Software technology for deep learning of belief
neural networks

1*' Victor V. Krasnoproshin
Belarusian State University
Minsk, Belarus
Krasnoproshin @bsu.by

Abstract—The paper provides the framework structure
and contents description for solving applied problems
using deep belief networks. Original network architecture,
focused on parallel data processing, set of algorithms
implementing training processes based on the annealing
method and solving problems are proposed.

The effectiveness of the described framework is demon-
strated by the example of solving the problem of compress-
ing color images.

Index Terms—framework, annealing method, deep belief
network, parallel computations, training, dataset

I. INTRODUCTION

Currently, a wide range of applied problems is being
solved using neural network technologies implemented
in the form of frameworks. A framework is a software
package that implements a specific architecture of a
neural network to solve a specific range of tasks.

The most difficult stage of neural network data pro-
cessing is the network training process [1] [2]. The
existing today frameworks use mainly gradient training
methods [3]. With visible popularity, gradient methods
have certain disadvantages. Therefore, the problem of
training is still relevant [4].

The paper offers a description of the original frame-
work implementing the architecture of deep belief net-
works, for the training of which the annealing method
is used. This method is lack of the main disadvantages
of gradient methods, but it works much slower [5]. An
approach to solving this problem is proposed, and the
efficiency of the proposed framework is demonstrated
by example of solving the problem of compressing color
images.

II. PROBLEM ANALYSIS

Deep belief networks are used to solve a number of
applied problems such as: medical diagnostics, pattern
recognition, image processing, selection of semantically
significant features, etc. [6].

In order to describe the architecture of a deep belief
network, it is necessary first to describe the architecture
of the restricted Boltzmann machine. It is known that
any deep belief network always contains layers of this
type of machine.

2" Vadim V. Matskevich
Belarusian State University
Minsk, Belarus
Matskevich1997 @gmail.com

At the heart of the machine is the concept of a
stochastic neuron.

Formally, a restricted Boltzmann machine can be
represented as a fully connected bipartite graph G =
(X, 0),

X=X1UX2,X10X2:® (1)
U= {U = (I1,$2)|VCC1 S Xl,VJTQ S X2}7
where X — vertex set — stochastic neurons, U — edges
set — synaptic connections, while vertices of subset X;
-— set the neurons of the input layer, Xs — output layer
neurons.

The number of neurons in the input layer is determined
by the size of the input image, and the number of
neurons in the output layer is determined based on the
requirements for data compress ratio.

The output signals of layers of a restricted Boltzmann
machine implement some laws of the probability distri-
bution. Different types of machines are built depending
on the laws of distribution used. In this paper, we
will talk about machines types of Gauss-Bernoulli and
Bernoulli-Bernoulli, because they are the most common.

For restricted Boltzmann machine of Gauss-Bernoulli
type to each vertex of the input layer we assign a set of
parameters VB = {b} — vertex offsets and 0 = {0} —
vertex variances, and to the vertices of the output layer —
set of parameters HB = {g} — vertex offsets. The sizes
of the sets are equal respectively

[VB| = |o| = [Xa],[HB| = | X 2

Each edge connecting a pair of vertices of the input
and output layers will be assigned a set of parameters
W = {w} - the weights of the edges.

The size of the set is equal to the following value

W = |X1]| X2 3)

Thus, the described family of neural networks can be
defined by four types of parameters:

RBM = (W,VB, o, HB) (4)

Note. A restricted Boltzmann machine of Bernoulli-
Bernoulli type does not have set of parameters o.

257

A deep belief network contains several layers consist-
ing of restricted Boltzmann machines and, in addition,
for generating the output signal may contain a multilayer
perceptron (depending on the problem being solved).

A deep belief network in layers consisting of restricted
Boltzmann machines solves the problem of data com-
pression, which can be formally described as follows.

Let X be the space of input images of some fixed
dimension, Y — the space of compressed images of much
smaller dimension than the space X. Le:

dimX = fiz 5)
dimY < dimX

Then the task of data compression is to build com-
pression functions f and recovery g, such that:

f:X=>Yg:Y =X
d: XxX =R (6)
d(z,g(f(x))) = min,Vx € X,

where d is a function that evaluates the differences
between two given vectors.

Note. In practice, data compression is carried out for
a specific subject area. This, in turn, imposes certain
restrictions on the input data and, therefore, reduces the
dimension of the space X.

As noted, the most time-consuming step in the use
of neural networks is the training process. Since a
deep belief network always contains layers of restricted
Boltzmann machines, the effectiveness of training the
entire network as a whole depends on the effectiveness
of solving the problem. Network training can be written
as an optimization problem for each of the layers.

Let a training dataset x and a functional for evalu-
ating the quality of data compression d (6) be given.
It is needed to find the values of the parameters
(w*,b*, g*,0*), giving a minimum of functional F, i.e.

F(x,d,w*,b*,g*,0") = min F(z,d,w,b,g,0) (7)
w,b,g,0

Note. A restricted Boltzmann machine of Bernoulli-
Bernoulli type does not contain the parameter o and the
quality functional F, therefore, does not depend on o.

To solve optimization problems, you can use either the
gradient descent method or random search.

The gradient descent method has fast convergence, but
at the same time has several disadvantages:

1) converges to local minimum points [5], which
significantly reduces the quality of the solution;

2) requires differentiability of the objective function,
which significantly reduces the class of problems
to be solved.

The random search method is not widespread [7],
however, it has some advantages:

1) does not require objective function differentiability,
which significantly expands the class of applied
problems;

2) under certain conditions [8] and from any initial
approximation [9] it has convergence to the global
minimum.

Given the above, we obtain the following training task.

Let a training dataset of N input images of dimension
dimX be given and requirements for data compression
be fixed, i.e. dimY = fiz.

It is necessary to develop a deep belief network archi-
tecture and a training algorithm (based on the annealing
method) so that the following conditions are met:

1) training time should be acceptable (no more than
a day);

2) the quality of training should be as high as pos-
sible, while the algorithm should require as little
data as possible for training.

III. FRAMEWORK DESCRIPTION

To solve this problem, software was developed in the
form of a framework that includes all the necessary
algorithms that implement the functioning of deep belief
networks.

The framework proposed in the work consists of five
main modules: trainDeepNN, compressImages, decom-
pressImages, loadFromFileDeepNN, buildDeepNN.

The compresslmages module compresses color im-
ages. The decompressImages module - restoring original
images from their compressed representation. The load-
FromFileDeepNN module - loading the network from the
hard drive.

The buildDeepNN module builds a deep belief net-
work with the following architecture.

Since the input data are usually images, the first layer
of a deep belief network is formed as an ensemble of M;
restricted Boltzmann machines of Gauss-Bernoulli type.
This made it possible to "cover" the entire numerical
range of input data. All machines forming one layer
have the same architecture within the layer, so dimX
must be a multiple of M;. All subsequent ones are rep-
resented by ensembles of restricted Boltzmann machines
of Bernoulli-Bernoulli type. Therefore, for each network
layer, the following restriction must be satisfied. The
product of the number of machines in the layer by the
size of the input layer of each should be equal to the
product of the number of machines in the previous layer
and the size of the hidden layer of each. The output layer
of the network is represented by an ensemble of M,
restricted Boltzmann machines of Bernoulli-Bernoulli
type. To complete the data compression requirement, the
total number of neurons in the hidden layers of machines
must be strictly equal to dimY. The number of adjustable
parameters in each of the machines must be strictly less

258

than N. This is necessary to ensure the generalizing
ability of the network.

Let’s show architecture with an example with four
layers (see Fig. 1).

1layer 2layer 3layer 4 layer

O gy REM7
RBM 104 O

RBM 13

’ 0
Or, RBM 8 .‘{-

RBM3OS Qoo S 1 o0
CY A W0

) {
8 Clo. v

O A
> § §
RBM 4 lﬁb:‘t” e
rmo RBM12 /4

[},
WO~ e
RBMSOXY S O
."" "ﬁﬁt l”
»

9,
0 *
N [/
RBM 6 uib'ﬁ
30

Figure 1. Original deep belief network architecture.

The first layer consists of an ensemble of six restricted
Boltzmann machines. The input layer of each machine
consists of three neurons, the hidden - of two. The
second layer of the network consists of an ensemble
of three machines. The size of machine input layer is
four neurons, the hidden one is three. The third layer of
the network consists of an ensemble of three restricted
Boltzmann machines, each of which has three neurons
in the input layer and two in the hidden one. The last
layer of the deep belief network consists of an ensemble
of two machines, each of which has three neurons in the
input layer and two in the hidden one.

The proposed architecture has several advantages:

1) decomposition of network layers ensures complete
independence of the trained machines-components

within the network layer, which allows to paral-
lelize the training process;

2) the architecture can significantly reduce the num-
ber of configurable network parameters, which
reduces the training dataset size and significantly
reduces the computational complexity of the train-
ing process;

3) the architecture fully meets the constraints of the
problem for an effective solution using heteroge-
neous computing devices [10].

The trainDeepNN module implements the main func-
tion of the framework. He provides training of received
deep belief network. The internal composition of this
block is presented in the form of the following scheme
(see Fig. 2). At the beginning of the module execution,
OpenCL is configured on computing devices. Then, a
deep belief network training cycle by layers begins.
When moving to the next layer, data is preliminarily
converted to the architecture of the current layer. After
this, cyclic training of the restricted Boltzmann machines
that form the current layer is started. The cycle includes
initialization of the initial state of the machines, data
transfer to computing devices and a training cycle using
the original annealing method algorithm.

The following algorithm is proposed that implements
the ideology of this method.

At the preliminary stage, initialization (setting the
initial values) of the parameters (W, VB, HB, o), initial
temperature Tj, is performed.

The main stage of the training algorithm implements
a procedure for sequentially updating the values of the
specified parameters using a certain quality functional.

Describe the process to update settings in more detail.
For simplicity, consider it on the example of the set of
para-meters W. For other sets, this procedure is identical.

To the set of parameters W, we associate a segment
L, of length 1. After that, each element of the set W is
sequentially placed in the center of the given segment. To
determine the direction of change of parameter values,
we generate a random variable from O to 1. If it is
more than 0.5, then the value of the parameter increases,
otherwise it decreases.

New parameter values are defined as follows. A ran-
dom permutation is generated, the number of elements
of which is equal to the number of elements of the set
W. We order the elements of the set W in accordance
with the permutation and change the values of the first
W, elements of the set. The new value of the parameter
is determined as a result of the implementation of a
uniformly distributed random variable on the segment,
the ends of which are the current value of the parameter,
and the end of the segment towards which the change is
made.

Similarly, actions are sequentially performed for the
sets VB, HB, o.

259

For newly obtained parameter values, the quality func-
tional is calculated.

As the latter, it is proposed to use the following
function:

1
F(W,VB,HB,0) = +— Z lzij — Yy,
i=1,N j=1
®)
where y;; — reconstituted input signal of restricted Boltz-

mann machine, f~! - inverse function of the preliminary
transformation of input data.

Then a decision is made to move to a new state with
probability:

= min{1,exp(~(F(y) - F(2))/T})}, ()

where x — current state, y — state selected for transition,
F — minimized objective function, 7; - temperature of
i-th iteration.

— in case of change of state cooling takes place by
the rule:

P(y|x)

Tip1 =To/In(k + 1), (10

where k is the number of completed transitions to a
new state.

— otherwise the temperature does not change.

After cooling, the received solution is checked for
optimality:

— the solution is optimal if the time allocated for
training has expired.

If the received solution is optimal then:

— algorithm stop,

— otherwise move to the next iteration.

We will check the efficiency of using the neural
network of the proposed architecture using the example
of the problem of compressing color images.

IV. EXPERIMENTS AND RESULTS

The «STL-10» data from the Stanford University
repository was used as baseline [11]. The dataset contains
one hundred thousand unmarked color images measuring
96x96 pixels. Each image is described by 27648 integer
numbers (in the range from 0 to 255) specifying the
content of red, green and blue colors [12]. Based on
the characteristics obtained (the sample is given ap-
proximately 2, 8 * 10° numbers, contains descriptions of
arbitrary, unmarked objects), we can conclude that the
process of compressing images of a given sample with
low losses is a rather difficult problem.

For data processing, a standard computer with an 4-
core processor and a video card was used: video card:
nvidia 1060 3gb; processor: intel i7 4770k 3.5 GHz;
RAM: 2x8 Gb 1600 MHz; hard disk: samsung 850 pro
256 Gb; operating system: Lubuntu 16.04.

The compiler gcc was used as software (libraries
OpenMP and CUDA version 9.1 [13]) with options:

«gcc superOpenCLFramework.cpp -Istdc++ -
D_FORCE_INLINES -O2 -1 OpenCL -lgomp -lm
-fopenmp». Measurement of operations time was

performed using function «gettimeofday».

The following deep belief network architecture was
used in the experiments.

The first layer consisted of a combination of 432
restricted Boltzmann machines of Gauss-Bernoulli type.
The number of neurons in the input layer and hidden was
64 and 16, respectively, for all machines in the layer. The
second layer consisted of a combination of 108 restricted
Boltzmann machines of Bernoulli-Bernoulli type. The
number of neurons in the input layer and hidden was 64
and 16, respectively, for all machines in the layer. The
third layer consisted of a combination of 27 restricted
Boltzmann machines of Bernoulli-Bernoulli type. The
number of neurons in the input layer and hidden was
64 and 16, respectively, for all machines in the layer.

Images compression ratio was tuned by disabling the
last layers of the deep belief network. So 3 layers of the
net-work provided 512-fold compression, 2 layers — 128-
fold, and the first layer of the network — 32-fold. For the
training of the first layer of the network, 2000 images
were used, for the second and third — 4000.

In experiments, we will use the number of bits to
encode one pixel of the image as a compression ratio.
For encoding without compression of one pixel of a color
image, 24 bits are required. Reducing the number of bits
for encoding a pixel leads to image compression, for
example, with 24-fold compression, the number of bits
per image pixel will be equal to one.

There are many different functionals for evaluating the
quality of image compression [14], however, many of
them are not widely used due to the fact that for their
calculation it is necessary to fix the parameter values in
the functional itself for the correct comparison of the
results or require a large amount of calculations.

As a quality functional, to estimate losses during
image compression, we will use the most common PSNR
(peak signal-to-noise ratio) quality functional that does
not require fixing parameters and a large amount of
computations. This quality function calculates the ratio
of the maximum possible signal to the mean square error
for color raster images as follows.

3N x 2552

[yz)

where X, Y — compared images, N — the number of pixels
in the image X.

The higher the value of the functional, the less com-
pression loss and higher quality. For lossless compres-
sion, this quality function is equal to plus infinity. For
a high compression ratio (approximately 0.05 bits per

PSNR(X,Y) = 10log,, 5, (1)

260

trainDeepNN
Setting OpenCL parameters

e S election of deep belief network layer for training

\)

Preliminary input Selection of machines
data transformation and data for training

Machines initialization

U

MMachines distribution
among CpenCL devices.
Sending data to devices.

Generation of new
states of tramed
machines

Optimality
criterion check

{

Cooling

Sending machines to
OpenCL devices

&

Calculation of

Making Fira::ismﬂsﬁ objective function
on transitions to
values

new states

+ Saving a trained deep belief network

Figure 2. Function trainDeepNN.

pixel or less), values in the range of 8 and higher are
considered adequate. For medium compression (1 bit per
pixel), normal values are considered to be from 20 above.

Based on the results of the experiments, the following
results were obtained (see Table 1):

Table I
DEEP BELIEF NETWORK TRAINING
Framework Compress Ratio (bit/pixel)
Efficiency 0,75 | 0,1875 | 0,046875
quality function (PSNR) 19 16,9 14,72
training time (h) 6 10 11

The results show the high efficiency of the deep belief
neural network architecture and the training algorithm
based on the annealing method. To configure a separate
machine consisting of 1168 parameters in the first layer
of the net-work, only 2000 images were needed, while
for machines of subsequent layers consisting of 1104 pa-
rameters, only 4000 images were needed, which indicates
a very high efficiency of the annealing method in training
neural networks.

The time spent on training the network shows that,

261

with the proper selection of the training algorithm param-
eters, the annealing method can have a high convergence
rate.

The obtained results confirm the assumption that the
annealing method can be used to train deep belief
networks [15]. Considering that the STL-10 dataset is
rather complicated, so in comparison with other results
[16] [17], it can be argued that the developed original
annealing method algorithm is quite efficient.

V. CONCLUSION

The paper provides a description of the framework for
solving applied problems using a deep belief network.
An original network architecture and a set of algorithms
implementing training processes and problem solving are
proposed.

The effectiveness of the framework functioning is
demonstrated on the example of the problem of com-
pression of colored images. The problem was solved on
a computer with a multi-core processor and video card.

It is shown that the developed deep belief networks
training algorithm lacks many of the disadvantages of
gradient methods. Based on the obtained experimental
results, we can conclude that the developed framework
with appropriate revision (for a wider class of applied
problems) has a certain potential.

The proposed framework technology focused on deep
belief networks is easily integrated into the methodology
of open semantic networks and can be used for further
development of this technological area.

REFERENCES

[1] V.V. Krasnoproshin, V.V. Matskevich Statistical approach to im-
age compression based on a restricted Boltzmann machine //
Proceedings of the 12-th International Conference “Computer
Data Analysis and Modeling”- CDAM 2019, Minsk, 2019, -p.p.
207-213.

[2] Vadim Matskevich, Victor Krasnoproshin Annealing method in
training restricted Boltzmann machine // Proceedings of the 14-
th International Conference - PRIP’2019, Minsk, 2019, -p.p. 264-
268.

[3] Aicher C., Foti N.J., Fox E.B Adaptively truncating backpropa-
gation through time to control gradient bias [electronic resource].
— link: arxiv.org/abs/1905.07473 — Access date: 04.01.2020.

[4] Xavier Glorot, Yoshua Bengio Understanding the difficulty of
training deep feedforward neural networks // Proceedings of the
Thirteenth International Conference on Artificial Intelligence and
Statistics, PMLR Vol.9, 2010, -p.p 249-256.

[5] Treadgold N.K., Gedeon T.D. Simulated annealing and weight
decay in adaptive learning: the SARPROP algorithm // IEEE
Transactions on Neural Networks vol. 9, Issue: 4 , Jul 1998.

[6] V.A. Golovko, A.A. Kroshenko Using deep belief neural networks
to highlight semantically significant attributes // Proceedings of
the 5-th International Conference - OSTIS 2015, Minsk, 2019,
-p.p. 481-486.

[7] Locatelli M. Convergence properties of simulated annealing for
continuous global optimization // Jornal of Applied Probability
Vol. 33, Issue 4 December 1996, pp. 1127-1140.

[8] Hajek B. Cooling schedules for optimal annealing // mathematics
of operations research vol.13, No 2, May 1988.

[9] Sanguthevar Rajasekaran On the Convergence Time
of Simulated Annealing [electronic resource]. — link:
repository.upenn.edu/cis_reports/356/ — Access date: 04.01.2020

[10] V.V. Krasnoproshin, V.V. Matskevich Effective Data Processing
on Heterogeneous Computing Devices // Bulletin of Brest state
technical university. Series - physics, math, computer science.
2018. Vol. 5 (113), -p.p 15-18.

[11] STL-10 dataset [electronic resource].
- link: academictorrents.com/ de-
tails/a799a2845ac29a66c07cf74e2a2838b6c5698aba — Access
date: 25.02.2018.

[12] STL-10 dataset description [electronic resource]. — link: stan-
ford.edu/ acoates//stl10/ — Access date: 24.02.2018.

[13] CUDA toolkit [electronic resource]: - link:
developer.nvidia.com/cuda-downloads — Access date: 23.02.2018.

[14] Dogancan Temel. Ghassan AlRegib Perceptual Image Quality
Assessment through Spectral Analysis of Error Representations
// Signal Processing: Image Communication, Vol. 70, 2019, -p.p
37-46, ISSN 0923-5965.

[15] L.M. Rasdi Rere, Mohamad Ivan Fanany, Aniati Murni Ary-
murthy Simulated Annealing Algorithm for Deep Learning //
Procedia Computer Science Vol. 72, 2015 -p.p 137-144.

[16] Toderici G., Vincent D., Johnston N., Sung Jin Hwang, Minnen
D., Shor J., Covell M. Full Resolution Image Compression
with Recurrent Neural Networks [electronic resource]: — link:
arxiv.org/abs/1608.05148 — Access date: 04.01.2020.

[17] Zhou X., Xu L., Liu S., Lin Y., Zhang L., Zhuo C. An Efficient
Compressive Convolutional Network for Unified Object Detection
and Image Compression // Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 33, 2019. -p.p 5949-5956.

IIporpamMMHasi TEXHOJIOTHS IJIyOOKOr0
00yUeHHsI JOBEPUTEIbHBIX HEHPOHHBIX ceTel

Kpacnonpomun B.B., Maukesuy B.B.

B nmoxyage mpennaraeTcsl OmECaHHe CTPYKTYPHl M COCTaBa
¢peiiMBOpKa 1151 pellleHU s IPUKJIAIHBIX 33124 C UCTIOJIb30BaHU-
€M ITyOOKMX JOBEpHUTEJbHBIX ceTeil. IIpeasoxkeHsl OpUrrHab-
Hasi apXUTEKTypa CEeTH, OPUEHTHPOBAHHAS Ha TapaJUIeNIbHYI0 00-
paboTKy HAaHHBIX, HAOOP AITOPUTMOB PEATU3YIOIINX MPOIECCHI
00yueHus Ha OCHOBE METO/la OTXKHIa U peleHus 3aaa4. dddexk-
THBHOCTh PabOTHI ONMMCAHHOTO (PpeiMBOPKa IEMOHCTPHUPYETCS
Ha IpEMepe pelleHusI 3a/Iaul CKATHsI [IBETHBIX N300paXeHHIA.

KioueBble cioBa: PpeiiMBOpK, MeTOH OTXHra, IIyOoKas
JOBEepUTENIbHAsI CEeTh, MapauleJIbHbIC BBIUUCICHUS, OO0yUeHHE,

BBIOOpKA.

Received 12.02.2020

262

