БИОФИЗИЧЕСКАЯ МОДЕЛЬ ПОВЕРХНОСТНЫХ ТКАНЕЙ ЧЕЛОВЕКА С МИКРОЦИРКУЛЯТОРНЫМ РУСЛОМ

Лащётко Р. А.

Белорусский государственный университет информатики и радиоэлектроники г. Минск, Республика Беларусь

Меженная М. М. – канд. техн. наук. доцент

В данной работе описана биофизическая модель поверхностных тканей человека с микроциркуляторным руслом. Даная модель в перспективе будет использована в качестве основы для компьютерного моделирования процессов воздействия низкоинтенсивного лазерного излучения на биоткани человека в диагностике микроциркуляции кровотока.

Цель разработки — создание биофизической модели поверхностных тканей человека с микроциркуляторным руслом. Даная модель в перспективе будет использована в качестве основы для компьютерного моделирования процессов воздействия низкоинтенсивного лазерного излучения на биоткани человека в диагностике микроциркуляции кровотока.

Создание подобной модели базируется на абстракции поверхностных тканей человека, которая в свою очередь зависит от специфики изучаемых процессов. В частности, принципиальным является воздействие низкоинтенсивного лазерного с длиной волны 633 нм на поверхностные ткани человека. Это определяет геометрические размеры, а также слоистую структуру модели.

Биофизическая модель поверхностных тканей человека с микроциркуляторным руслом реализуется в виде многослойной системы. Слои образованы областями с различными оптическими свойствами. Границы областей выбираются исходя из вариации показателя преломления оптического излучения. Толщина моделируемой системы определяется глубиной проникновения лазерного излучения длиной 633 нм в биологические ткани.

Модель включает следующие слои: эпидермис, дерма, кровеносные капилляры (образующие микроциркуляцию крови в дерме), гиподерма. Возможно и дальнейшее деление на области, состоящие из функциональных элементов с разными значениями показателя преломления, но для целей текущего исследования такая точность не требуется. Геометрические размеры исследуемой области составляют 20х20 мм. Выбор оптических параметров зависит от длины волны излучения и материала слоя. Проведя литературный анализ [1-2] были определены следующие параметры для каждого из слоёв (таблица 1). Внешний вид модели представлен на рисунке 1.

Таблица 1 – параметры слоёв

Слой модели	Толщина, мм	Показатель	Коэффициент
		преломления	поглощения, мм ⁻¹
Эпидермис	0.10 мм	1.56	0.026
Дерма	1.50 мм	1.40	0.033
Микроциркуляция дермы	0.01 мм	1.00	0.265
Гиподерма	4.40 мм	1.45	0.003

Рисунок 1. – Модель созданная при использовании CAПР SolidWorks

Для создания модели был использован программный пакет SolidWorks. В перспективе на основе данной биофизической модели в COMSOL Multiphysics будет разработана компьютерная модель.

Список использованных источников:

- 1. F. Xu, T.J. Lu, K.A. Seffen "Mathematical Modeling of Skin Bioheat Transfer" // Applied Mechanics Reviews, 2009
- 2. Stefan Hartmann, Matthias Moschall, Oliver Schäfer "Phantom of Human Adipose Tissue and Studies of Light Propagation and Light Absorption for Parameterization and Evaluation of Noninvasive Optical Fat Measuring Devices" // Optics and Photonics Journal, 2015