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Abstract. In the article conducted the review of solution to the deconvolution problem is to reverse a two-
dimensional convolution. The term "deconvolution" covers the most important and widely used image processing
methods. The need for such an operation arises in all areas of science related to measurements. There are a large number
of papers on deconvolution methods. The deconvolution problem can be solved in several ways. The choice of the most
suitable method for solving this problem depends on a number of factors, including the shape and extent of the point
propagation function (FRT), the nature of the original image, and the degree of truncation by the frame window of the
recording device.
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Introduction. Whatever method is used, it is almost always necessary to pre-process the
specified distorted image to transform it into a form that is convenient for performing the
deconvolution procedure. Preprocessing can be divided into five categories: smoothing, partitioning,
Apodization (weighing the signal segment to be processed with a weight function), boundary
expansion, and super-resolution. Image smoothing here refers to noise reduction. Partitioning
involves splitting an image with a spatially dependent FRT into fragments, in each of which the FRT
can be approximated as spatially invariant. Apodization is a method to reduce the impact of a frame
window (recording device) that truncates an image. However, this method may be less effective than
the border extension method, which we have successfully applied in a number of cases. There are two
modifications of the method of expansion of borders is a simple extension of the with overlapping.
The second method is generally preferred because it takes advantage of the consistency condition of
periodic convolutions. This is another example of how the efficiency of the numerical method
increases when the features of the problem under study are more fully taken into account in terms of
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mathematical physics. Over-resolution is considered a pre-processing procedure because it ultimately
reduces noise.

There is also multiplicative deconvolution, which is the most common method for restoring an
image that is represented as a consistent convolution. A distorted image that is not one should be
converted to a consistent convolution view.

The method of subtractive deconvolution is particularly useful when the defects present in the
recorded image are not associated with loss of resolution, but with distortion of small details, for
example, when the FRT has the same narrow main lobe as the resolved part, but has a wide tail of
significant amplitude or is characterized by high side lobes. The subtractive deconvolution method
can be easily modified to include space-dependent distortions, although the computational
implementation of these methods then becomes very complex.

There are different approaches to the deconvolution problem. These approaches include non-
recursive and recursive filtering methods in the image plane, direct matrix methods, and maximum
entropy and maximum likelihood methods.

The coordinated deconvolution method, which originated from studies of complex zeros in the
frequency plane, is basically a one-dimensional method that can be as widely applied as the
multiplicative deconvolution method.

Materials and methods. One of the most important practical methods of deconvolution is the
method of blind deconvolution. Note that all methods of processing speckle images can be considered
as special cases of blind deconvolution.

In addition to the well-known traditional applications of deconvolution, there are also various
exotic applications of deconvolution. One of the most remarkable applications is the restoration of
recordings of famous singers voices on old gramophone records by blind deconvolution.

The convolution integral is represented by the expression

b(x) = f(x) * h(x) 1)

where h(x)is the function that sets the distortion; f(x) is the function that needs to be restored.
According to the Fourier convolution theorem, the image of a quantity (1) is equal to

B(u) = F(u)H(u) )

where F (u) is the function associated with the function f(x) by a two - dimensional Fourier transform;
H(w) is the Fourier image of the optical transfer function.

The idealized problem of finite deconvolution is as follows: the functions b(x) and h(x) are
given, and the function f(x) must be restored, provided that all three quantities have a finite
extension.

It follows from the relation (2) that this problem can be solved as follows

b(x) = f(x) * h(x) 3)

The division operation inside curly brackets in expression (3) is called simple inverse filtering.
The term "filtering" is used here by analogy with the classical theory of circuits and the modern theory
of signal processing. A classic filter is a device that changes the spectrum of time frequencies of a
signal. The spectrum B (u) is a function of the spatial frequency.

The optical transfer function H (u) changes the spatial frequency spectrum B(u) as a result of
applying the above division operation.

Since processed images are usually stored in computer memory as quantized values, image
processing techniques typically use digital rather than classical analog filters. A digital filter is defined
by a discrete array, generally speaking, of complex numbers, which changes the spectrum of spatial
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frequencies during some processing operation. Therefore, both functions, h(x) in formula (1) and
H(w) in formula (2), can be considered as filters (and in most applications they are implemented
digitally). The generally accepted classification of digital filters originated in the theory of signal
processing as functions of time, and this classification can be used in the theory of processing one-
dimensional images, i.e. signals as functions of a (single) spatial variable. We will transfer the
corresponding terminology to the two-dimensional case. The concept of "reference™ in the theory of
signal processing passes into the concept of “image element” in the theory of image processing. Both
samples and image elements must be quantized in amplitude before they are digitally processed. The
image to which the filtering operation is to be applied is called the specified image, and it is referred
to as consisting of the specified image elements. Elements of a filtered image are called output image
elements. In the case of a non-recursive digital filter, each output image element is a weighted sum
of the specified image elements. In the case of a recursive digital filter, each image output element is
a weighted sum of the specified image elements and the previously calculated image output elements.
All practically implemented digital filters, of course, are described by arrays of finite sizes (in the
one-dimensional case, the final filter is often called a short one). A digital filter is called a direct filter
if itis applied in the image plane, and a spectral filter if it is applied in the frequency plane. The causal
filter is one-way in the sense that its response always lags behind the input action (this is somewhat
artificial in the two-dimensional case, but of course is very important for one-dimensional filtering
operations that are the basis of signal processing as functions of time). Causal filters are almost always
implemented as direct filters. A multiplicative digital filter is a spectral filter in which each output
sample is obtained as the product of a given input signal element by one element of the filter array.

If all the essential aspects of the practical problems of deconvolution were reduced to the
formula (3), then the entire content of this publication could easily be contained in a small article.
However, there are many practical difficulties in the deconvolution problem. This is because the data
being processed is always distorted in practice.

Before setting the practical problem of deconvolution, we examine some properties of
convolution consistency.

In the one-dimensional case, the ratio (2) is represented as

B(w) = FW)H(w) 4)

where the real variable u is replaced by the complex variable B(w). If the functions f(x)
and h(x) have a finite extension, so that the extension of the function b(x) is also finite, then their
spectra are characterized by sets of zeros in the complex w-plane. If a given set z,is represented as a
set of real zeros z,- and zeros that can be complex z,, then we can write

z = zp U Zy 5)

This means that the one-dimensional deconvolution problem is consistent only if all zeros of
the function H(w) are also zeros of the function B(w). Therefore, the values b(x) and h(x) cannot
be set independently; it must be known beforehand that they satisfy the relation (1). The same applies
to two-dimensional convolutions.

Results. Now let's go back to the periodically extended (overlapping) ideal distorted imb(x)
image and Its IMB(x) spectrum . The latter can be written as

Mp(x) = X°  F Hp, 6(Lyu— DE(Ly —m) (6)

where § () is the Delta function; Fi, m are the Fourier coefficients of the true image f(x), which are
also counts of the function F(u)which are considered in the counting theorem. These samples are
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taken at raster points (I/L, , m/L,) in the frequency plane. The values HI, m included in expression
(6) are samples of the optical transfer function H (u), at the same points in the raster:

1
Him = H(\7) (7

where | and m are arbitrary integers.

Now we can set an idealized problem of periodic deconvolution: given the functions imb (x),
and h(x), we need to find the function f(x), [knowing that f(x), and f(x), are functions of finite
extension, and imb(x) is a periodic function].

For a given function b (x), you can calculate the function B (u) and immediately find that

Hypim = B(i' g) (8)

Similarly, the counts of the optical transfer function HI, m are calculated . The expression (6)
shows that each value of F;, m is given by a division ;;“” operation, which can always be performed
pm

if the values of HI , m are different from zero. This simple approach is adequate in the case of
functions b(x) and f (x), which are selected independently, since the function imb(u) in accordance
with expression (6) actually exists only at the above points in the raster. But this approach is not
acceptable in an idealized problem in the case of finite convolution, since then B(u), is a continuous
function of the variable u.

It is therefore surprising that the only consistency condition for periodic convolutions is the
requirement that the values H, ,,, can be zero only for those values | and m for which H, ,,=0. This
condition is called the consistency condition for periodic convolutions. We emphasize that there is
no value. H; ,, cannot be exactly zero in the real measurement of the function h(u), or, equivalently,
the function H (u), so that periodic convolutions are always consistent in practice (they are, of course,
very noisy when a large number of values H, ,,, are "small" at values | and m that correspond to values
significantly different from zero B, ; ,, ).

The practical problem of deconvolution is set as follows: the functions b(x), and h(x) are
given , you need to find the function f(x), knowing that it is a truncated version of the function of
the recorded image r(x).

One of the "Golden rules” in image reconstruction is to avoid processing data that contains
any discontinuities, of which clipping and truncation are the most undesirable, since they almost
always produce false details (often called artifacts, especially in medical applications). Thus, as a
rule, it is desirable to pre-process the image in order to fully compensate for all existing gaps and
other removable defects.

Conclusion. Any type of preprocessing can, of course, contribute noise in addition to the
image distortion f(x) already present in the recorded image r(x). But if the gaps are not fixed, then
the corresponding artifacts usually prevail over any additional noise introduced by preprocessing.
The" aligned " shape of the image is denoted here by a(x).and will be called a pre-processed recorded
image. Although all three values must change as a result of preprocessing, there is rarely any way to
estimate how much, and therefore it usually makes no sense to talk about the difference between
images a(x) and r(x). Next, we will treat these two images as identical, at least in the frame
(i.e., in the area of the image plane) where the pre-processed version of the meaning image fits a(x).
Therefore, we assume that

a(x) = f(x) * h(x) + c(x) )
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This assumption does not affect the generality of reasoning, since noise c¢(x) includes the
effects of arbitrary additive distortion associated with preprocessing.

Now we will introduce the concept of "recoverable true image £ (x) This is an estimate of the
image f(x) that can be obtained from the image h(x) .

In any rational approach to solving a practical deconvolution problem, the pre-processed
image a(x) is first obtained from the specified image a(x). Then, a suitable deconvolution procedure
is selected to obtain £ (x) based on h(x) and a(x). Some of these procedures can be seen as the process
of obtaining 2(x) a modified point propagation function that is associated with a pre-processed
recorded image and a recoverable true image ratio

a(x) = f(x) * h(x) + c(x) (10)

It is convenient to denote the Fourier coefficients /L% of a function by, and to denote the

spectra F;,,, of functions a(x), c(x), and use f(x) h(x) the corresponding capital letters with or
without a" hat".

If there is a concern that the differences between f(x) and f(x) will greatly increase due to
the lack of consistency between the functions a(x) and h(x), taken explicitly finite, then you can
refer to the formula

o)

imy(x) = Z b(x —IL;y — mL,)

I, m—oo

for a periodic imb(x) image with b replaced by a . Then the imb,, spectrum of the convolution
is given by expression (6), but with the replacement of the values F;,,, and H;,, the values F;, m and
H;, m, respectively. Recall that periodic convolutions are not affected by inconsistency, which, as
already mentioned, can distort convolutions of quantities that have finite extensions.
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AHHoTaumsA. B crarbe npoBOaUTCS 0030p pEIICHMS 3aJa4d ICKOHBOJIIOIMHN, KOTOPOE 3aKJIF0YacTCs B
00paTHOM OOpAICHUH IBYMEPHO CBEpTKU. TepMUH "IEKOHBOJIOIH" 0XBAaThIBACT HAN0O0JICE BAYKHBIC U IIIMPOKO
UCIOJIb3yeMbIe METO/ibl 00paboTku u300paxenuit. HeoOX0MMOCTh B TaKO#l omepanuu BO3HHKAET BO BCEX
00acTAX HAYKH, CBSI3aHHBIX C M3MepeHUsAMH. CyIiecTByeT O0IBII0e KOJTHIECTBO PabOT, MOCBSIICHHBIX METOAaM
JeKOHBOJIONIMU. [Ipo0iieMy JICKOHBOJIOIMA MOYHO PCIIUTh HECKOJBKMMHU crocobamu. Breibop Hambosee
MOJIXOJSIIEr0 METOJa PEIICHHs 3TOH 3a1aud 3aBUCHT OT psijga (akTOpoB, B TOM dYHcie OT (OPMbI U
MPOTsHKEHHOCTH (hyHKIMU pacmpoctpaneHus Touku (FRT), xapakrepa MCXOTHOTO H300pakeHHS M CTEHCHU
YCEUCHHUS KaIPOBBIM OKHOM PETUCTPHUPYIOIICTO YCTPOUCTBA.

KaioueBble ci1oBa: MeETOJl TpeIBapUTEIbHONH OOpaOOTKH, MCKaKEHHOE H300paKeHue, Mpoleaypa
JICKOHBOJTIOLUH.
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