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Transmission coe±cient and ¯eld emission current in a silicon vacuum nanostructure with a
pyramidal cathode were calculated as a function of applied voltage, size of the cathode and
distance between the anode and cathode by the phase function method. The ¯eld emission
current density in the range of 1–10 A/cm2 was found to be achieved by varying the distance
between the anode and cathode in the range of 15–25 nm and the applied voltage in the range of
1.2–2.3V.
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1. Introduction

Silicon vacuum nanoelectronics is currently an
actively developing ¯eld. It uses achievements of

silicon technology and advantages of electron mo-

tion in vacuum.1,2 Vacuum silicon nanoelectronic
devices need a perfect design of silicon cathodes.3

Silicon is a suitable material for ¯eld emission

cathodes as its work function in the range of 4.0–
4.6 eV is comparable to that of metals. In addition,

fabrication of sharp silicon cathodes with a tip of an
atomic dimension (less than 1 nm) has been already

developed thus allowing signi¯cant reduction of the

operating voltage.4

However, silicon cathodes provide current den-
sities which are still lower than metallic ones. An
increased current density in conventional silicon
cathodes inevitably brings their rapid degrada-
tion.2,3 It could be minimized by the cathode ge-
ometry and electrical regimes of operation. In this

paper, we present the relationships between the
most important factors.

2. Model

The cross-section of the considered ¯eld emission
nanostructure is depicted in the Fig. 1. It includes a
pointed silicon cathode in the form of a pyramid of
the height h with a rounded tip of radius r. The °at
anode is located from the silicon substrate at a
distance d. The gates are used to control the cath-
ode current.

The above nanostructure is considered as a basic
unit of vacuum nanotriodes and other devices of
vacuum nanoelectronics. The pointed cathode is
used to form increased electric ¯eld strength at the
cathode tip to obtain the largest e®ective electron
emission.

Numerical simulation of the electron transmis-
sion and the emission current in the nanostructure
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can be done by using the Schr€odinger equation or
applying the Ventzel–Kramers–Brillouin (WKB)
approximation. In the ¯rst case, in order to deter-
mine the transmission coe±cient, it is necessary to
approximate the potential barrier between the
cathode and the anode by a set of narrow rectan-
gular potentials and then combine together the
solutions of the Schr€odinger equation obtained for
each region.5 For potentials of a rather complex
form, this procedure is very time consuming.
Moreover, an assessment of the accuracy of the
results obtained is di±cult.

The WKB approximation is not always applicable
for the calculation of the transmission coe±cient due
to the restriction applied to the shape of the poten-
tial barrier and a signi¯cant change of the potential
at the de Broglie wavelength of an electron.

In this paper, the phase function method6,7 de-
veloped for quantum systems is used since ac-
counting for a signi¯cant change of the potential at
the de Broglie wavelength of an electron, the
Fowler-Nordheim theory8 is no more valid.

The fundamental principle of the phase function
method implies that only a change of the wave
function of a quantum system is estimated but not
the wave function itself. The simplicity of the phase
equation is that it is an ordinary ¯rst-order di®er-
ential equation (Riccati equation). There is also a
possibility to analyze potential barriers of various
types, including those depending on the electron
momentum. The physical sense of the phase func-
tion is that it is the phase of scattering at the cor-
responding potential relief.

The equation for the electron re°ection function
BðzÞ from the potential barrier UðzÞ has the form7:

dBðzÞ
dz

¼ � UðzÞ
2ik

½expðikzÞ þBðzÞ expð�ikzÞ�2; ð1Þ

where z is the coordinate in the direction of
tunneling, k ¼ ð2mE=}

2Þ1=2 is the wave number of

the tunneling electron. The e®ective potential is
written as

UðzÞ ¼ ð2m=}2Þ½U0 � qV ðzÞ þ q’ðzÞ�; ð2Þ

where q is the electron charge, m;E is the e®ective
mass and the energy of the tunneling electron cor-
respondingly, } is the normalized Planck constant,
U0 is the work function of the cathode, V ðzÞ ¼ Fz is
the potential of the external electric ¯eld, ’ðzÞ ¼
�q2=4""0z is the force potential of the mirror image,
F is the external ¯eld strength. The magnitude
of the square of the re°ection function modulus
is interpreted as a coe±cient of re°ection from the
potential barrier: RðzÞ ¼ jBðzÞj2. Assuming that
BðzÞ ¼ aðzÞ þ ibðzÞ and expanding exp(�ikz), we
obtain the following system of equations for deter-
mination of the components of the re°ection
function

daðzÞ
dz

¼ UðzÞ
2k

½� sinð2kzÞ � 2b

þða2 � b2Þ sinð2kzÞ � 2ab cosð2kzÞ�;
dbðzÞ
dz

¼ UðzÞ
2k

½cosð2kzÞ þ 2a

þða2 � b2Þ cosð2kzÞ � 2ab sinð2kzÞ�:

ð3Þ

The transmission coe±cient for the barrier is
equal to:

T ðkÞ ¼ exp
1

k

Z z0

0

UðzÞ½bðzÞ cosð2kzÞ
�

;

�aðzÞ sinð2kzÞ�dz
�
; ð4Þ

where z0 is the width of the tunneling barrier at the
Fermi level of silicon. The emitted electron current
density can be described by the following equation:

J ¼ q

Z
NðkÞT ðkÞdk; ð5Þ

with NðkÞ being the supply function which
describes the electron °ux to the potential barrier
and the transmission coe±cient T ðkÞ which repre-
sents a chance of tunneling.9

The system of Eqs. (3)– (5) allows calculations of
the dependence of the transmission coe±cient as
well as the emission current density on the wave
number k for the barrier described by the e®ective
potential UðzÞ.

Fig. 1. Cross-section of the vacuum nanostructure.

A. G. Tra¯menko, D. A. Podryabinkin & A. L. Danilyuk

1940092-2

In
t. 

J.
 N

an
os

ci
. 2

01
9.

18
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 R

IC
E

 U
N

IV
E

R
SI

T
Y

 o
n 

08
/2

5/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



3. Results and Discussion

We assume that work function U0 ¼ 4:03 eV. The
parameters of the nanostructure with silicon cath-
ode and the ampli¯cation coe±cient

� ¼ F=V ¼ 2ðh=rÞð1=dÞ=½lnð4h=rÞ � 2� ð6Þ
are given in Table 1. Three variants indicated as a, b
and c were analyzed.

Figure 2 presents the calculated transmission
coe±cient T ðk0Þ for various external voltages Vp and
the nanostructure parameters corresponding to the
variant a in Table 1. The dimensionless wave
number k0 ¼ z0k.

Figure 3 shows current–voltage characteristics of
the nanostructure with di®erent sizes of its ele-
ments. An increase of the current density is
achieved by means of an increase of the ampli¯ca-
tion coe±cient � and, accordingly, increase of the
¯eld strength at the tip of the cathode.

The calculations performed have shown that the
transmission coe±cient changes signi¯cantly with
the wave number. It rises sharply upon a certain

value of the wave number corresponding to the
certain energy E. Valuable currents of the emitted
electrons arise in the conditions where T ðk0Þ > 0:1:
For such cases, z0 depends on the external voltage
Vp, and the energy of electrons is calculated as
E ¼ ½ðk0}Þ2=2m�ð1=z0Þ2.

The emission current density in the range from
1A/cm2 to 10A/cm2 was calculated to be achieved
in the analyzed nanostructure at external voltages
of 1–2.5V. They look attractive for practical
purposes.

4. Conclusion

The phase function method was demonstrated to be
useful for the numerical simulation of the trans-
mission coe±cient, emission current density and
current–voltage characteristics of a vacuum silicon
¯eld emission nanostructure with a pyramidal
cathode. It accounts for a change of the potential
energy in the structure at the de Broglie electron
wavelength. It is sensitive to the external voltage
applied to the structure, the cathode size and the
distance between the anode and cathode. The in-
crease of the ampli¯cation coe±cient of the ¯eld
strength at the cathode tip of about 2 times results
in up to 2 orders of magnitude increase of the
emitted electron current density. It has been found
that the emission current density of 1A/cm2 can be
produced at an external voltage in the range of
1.2–2.0V by varying the anode-to-cathode distance
from 15 nm to 25 nm, while the current density
of 10A/cm2 can be achieved at 1.4–2.3V. These

Table 1. Parameters of the nanostructure used in the
calculations.

Value

Parameter a b c

d, nm 20 20 25
h, nm 10 15 20
r, nm 1 1 0.5
�, 1/m 5.92� 108 7.16� 108 1.04� 109

Fig. 2. Transmission coe±cient T as a function of the wave
number k0 at the external bias Vp ¼ 5V (1), 3V (2), 2.2V (3)
and 1.5V (4).

Fig. 3. Current–voltage characteristics of the nanostructure
with the sizes of its elements corresponding to the variants
a (1), b (2) and c (3) in Table 1.
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are su±cient for a practical application in new
generation of silicon-based vacuum ¯eld emission
nanostructures.
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