Ci with the
scenario p∗. Thus, p∗ ∈ OR(πk, T̂) and the relations ∅ 6= OR(πk, T̂) = OR(πk, T) hold contradicting
to our assumption that OR(πk, T) = ∅. The proof of Theorem 6 is completed.

Mathematics 2019, 7, 382 9 of 21

From Theorem 6, one can directly derive the following claim.

Corollary 1. If the condition OR(πk, T) 6= ∅ holds, then the dimension of the optimality region OR(πk, T)
is equal to n.

In Figure 1, there is no job Ji ∈ J in the permutation π1 = (J1, J2, . . . , J8) ∈ S, which has no
segment of optimality and no conditional optimality. Thus, due to Theorem 6, the optimality region
for the permutation π1 ∈ S is not empty, i.e., OR(π1, T) 6= ∅.

In Figure 2, for the segment [lnon
3 , unon

3] = [6, 9] of non-optimality for the job J3 in the permutation
π2 = (J1, J2, J4, J5, J6, J8, J7, J3), the following equalities [lnon

3 , unon
3] = [6, 9] = [pL

3 , pU
3] hold. Thus,

there exists a job J3 = Jkr ∈ J in the permutation π2 = πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S, which has no
segment of optimality and no conditional optimality. Due to Theorem 6, one can conclude that the
optimality region for the permutation π2 = (J1, J2, J4, J5, J6, J8, J7, J3) ∈ S is empty, i.e., OR(π2, T) = ∅.

We next prove a criterion for another extreme case for the optimality region OR(πk, T), namely,
we prove the necessary and sufficient condition for the equality OR(πk, T) = T when the optimality
region is maximally possible.

Theorem 7. The optimality region for the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S is maximally possible
(i.e., the equality OR(πk, T) = T holds), if and only if for each job Jkr ∈ J in the permutation πk the following
equality holds:

[lopt
kr

, uopt
kr

] = [pL
kr

, pU
kr
]. (11)

Proof. Sufficiency. Let the equality (11) hold for each job Jkr ∈ J in the permutation πk =

(Jk1 , Jk2 , . . . , Jkn).
Due to Definition 1 and Remark 1, the following equalities hold: OB(πk, T) = ×kr∈M[l∗kr

, u∗kr
] =

×kr∈M[lopt
kr

, uopt
kr

] = ×kr∈M[pL
kr

, pU
kr
] = T, where M = {1, 2, . . . , n}. From Definition 1, it follows that

the permutation πk is optimal for the instance 1|p′|∑ Ci with any scenario p′ ∈ OB(πk, T) = T. Thus,
due to Definition 3, we obtain the desired equality OR(πk, T) = T. Sufficiency is proven.

Necessity. Let the equality OR(πk, T) = T hold. However, we assume that there is a job Jkr ∈ J
in the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ Π such that the equality (11) does not hold.

Due to Lemma 4, either there exists a segment of non-optimality [lnon
kr

, unon
kr

] 6= ∅ or a segment

of conditional optimality [lcopt
kr

, ucopt
kr

] 6= ∅ for job Jkr ∈ J in the permutation πk = (Jk1 , Jk2 , . . . , Jkn).
In the former case, the equality (6) holds. In the latter case, the equality (8) holds.

Thus, in both cases, there exists a scenario p∗ = (. . . , p∗kr
, . . .) ∈ T, where p∗kr

∈
(lnon

kr
, unon

kr
)
⋃
(lcopt

kr
, ucopt

kr
) 6= ∅, such that the permutation πk is not optimal for the instance 1|p∗|∑ Ci

with the scenario p∗ ∈ T. Hence, due to Definition 3 we obtain a contradiction OR(πk, T) 6= T with
the above assumption. This contradiction completes the proof of Theorem 7.

In the rest of this paper, we show how to use the above results for solving the uncertain scheduling
problem 1|pL

i ≤ pi ≤ pU
i |∑ Ci approximately.

4. Algorithms for Calculating a Quasi-Perimeter of the Optimality Region for the
Fixed Permutation

We next present Algorithm 1 for testing the equality OR(πk, T) = ∅. If it appears that the
optimality region is not empty for the permutation πk, i.e., OR(πk, T) 6= ∅, then Algorithm 1
constructs an instance 1| p̂L

i ≤ pi ≤ p̂U
i |∑ Ci with the reduced segments T̂ of possible durations for the

jobs J .

Mathematics 2019, 7, 382 10 of 21

Algorithm 1: Construction of the instance with the reduced segments of possible durations

Input: The segments [pL
i , pU

i] for all jobs Ji ∈ J ;
the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S.

Output: The reduced segments [p̂L
i , p̂U

i] for all jobs Ji ∈ J if OR(πk, T) 6= ∅.

Step 1: Set p̂L
k1

= pL
k1

, tL = pL
k1

, r = 2;
Step 2: IF pU

kr
≥ tL THEN GOTO step 3 ELSE [lnon

kr
, unon

kr
] = [pL

kr
, pU

kr
];

GOTO step 6;
Step 3: IF pL

kr
> tL THEN Set tL = pL

kr
, p̂L

kr
= tL, r := r + 1;

ELSE Set p̂L
kr
= tL, r := r + 1;

Step 4: IF r ≤ n THEN GOTO step 2 ELSE Set p̂U
kn

= pU
kn

, tU = pU
kn

;
Step 5: FOR r = n− 1 to 1 STEP -1 DO

IF pU
kr
< tU THEN Set tU = pU

kr
, p̂U

kr
= tU ELSE Set p̂U

kr
= tU ;

END FOR STOP
Step 6: OR(πk, T) = ∅ STOP.

In steps 1, 2, 3 and 6 of Algorithm 1, the equality OR(πk, T) = ∅ is tested. If OR(πk, T) 6= ∅,
then the problem 1| p̂L

i ≤ pi ≤ p̂U
i |∑ Ci with the reduced segments T̂ of the feasible durations of the

jobs J is constructed in steps 2–5. It takes O(n) time to realize Algorithm 1.

4.1. A Quasi-Perimeter of the Optimality Region OR(πk, T)

Due to Theorem 5, the optimality region for the permutation πk ∈ S for the problem 1|pL
i ≤ pi ≤

pU
i |∑ Ci coincides with the optimality region for the same permutation πk for the problem 1| p̂L

i ≤
pi ≤ p̂U

i |∑ Ci with the reduced segments T̂ of the feasible durations of the jobs J . Therefore, in what
follows, we consider the problem 1| p̂L

i ≤ pi ≤ p̂U
i |∑ Ci instead of the problem 1|pL

i ≤ pi ≤ pU
i |∑ Ci.

Definition 4. A maximal permutation sπk
v = (Jkv , Jkv+1 , . . . , Jkmv

), where 1 ≤ v ≤ mv ≤ n and |sπk
v | = mv,

is called a section of the permutation πk ∈ S, if for each real number d ∈ (p̂L
kv

, p̂U
kmv

), there exists a job Jki
with

i ∈ {v, v + 1, . . . , mv} such that the inclusion d ∈ (p̂L
ki

, p̂U
ki
) holds. The segment [p̂L

kv
, p̂U

kmv
] is called a scope of

the section sπk
v . The section sπk

v consisting of a single job, sπk
v = (Jkv), is called a trivial section.

It is clear that for each fixed permutation πk ∈ S, a set of all sections {sπk
1 , sπk

m1+1, . . . , sπk
w } =: S(πk)

is uniquely determined. Note that index w in the last section sπk
w coincides with index w of the job Jkw ,

which is the first job in the section sπk
w = (Jkw , Jkw+1 , . . . , Jkmw

) of the permutation πk.

Remark 4. Definition 4 implies that each job Jki
∈ J either belongs to a single section of the permutation πk

or this job does not belong to any section of the permutation πk. Furthermore, if there exists at least one job
Jki
∈ J , which does not belong to any section from the set S(πk), then this job has no segment of optimality and

no conditional optimality and, due to Theorem 6, the equality OR(πk, T) = ∅ holds.

From Remark 4 and Theorem 6, one can derive the following claim.

Corollary 2. The condition OR(πk, T) 6= ∅ holds if and only if πk = (sπk
1 , sπk

m1+1, . . . , sπk
w).

If the section sπk
v ∈ S(πk) is trivial, i.e., the equality sπk

v = (Jkv) holds, then [p̂L
kv

, p̂U
kv
] is a scope of

the section sπk
v . If the section sπk

j ∈ S(πk) is not trivial andOR(πk, T) 6= ∅, then we partition the scope

Mathematics 2019, 7, 382 11 of 21

[p̂L
kj

, p̂U
kmj

] of the section sπk
j ∈ S(πk) into the maximal (with respect to the inclusion) semi-intervals of

the optimality and conditional optimality:

[p̂L
kj

, p̂U
kmj

] = [l j
1(s

πk
j), uj

1(s
πk
j))

⋃
[l j

2(s
πk
j), uj

2(s
πk
j))

⋃
. . .

⋃
[l j

n(j)(s
πk
j), uj

n(j)(s
πk
j)]. (12)

In the equality (12), the semi-intervals [l j
i (s

πk
j), uj

i(s
πk
j) differ one from another in a way such that

for different subsets J j
i = {Jki

, Jki+1
, . . . , Jk

|J j
i |
} of the set of jobs {Jkj

, Jkj+1
, . . . , Jkmj

}, where j ≤ i ≤ mj,

the inclusion [l j
i (s

πk
j), uj

i(s
πk
j)] ⊆ [p̂L

kr
, p̂U

kr
] holds for each job Jkr ∈ J

j
i . Let Ĵ j

i = (Jki
, Jki+1

, . . . , Jk
|J j

i |
)

denote a permutation of all jobs from the set J j
i = {Jki

, Jki+1
, . . . , Jk

|J j
i |
}. Note that the permutation Ĵ j

i is

a part of the permutation πk, where index i in the permutation Ĵ j
i coincides with index i of the job Jki

,

which is the first job in the permutation Ĵ j
i .

Let the condition OR(πk, T) 6= ∅ hold. We can calculate a quasi-perimeter of the optimality
region OR(πk, T). We define a quasi-perimeter Per(πk, T) of the optimality region OR(πk, T) as a
sum of all lengths (cardinalities) of the segments (sets) OS(Jkr , πk), where jobs Jkr ∈ J occupy optimal
positions in the permutation πk:

Per(πk, T) =
n

∑
r=1

OS(Jkr , πk). (13)

A sum of the lengths (of the cardinalities) OS(Jkr , πk) for the job Jkr ∈ J in the permutation πk
may be calculated as follows:

OS(Jkr , πk)=(uopt
kr
− lopt

kr
) + OScopt

kr
, (14)

where the value of (uopt
kr
− lopt

kr
) is a length of the segment [lopt

kr
, uopt

kr
] of the optimality for the job

Jkr in the permutation πk. In the equality (14), the value of OScopt
kr

determines a cardinality of the

optimality subset, which is based on a single segment [lcopt
kr

, ucopt
kr

] or on both segments [lcopt
kr

, ucopt
kr

] and

[l(copt)
kr

, u(copt)
kr

] (see Remark 3) of the conditional optimality of the job Jkr in the permutation πk.

To calculate the value of OS(Jkr , πk)=(uopt
kr
− lopt

kr
) +OScopt

kr
, we use the partition (12) of the scope

[p̂L
kj

, p̂U
kmj

] of the section sπk
j ∈ S(πk) such that the job Jkr belongs to the set J j

i = {Jki
, Jki+1

, . . . , Jk
|J j

i |
}

determined for the section sπk
j , i.e., the inequalities j ≤ r ≤ mj hold. Because of the condition

OR(πk, T) 6= ∅, one can conclude (due to remark 4) that there exists a single section sπk
j containing

the job Jkr . The value of OS(Jkr , πk) may be calculated as follows:

OS(Jkr , πk) = (uopt
kr
− lopt

kr
) + OScopt

kr
= ∑

[l j
i (s

πk
j),uj

i(s
πk
j)]⊆[p̂L

kr
,p̂U

kr
]

uj
i(s

πk
j)− l j

i (s
πk
j)

|J j
i |

. (15)

The correctness of the equality (15) follows from the fact that the cardinality OS(Jkr , [l
j
i (s

πk
j), uj

i(s
πk
j)])

of the optimality subset for the job Jkr , which is based on the semi-interval [l j
i (s

πk
j), uj

i(s
πk
j)) of the

optimality or conditional optimality for the job Jrr , is equal to the following fraction:

OS(Jkr , [l
j
i (s

πk
j), uj

i(s
πk
j)]) =

uj
i(s

πk
j)− l j

i (s
πk
j)

|J j
i |

, (16)

Mathematics 2019, 7, 382 12 of 21

since, due to Theorem 1, a position of the job Jkr may be optimal in the permutation πk ∈ S, only if the
following |J j

i | inequalities (17) hold:
pkr ≤ pkv , if r < v, Jkv ∈ J

j
i ;

pkr ≥ pkd
, if d < r, Jkd

∈ J j
i ;

l j
i (s

πk
j) ≤ pkr ≤ uj

i(s
πk
j).

(17)

4.2. How to Calculate a Quasi-Perimeter for the Fixed Permutation

We next demonstrate the above notations and formulas on the calculation of the quasi-perimeter
Per(πk, T) for the permutation πk = π3 = (J5, J1, J2, J3, J4, J6, J8, J7) = (Jk1 , Jk2 , . . . , Jk8) presented in
Figure 3.

-

6

J5

J1

J2

J3

J4

J6

J8

J7

Jobs Ji

2 3 4 5 6 7 8 9 101112 14 17

Durations pi

Figure 3. The segments of optimality, non-optimality (double-shaded) and conditional optimality
(shaded) for the jobs Ji ∈ J in the permutation π3 = (J5, J1, J2, J3, J4, J6, J8, J7) ∈ S.

For the permutation πk = π3, there exists a single section sπk
1 = sπ3

1 = (J5, J1, J2, J3, J4, J6, J8, J7) =

π3, S(π3) = {sπ3
1 } = {π3}, with the scope [p̂L

k1
, p̂U

k8
] = [p̂L

5 , p̂U
7] = [2, 17]. We obtain the following

partition (12) of the scope [p̂L
5 , p̂U

7]:

[p̂L
k1

, p̂U
k8
] = [2, 17] = [2, 5) ∪ [5, 6) ∪ [6, 7) ∪ [7, 8) ∪ [8, 9) ∪ [9, 10) ∪ [10, 11) ∪ [11, 12) ∪ [12, 17].

For the obtained nine semi-intervals l1
i (s

π3) in the above partition of the scope [p̂L
k1

, p̂U
k8
],

the following equalities hold: Ĵ1
1 = (J5), Ĵ1

2 = (J5, J1, J2), Ĵ1
3 = (J5, J1, J2, J3, J4), Ĵ1

4 = (J2, J3, J4),
Ĵ1
5 = (J3, J4, J6), Ĵ1

6 = (J4, J6), Ĵ1
7 = (J4, J6, J8, J7), Ĵ1

8 = (J8, J7), Ĵ1
9 = (J7). Using the equality (14),

we calculate the optimality set OS(Jk1 , πk) = OS(J5, π3) for the job Jk1 = J5 in the permutation
πk = π3 as follows:

OS(Jk1 , πk) = OS(J5, π3) = (uopt
5 − lopt

5) + OScopt
5 = (5− 2) + OScopt

5 = 3 +
1
3
+

1
5
= 3

8
15

,

where the value of OScopt
5 is calculated based on the equality (15), namely: OScopt

k1
=

∑[l1
i (s

π3
1),u1

i (s
π3
1)]⊆[p̂L

k1
,p̂U

k1
]

u1
i (s

π3
1)−l1

i (s
π3
1)

|J 1
i |

= 6−5
3 + 7−6

5 = 8
15 .

A cardinality of the optimality set OScopt
5 is illustrated on Figure 4, where the pyramid

PCO{Jk1 [l
1
k1

, u1
k1
)] Ĵ1

1} = PCO{J5[5, 6](J5, J1, J2)} of the optimality subset OScopt
5 for the job J5, which is

based on the semi-interval [5, 6) for the permutation Ĵ1
1 = (J5, J1, J2) that is a part of the permutation

Mathematics 2019, 7, 382 13 of 21

π3. The volume of the pyramid PCO{J5[5, 6](J5, J1, J2)} is determined by the system of inequalities
(17), where πk = π3, Jkr = J31 = J5, J j

i = J 1
1 .

�
�
�
�
�
�
�
�

J
J
J
J
J

Q
Q
Q

QQ

�
�
��

�
�
��

�
�
��

(5, 5, 6) (5, 6, 6)

(5, 6, 5)(5, 5, 5)

(6, 5, 5) (6, 6, 5) = (J5, J1, J2)

(6, 6, 6)(6, 5, 6)

J5

J1

J2

Figure 4. The pyramid PCO{Jk1
[l1

k1
, u1

k1
)] Ĵ1

1} = PCO{J5[5, 6](J5, J1, J2)} of the optimality subset for

the job J5, which is based on the semi-interval [5, 6) for the permutation Ĵ1
1 = (J5, J1, J2) that is a part of

the permutation π3.

Similarly, we can calculate the following values: OS(Jk2 , πk) = OS(J1, π3) =
8

15 , OS(Jk3 , πk) =

OS(J2, π3) = 13
15 , OS(Jk4 , πk) = OS(J3, π3) = 13

15 , OS(Jk5 , πk) = OS(J4, π3) = 1 37
60 , OS(Jk6 , πk) =

OS(J6, π3) = 1 1
12 , OS(Jk7 , πk) = OS(J8, π3) = 3

4 , OS(Jk8 , πk) = OS(J7, π3) = 5 3
4 . Using the

equality (13), we calculate the quasi-perimeter of the optimality region for the permutation π3 as
follows: Per(π3, T) = ∑8

r=1 OS(J3r , π3) = 3 8
15 + 8

15 + 13
15 + 13

15 + 1 37
60 + 1 1

12 + 3
4 + 5 3

4 = 15.
It should be noted that the above quasi-perimeter Per(π3, T) is equal to the length 15 = 17− 2

of the scope [p̂L
31

, p̂U
38
] = [2, 17] of the single section sπ3

1 of the permutation π3 = sπ3
1 . The following

theorem shows that such an equality is not accidental.

Theorem 8. If the condition OR(πk, T) 6= ∅ holds, one can calculate the quasi-perimeter Per(πk, T) of the
optimality region for the permutation πk ∈ S as follows:

Per(πk, T) = ∑
s

πk
j ∈S(πk)

(p̂U
kmj
− p̂L

kj
), (18)

where (p̂U
kmj
− p̂L

kj
) is a length of the scope of the section sπk

j ∈ S(πk).

Proof. Due to Corollary 2, the above condition OR(πk, T) 6= ∅ implies the equality πk =

(sπk
j , sπk

mj+1, . . . , sπk
w). Therefore, the following equality also holds:

Per(πk, T) = ∑
s

πk
j ∈S(πk)

Per(sπk
j , T), (19)

where Per(sπk
j , T) denotes a quasi-perimeter of the optimality region for the section sπk

j . Let OS(J j
i , πk)

denote a quasi-perimeter of the optimality region for the permutation Ĵ j
i = (Jki

, Jki+1
, . . . , Jk

|J j
i |
) of all

jobs from the set J j
i = {Jki

, Jki+1
, . . . , Jk

|J j
i |
}.

For calculating the quasi-perimeter Per(πk, T) of the optimality region OR(πk, T), we will use
a summation of the values OS(Jkr , [l

j
i (s

πk
j), uj

i(s
πk
j)]) through all jobs Jkr in the permutation Ĵ j

r. Thus,
instead of the formulas (13)–(15), we use the equality (16) and the equalities (20) and (21):

Mathematics 2019, 7, 382 14 of 21

Per(sπk
j , T) =

mj

∑
i=j

OS(J j
i , πk), (20)

OS(J j
i , πk) =

|J j
i |

∑
r=i

OS(Jkr , [l
j
i (s

πk
j), uj

i(s
πk
j)]). (21)

The equality (20) follows from the above definition of Per(sπk
j , T). The equality (21) follows from

the definition of OS(J j
i , πk). Using the equalities (16) and (21) we obtain

OS(J j
i , πk) =

|J j
i |

∑
r=i

OS(Jkr , [l
j
i (s

πk
j), uj

i(s
πk
j)]) = |J j

i |
uj

i(s
πk
j)− l j

i (s
πk
j)

|J j
i |

= uj
i(s

πk
j)− l j

i (s
πk
j). (22)

Using the equalities (20) and (22) we obtain

Per(sπk
j , T) =

mj

∑
i=j

uj
i(s

πk
j)− l j

i (s
πk
j) = p̂U

kmj
− p̂L

kj
. (23)

Using the equalities (19) and (23) we obtain the desired equality (18) as follows:

Per(πk, T) = ∑
s

πk
j ∈S(πk)

Per(sπk
j , T) = ∑

s
πk
j ∈S(πk)

(p̂U
kmj
− p̂L

kj
).

Theorem 8 is proven.

5. The Largest Quasi-Perimeter of the Optimality Region OR(πk, T) for the Problem
1|p̂L

i ≤ pi ≤ p̂U
i |∑ Ci

We call the permutation πk ∈ S an effective permutation, if this permutation has the largest
quasi-perimeter Per(πk, T) of the optimality region OR(πk, T) among all permutations in the set S.
The following claim follows directly from Theorem 8.

Corollary 3. If the following equality holds:

∑
s

πk
j ∈S(πk)

(p̂U
kmj
− p̂L

kj
) = p̂U

kn
− p̂L

k1
(24)

for the permutation πk ∈ S, then this permutation is effective.

Since the equality (24) holds for the permutation π3 = (J5, J1, J2, J3, J4, J6, J8, J7), one can conclude
that this permutation is effective due to Corollary 3.

We next show how to find an effective permutation πk ∈ S in the general case of the problem
1| p̂L

i ≤ pi ≤ p̂U
i |∑ Ci. Similarly to the proof of Theorem 4 given in [23], we can prove the

following claim.

Theorem 9. Let all jobs from the set J be fixed in their blocks from the set B. Then the effective permutation
πk ∈ S may be constructed in O(n log n) time.

Thus, due to Theorem 9, the main problem, which must be solved for the construction of the
effective permutation πk ∈ S, is the optimal distribution of all non-fixed jobs between the effective
sub-permutations of the jobs fixed in the block B1, those fixed in the block B2, and so on, those fixed
in the block Bm. Let J non denote a set of all non-fixed jobs of the set J . The following lemma shows

Mathematics 2019, 7, 382 15 of 21

that we also need to find optimal positions for some fixed jobs of the set J in the desired effective
permutation πk ∈ S.

Theorem 10. An effective sub-permutation of all jobs, which are fixed in the block Br = {Jr1 , Jr2 , . . . , Jr|Br |
} ⊆

B, exists if and only if there is no job Jrd ∈ Br such that the following conditions hold simultaneously:

pL
rd
= min{pL

ri
: Jri ∈ Br} < min{pL

ri
: Jri ∈ Br \ {Jrd}}; (25)

pU
rd
= max{pU

ri
: Jri ∈ Br} > max{pU

ri
: Jri ∈ Br \ {Jrd}}. (26)

Proof. Sufficiency. Let there be no job Jrd ∈ Br such that conditions (25) and (26) hold.
Hence, there exist at least two different jobs Jri ∈ Br and Jrj ∈ Br such that the inequalities

pL
ri
= min{pL

ri
: Jri ∈ Br} and pU

rj
= max{pU

ri
: Jrj ∈ Br} hold. The effective sub-permutation of all jobs,

which are fixed in the block Br = {Jr1 , Jr2 , . . . , Jr|Br |
} ⊆ B, looks as follows (Jri , . . . , Jrj), where all jobs

from the set Br \ {Jri , Jrj} are located between jobs Jri and Jrj and their order may be arbitrary.
Necessity. Let there exist a job Jrd ∈ Br such that both conditions (25) and (26) hold.
Hence, an optimal position of the job Jrd is either the first position or the last position in the

effective sub-permutation of all jobs, which are fixed in the block Br = {Jr1 , Jr2 , . . . , Jr|Br |
}. This choice

for the job Jrd depends from the positions of other such jobs in the blocks Bl ∈ B \ {Br} in the effective
permutation πk and from the positions of jobs from the set J non in the effective permutation πk.

The following Algorithm 2 is based on Theorem 10.

Algorithm 2: Construction of the effective permutation of the jobs fixed in the block Br

Input: The segments [pL
ri

, pU
ri
] for all jobs from the set J , which are fixed

in the block Br = {Jr1 , Jr2 , . . . , Jr|Br |
}, i ∈ {1, 2, . . . , |Br|}.

Output: The effective sub-permutation πBr = (Jr1 , Jr1 , . . . , Jr|Sr |
) of the subset

Sr of the set Br, Sr ⊆ Br, which are fixed in the block Br.

Step 1: Find a job Jri such that pL
ri
= min{pL

rj
: j ∈ {1, 2, . . . , |Br|}};

Step 2: Find a job Jrk such that pU
rk
= max{pU

rj
: j ∈ {1, 2, . . . , |Br|} \ {i}};

Step 3: IF pU
rk
≥ pU

ri
THEN πBr = (Jri , . . . , Jrk), where jobs from the set

Br \ {Jri , Jrk} are ordered arbitrarily, set Sr1 = ∅, Sr2 = ∅, Sr = Br

GOTO step 11;
Step 4: Find a job Jrl such that pL

rl
= min{pL

rj
: j ∈ {1, 2, . . . , |Br|} \ {i}};

Step 5: IF pL
rl
= pL

ri
THEN πBr = (Jrl , . . . , Jri), where jobs from the set

Br \ {Jrl , Jri} are ordered arbitrarily, set Sr1 = ∅, Sr2 = ∅, Sr = Br

GOTO step 11;
Step 6: Find a job Jro such that pU

ro = max{pU
rj

: j ∈ {1, 2, . . . , |Br|} \ {i, l}};
Step 7: IF pU

ro ≥ pU
rl

THEN πBr = (Jrl , . . . , Jro), where jobs Br \ {Jrl , Jro , Jri} are
ordered arbitrarily, set Sr1 = {Jri}, Sr2 = ∅, Sr = Br \ {Jri} GOTO step 11;

Step 8: Find a job Jrq such that pL
rq = min{pL

rj
: j ∈ {1, 2, . . . , |Br|} \ {i, l}};

Step 9: IF pL
rq = pL

rl
THEN πBr = (Jrq , . . . , Jrl), where jobs from the set

Br \ {Jrq , Jrl , Jri} are ordered arbitrarily, set Sr1 = {Jri}, Sr2 = ∅,
Sr = Br \ {Jri} GOTO step 11;

Step 10: πBr = (Jr1 , ..., J|Sr |), where jobs from the set Sr = Br \ {Jri , Jrl} are ordered
arbitrarily, set Sr1 = {Jri}, Sr2 = {Jrl};

Step 11: The obtained sub-permutation πBr is effective STOP.

Mathematics 2019, 7, 382 16 of 21

The asymptotic complexity of Algorithm 2 is equal to O(n). The set Sr1 is either empty or contains
a single job Jrd ∈ Br for which both conditions (25) and (26) hold. The set Sr2 is either empty or contains
a single job Jrz ∈ Br for which both conditions pL

rz = min{pL
ri

: Jri ∈ Br \ {Jrd}} < min{pL
ri

: Jri ∈
Br \ {Jrd , Jrz}} and pU

rz = max{pU
ri

: Jri ∈ Br \ {Jrd}} > max{pU
ri

: Jri ∈ Br \ {Jrd , Jrz}} hold.
Let J f ix denote a set of all jobs Jrd ∈ Br, which are fixed in their blocks Br ∈ B and both conditions

(25) and (26) hold. The following Algorithm 3 constructs an effective permutation πk ∈ S for the
general case of the problem 1|pL

i ≤ pi ≤ pU
i |∑ Ci.

Algorithm 3: Construction of the effective permutation πk ∈ S

Input: The segments [pL
i , pU

i] for all jobs Ji ∈ J ;
the effective sub-permutations πBr = (Jr1 , Jr2 , . . . , Jr|Sr |

), sets Sr1 and sets Sr2

for all blocks Br ∈ B.
Output: The effective job permutation πk ∈ S.

Step 1: Construct a sub-permutation πp = (. . . , πB1 , . . . , πB2 , . . . , πBm , . . .);
FOR r = 1 to |B| DO

IF Sr2 = ∅ THEN l̂r = pL
r1

, ûr = pU
r|Sr |

ELSE

l̂r = pL
rd

, ûr = pU
rd

, Jrd ∈ Sr2 ;
END FOR

Step 2: Construct sets of jobs J f ix = ∪m
r=1Sr1 , J̃ = J f ix ∪ J non, sort jobs of the set

J̃ = {J f1 , J f2 , . . . , J f|J̃ |
} by increasing of the mid-points of the segments

[pL
fi

, pU
fi
], obtain set J̃ = (J f1 , J f2 , . . . , J f|J̃ |

);

Step 3: Construct set D = ∪n
i=1(pL

i ∪ pU
i), sort set D by increasing D = (b1, b2, . . . , bq),

1 ≤ q ≤ 2n, construct intervals Ii = [bi, bi+1], i ∈ {1, 2, . . . , q− 1};
Step 4: Sres = ∅, Nres = ∅, sNumRes = 1, k = 1,

l̂m+1 = max{pU
i : i ∈ {1, 2, . . . , n}}, ûm+1 = max{pU

i : i ∈ {1, 2, . . . , n}};
Step 5: IF k ≤ |J̃ | THEN iNum = 1, bNum = 1, sNum = 1, Sk = ∅, Nk = ∅

ELSE GOTO step 10;
Step 6: FOR j = 1 to q− 1 DO

IF [bj, bj+1]∩ (pL
fk

, pU
fk
) 6= ∅ AND l̂bNum > bj THEN SksNum := SksNum ∪ Ij;

IF ûbNum = bj+1 THEN bNum := bNum + 1;
IF ûbNum−1 = bj+1 AND SksNum 6= ∅ THEN NksNum := bNum− 1,

sNum := sNum + 1;
END FOR

Step 7: s = 1, Stmp = ∅;
FOR i = 1 to sNum− 1 DO

FOR j = 1 to sNumRes DO
Stmps = Sresj ∪ Ski

, Ntmps = (Nresj , Nki
), s := s + 1;

END FOR
END FOR

Step 8: j = 1, Sd = ∅, Nd = ∅;
WHILE j < s DO i = 1;

WHILE i < s DO
IF Stmpi ⊆ Stmpj AND i 6= j AND Stmpj /∈ Sd THEN
Sd := Sd ∪ Stmpi , Nd := Nd ∪ Ntmpi ; i := i + 1;

END j := j + 1;
END Snd := Stmp \ Sd, Nnd := Ntmp \ Nd;

Step 9: Sres = Snd, Nres = Nnd, sNumRes = |Sres|, k := k + 1 GOTO step 5;
Step 10: maxP = 0;

FOR i = 1 to sNumRes DO P = 0;

Mathematics 2019, 7, 382 17 of 21

FOR EACH Ij IN Sresi DO P := P + bj+1 − bj END FOR;
IF P > maxP THEN maxP = P, maxNum = i END FOR

Step 11: FOR x = 1 to m + 1 DO Sx = ∅ END FOR
FOR k = 1 to |J̃ | DO x = NmaxNumk , Sx := Sx ∪ Jk; END FOR

Step 12: û0 = min{pL
i : i ∈ {1, 2, . . . , n}};

FOR x = 1 to m + 1 DO sort jobs of the set Sx by increasing of the
mid-points of the segments [max{pL

i , ûx−1}, min{pU
i , l̂x}] and obtain

sub-permutation πrx ;
END FOR

Step 13: FOR x = 1 to m DO
IF Sx2 = ∅ THEN πk = (πk, πrx , πBx) ELSE

IF Sx1 ⊆ Sx THEN πk := (πk, πrx , πBx , Sx2) ELSE
πk := (πk, πrx , Sx2 , πBx);

END FOR
πk := (πk, Sm+1) STOP.

6. Computational Results

In the computational experiments, we tested six classes of hard instances 1|pL
i ≤ pi ≤ pU

i |∑ Ci.
Algorithms 1–3 were coded in C# and tested on a PC with Intel Core (TM) 2 Quad, 2.5 GHz, 4.00 GB
RAM. For all tested instances, inequalities pL

i < pU
i hold for all jobs Ji ∈ J . Table 2 presents

computational results for randomly generated instances of the problem 1|pL
i ≤ pi ≤ pU

i |∑ Ci with n ∈
{50, 100, 500, 1000, 5000, 10,000}.

The segments of possible durations have been randomly generated as follows. An integer center
C of the segment [pL

i , pU
i] was generated using a uniform distribution in the range [1, 100]. The lower

bound pL
i of the possible duration pi was determined using the equality pL

i = C · (1− δ
100), where δ

denotes the maximal relative error of the durations pi due to the given segments [pL
i , pU

i]. The upper
bound pU

i was determined using the equality pU
i = C · (1 + δ

100). For each job Ji ∈ J , the point p
i

was
generated using a uniform distribution in the range [pL

i , pU
i]. In order to generate instances, where all

jobs J belonged to a single block, the segments [pL
i , pU

i] of the possible durations were modified as
follows: [p̃L

i , p̃U
i] = [pL

i + p− p
i
, pU

i + p− p
i
], where p = maxn

i=1 p
i
.

Since the inclusion p ∈ [p̃L
i , p̃U

i] holds, each constructed instance contained a single block, |B| = 1.
The maximum absolute error of the uncertain durations pi, Ji ∈ J , is equal to maxn

i=1(pU
i − pL

i),
and the maximum relative error of the uncertain durations pi, Ji ∈ J , is not greater than 2δ%. We say
that these instances belong to class 1.

Three distribution laws were used in our computational experiments to determine the factual
durations of the jobs. If inequality pL

i < pU
i holds, then the factual duration of the job Ji becomes

known only after completing the job Ji.
We call the uniform distribution as the distribution law with number 1, the gamma distribution

with the parameters α = 9 and β = 2 as the distribution law with number 2, and the gamma distribution
with the parameters α = 4, and β = 2 as the distribution law with number 3. In each instance of class 1,
for generating the factual durations for different jobs of the set J , the number of the distribution law
was randomly chosen from the set {1, 2, 3}. We solved 15 series of the randomly generated instances
from class 1. Each series contained 10 instances with the same combination of n and δ.

In the computational experiments, we answered the question of how large the obtained relative

error ∆ =
γk

p∗−γt
p∗

γt
p∗
· 100% of the value γk

p∗ of the objective function γ = ∑n
i=1 Ci was for the effective

permutation πk with respect to the actually optimal objective function value γt
p∗ calculated for the

factual durations p∗ = (p∗1 , p∗2 , . . . , p∗n) ∈ T, which were known after completing all the jobs.

Mathematics 2019, 7, 382 18 of 21

The number n of jobs in the instance is given in column 1 in Table 2. The half of the maximum
possible errors δ of the random durations (in percentage) is given in column 2. Column 3 gives the
average error ∆ for the effective permutation πk. Column 4 presents the average CPU-time in seconds.
The smallest errors, average errors, largest errors for the tested series of the instances are presented in
the last rows of Table 2.

Table 2. Computational results for randomly generated instances with a single block (class 1).

n δ (%) ∆ CPU-Time (s)

1 2 3 4

50 1 0.088066 0.028202
50 5 0.29217 0.028702
50 10 0.451719 0.027502
100 1 0.083836 0.040702
100 5 0.25303 0.040202
100 10 0.442234 0.038802
500 1 0.090923 0.162809
500 5 0.268353 0.160009
500 10 0.446225 0.162509

1000 1 0.09579 0.309918
1000 5 0.266479 0.310618
1000 10 0.443648 0.312518
5000 1 0.097144 1.196568
5000 5 0.264383 1.531488
5000 10 0.455035 1.556389

10,000 1 0.094943 3.103378
10,000 5 0.265045 3.073576
10,000 10 0.452539 2.993571

Minimum 0.083836 0.027502
Average 0.269454 0.837637

Maximum 0.455035 3.103378

In the second part of our computational experiments, Algorithms 1–3 were applied to randomly
generated instances from other classes 2–6 of the problem 1|pL

i ≤ pi ≤ pU
i |∑ Ci. We randomly

generated non-fixed jobs J1, J2, . . . , Js, which belong to blocks B1, B2, . . ., Bm of the randomly generated
n− s fixed jobs. The lower bound pL

i and the upper bound pU
i on the feasible values of pi ∈ R1

+ of the
durations of the fixed jobs, pi ∈ [pL

i , pU
i], were generated as follows.

We determined a bound of blocks [b̃L
i , b̃U

i] for generating the cores of the blocks [bL
i , bU

i] ⊆
[b̃L

i , b̃U
i] and for generating the segments [pL

i , pU
i] for the durations of |Bi| jobs from all blocks Bi,

i ∈ {1, 2, . . . , m}, [bL
i , bU

i] ⊆ [pL
i , pU

i] ⊆ [b̃L
i , b̃U

i].
Each instance in class 2 or in class 3 had a single non-fixed job Jv, whose bounds were determined

as follows: pL
Jv
≤ b̃L

1 ≤ b̃U
1 < b̃L

2 ≤ b̃U
2 < b̃L

3 ≤ b̃U
3 ≤ pU

Jv
. Classes 2 and 3 of the solved instances differed

one from another by the numbers of non-fixed jobs and the distribution laws used for choosing the
factual durations of the jobs J .

Each instance from classes 4 and 5 had two non-fixed jobs. In each instance from classes 2, 4,
5 and 6, for generating the factual durations for the jobs J , the numbers of the distribution laws
were randomly chosen from the set {1, 2, 3}, and they were indicated in column 4 in Table 3. In the
instances of class 6, the cores of the blocks were determined in order to generate different numbers of
non-fixed jobs in different instances. The numbers of non-fixed jobs were randomly chosen from the
set {2, 3, . . . , 8}.

The numbers n of the jobs are presented in column 1 in Table 3. Column 2 represents the number
|B| of blocks in the solved instance and column 3 the number of non-fixed jobs. The distribution laws
used for determining the factual durations of the jobs are indicated in column 4 in Table 3. Column 6
presents average numbers λ of the maximal number of the variants of the non-dominated distributions

Mathematics 2019, 7, 382 19 of 21

of the jobs J f ix ∪ J non in the effective permutation πk while it was constructed on the iterations
of Algorithm 3. Each solved series contained 10 instances with the same combination of n and the
other parameters. The obtained smallest, average and largest values of ∆ for each series of the tested
instances are presented in column 5 in Table 3 at the end of series.

Table 3. Computational results for randomly generated instances from classes 2–6.

n |B| |J non| Laws ∆ Average λ CPU-Time (s)

1 2 3 4 5 6 7

Class 2

50 3 1 1,2,3 0.54205 4 0.16921
100 3 1 1,2,3 0.281253 4 0.305017
500 3 1 1,2,3 0.177597 4 0.952555
1000 3 1 1,2,3 0.121447 4 1.561289
5000 3 1 1,2,3 0.111056 4 9.481842

10,000 3 1 1,2,3 0.105322 4 18.933383

Minimum 0.105322 4 0.16921
Average 0.223121 4 5.233883

Maximum 0.54205 4 18.933383

Class 3

50 3 1 1 0.575038 4 0.098006
100 3 1 1 0.284279 4 0.334319
500 3 1 1 0.132735 4 0.647537
1000 3 1 1 0.114245 4 1.389479
5000 3 1 1 0.160372 4 9.290531

10,000 3 1 1 0.149278 4 12.189497

Minimum 0.114245 4 0.098006
Average 0.235991 4 3.991562

Maximum 0.575038 4 12.189497

Class 4

50 3 2 1,2,3 0.670408 6.5 0.408923
100 3 2 1,2,3 0.402251 6.2 0.791245
500 3 2 1,2,3 0.084687 6.2 3.866421
1000 3 2 1,2,3 0.084137 6.4 8.715098
5000 3 2 1,2,3 0.066305 6.2 35.98006

10,000 3 2 1,2,3 0.061258 6.2 78.877412

Minimum 0.061258 6.2 0.408923
Average 0.228174 6.3 21.43986

Maximum 0.670408 6.5 78.877412

Class 5

50 5 2 1,2,3 0.498197 16.2 0.969455
100 5 2 1,2,3 0.157349 15 2.035616
500 5 2 1,2,3 0.069192 15 6.832491
1000 5 2 1,2,3 0.059916 15 13.53107
5000 5 2 1,2,3 0.045986 15 86.01118

10,000 5 2 1,2,3 0.047765 15 129.1963

Minimum 0.045986 15 0.969455
Average 0.146401 15.2 39.762685

Maximum 0.498197 16.2 129.1963

Mathematics 2019, 7, 382 20 of 21

Table 3. Cont.

n |B| |J non| Laws ∆ Average λ CPU-Time (s)

1 2 3 4 5 6 7

Class 6

50 2 2–4 1,2,3 1.086983 3.9 0.496728
100 2 2–4 1,2,3 0.839207 4 0.945754
500 2 2–6 1,2,3 0.843448 3.8 4.976885
1000 2 2–8 1,2,3 0.874078 3.6 13.604478
5000 2 2–8 1,2,3 0.790634 3.7 71.244575

10,000 2 2–8 1,2,3 0.768925 3.7 153.430476

Minimum 0.768925 3.6 0.496728
Average 0.867212 3.8 40.783149

Maximum 1.086983 4 153.430476

7. Concluding Remarks

The uncertain scheduling problem 1|pL
i ≤ pi ≤ pU

i |∑ Ci attracts the attention of the researchers
since this problem is applicable in real-life scheduling and is commonly used in many multiple-resource
scheduling systems, where one of the available machines is the bottleneck and uncertain machine.
The optimal scheduling decisions allow the plant to reduce the costs of productions due to a better
utilization of the available machines.

In Sections 2–5, we used a notion of the optimality region of a job permutation πk and proved
useful properties of the optimality region OR(πk, T). We investigated the permutation πk with the
largest quasi-perimeter of the optimality region. Using these properties, we derived algorithms for
constructing a job permutation πk with the largest quasi-perimeter of the optimality region OR(πk, T).

From the computational experiments, it follows that the effective permutation πk is close to the
optimal permutation, which can be determined after completing all jobs when their durations became
known. We tested classes 1–6 of the problems 1|pL

i ≤ pi ≤ pU
i |∑ Ci. The minimal, average and

maximal errors ∆ of the objective function values were 0.045986, 0.313658 and 1.086983, respectively,
for the effective permutations.

An attractive direction for a further research is a generalization of the obtained results to the
problem 1|pL

i ≤ pi ≤ pU
i |∑ wiCi, where the given jobs may have different weights. It is also useful to

find precedence constraints on the set of jobs such that the effective job permutation may be constructed
similarly to Section 5.

Author Contributions: Y.N. proved theoretical results; Y.N. and N.E. jointly conceived and designed the
algorithms; N.E. performed the experiments; Y.N. and N.E. analyzed the data; Y.N. wrote the paper.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to anonymous referees for their useful remarks and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Davis, W.J.; Jones, A.T. A real-time production scheduler for a stochastic manufacturing environment. Int. J.
Prod. Res. 1988, 1, 101–112. [CrossRef]

2. Pinedo, M. Scheduling: Theory, Algorithms, and Systems; Prentice-Hall: Englewood Cliffs, NJ, USA, 2002.
3. Daniels, R.L.; Kouvelis, P. Robust scheduling to hedge against processing time uncertainty in single stage

production. Manag. Sci. 1995, 41, 363–376. [CrossRef]
4. Sabuncuoglu, I.; Goren, S. Hedging production schedules against uncertainty in manufacturing environment

with a review of robustness and stability research. Int. J. Comput. Integr. Manuf. 2009, 22, 138–157. [CrossRef]
5. Sotskov, Y.N.; Werner, F. Sequencing and Scheduling with Inaccurate Data; Nova Science Publishers: Hauppauge,

NY, USA, 2014.

http://dx.doi.org/10.1080/09511928808944350
http://dx.doi.org/10.1287/mnsc.41.2.363
http://dx.doi.org/10.1080/09511920802209033

Mathematics 2019, 7, 382 21 of 21

6. Pereira, J. The robust (minmax regret) single machine scheduling with interval processing times and total
weighted completion time objective. Comput. Oper. Res. 2016, 66, 141–152. [CrossRef]

7. Grabot, B.; Geneste, L. Dispatching rules in scheduling: A fuzzy approach. Int. J. Prod. Res. 1994, 32, 903–915.
[CrossRef]

8. Kasperski, A.; Zielinski, P. Possibilistic minmax regret sequencing problems with fuzzy parameters.
IEEE Trans. Fuzzy Syst. 2011, 19, 1072–1082. [CrossRef]

9. Özelkan, E.C.; Duckstein, L. Optimal fuzzy counterparts of scheduling rules. Eur. J. Oper. Res. 1999, 113,
593–609. [CrossRef]

10. Sotskov, Y.N.; Egorova, N.M.; Lai, T.-C. Minimizing total weighted flow time of a set of jobs with interval
processing times. Math. Comput. Model. 2009, 50, 556–573. [CrossRef]

11. Tanaev, V.S.; Sotskov, Y.N.; Strusevich, V.A. Scheduling Theory: Multi-Stage Systems; Kluwer Academic
Publishers: Dordrecht, The Netherlands, 1994.

12. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Rinnooy Kan, A.H.G. Optimization and approximation in
deterministic sequencing and scheduling. Ann. Discr. Appl. Math. 1979, 5, 287–326.

13. Smith, W.E. Various optimizers for single-stage production. Naval Res. Logist. Q. 1956, 3, 59–66. [CrossRef]
14. Burdett, R.L.; Kozan, E. Techniques to effectively buffer schedules in the face of uncertainties.

Comput. Ind. Eng. 2015, 87, 16–29. [CrossRef]
15. Goren, S.; Sabuncuoglu, I. Robustness and stability measures for scheduling: Single-machine environment.

IIE Trans. 2008, 40, 66–83. [CrossRef]
16. Kasperski, A.; Zielinski, P. A 2-approximation algorithm for interval data minmax regret sequencing

problems with total flow time criterion. Oper. Res. Lett. 2008, 36, 343–344. [CrossRef]
17. Kouvelis, P.; Yu, G. Robust Discrete Optimization and Its Application; Kluwer Academic Publishers: Boston,

MA, USA, 1997.
18. Lu, C.-C.; Lin, S.-W.; Ying, K.-C. Robust scheduling on a single machine total flow time. Comput. Oper. Res.

2012, 39, 1682–1691. [CrossRef]
19. Yang, J.; Yu, G. On the robust single machine scheduling problem. J. Combin. Optim. 2002, 6, 17–33. [CrossRef]
20. Lebedev, V.; Averbakh, I. Complexity of minimizing the total flow time with interval data and minmax regret

criterion. Discr. Appl. Math. 2006, 154, 2167–2177. [CrossRef]
21. Harikrishnan, K.K.; Ishii, H. Single machine batch scheduling problem with resource dependent setup and

processing time in the presence of fuzzy due date. Fuzzy Optim. Decis. Mak. 2005, 4, 141–147. [CrossRef]
22. Allahverdi, A.; Aydilek, H.; Aydilek, A. Single machine scheduling problem with interval processing times

to minimize mean weighted completion times. Comput. Oper. Res. 2014, 51, 200–207. [CrossRef]
23. Lai, T.-C.; Sotskov, Y.N.; Egorova, N.G.; Werner, F. The optimality box in uncertain data for minimising the

sum of the weighted job completion times. Int. J. Prod. Res. 2018, 56, 6336-–6362. [CrossRef]
24. Sotskov, Y.N.; Egorova, N.M. Single machine scheduling problem with interval processing times and total

completion time objective. Algorithms 2018, 75, 66. [CrossRef]
25. Sotskov, Y.N.; Lai, T.-C. Minimizing total weighted flow time under uncertainty using dominance and a

stability box. Comput. Oper. Res. 2012, 39, 1271–1289. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cor.2015.08.010
http://dx.doi.org/10.1080/00207549408956978
http://dx.doi.org/10.1109/TFUZZ.2011.2159982
http://dx.doi.org/10.1016/S0377-2217(97)00445-1
http://dx.doi.org/10.1016/j.mcm.2009.03.006
http://dx.doi.org/10.1002/nav.3800030106
http://dx.doi.org/10.1016/j.cie.2015.04.024
http://dx.doi.org/10.1080/07408170701283198
http://dx.doi.org/10.1016/j.orl.2007.11.004
http://dx.doi.org/10.1016/j.cor.2011.10.003
http://dx.doi.org/10.1023/A:1013333232691
http://dx.doi.org/10.1016/j.dam.2005.04.015
http://dx.doi.org/10.1007/s10700-004-5870-9
http://dx.doi.org/10.1016/j.cor.2014.06.003
http://dx.doi.org/10.1080/00207543.2017.1398426
http://dx.doi.org/10.3390/a11050066
http://dx.doi.org/10.1016/j.cor.2011.02.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Descriptions, The Related Literature and Closed Results
	The Related Literature
	The Stability Approach to Single-Machine Scheduling Problems

	The Optimality Region
	Algorithms for Calculating a Quasi-Perimeter of the Optimality Region for the Fixed Permutation
	A Quasi-Perimeter of the Optimality Region OR(k, T)
	How to Calculate a Quasi-Perimeter for the Fixed Permutation

	The Largest Quasi-Perimeter of the Optimality Region OR(k,T) for the Problem 1| "0362piL pi "0362piU| Ci
	Computational Results
	Concluding Remarks
	References

