НЕЙРОСЕТЕВАЯ СИСТЕМА ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЯ О ВЫДАЧЕ КРЕДИТА

Сенькович Д.С.

Белорусский государственный университет информатики и радиоэлектроники г. Минск, Республика Беларусьы

Жвакина А.В. – канд. техн. наук, доцент

Обсуждаются различные подходы к анализу информации о клиентах банка с целью принятия решения о выдаче кредита. Исследованы различные способы моделирования данной задачи, оценена их точность и время получения результатов.

При выдаче кредите банком требуется некоторым образом оценить платежеспособность клиента. Один из способов - кредитный скоринг [1].

Кредитный скоринг является трудоемким и в некотором смысле недостаточно точным процессом, так как требует формирования правил подсчета скоринга человеком. Такие правила включают в себя не только такие очевидные как уровень дохода, но и более сложные демографические и социальные аспекты жизни клиента. Но, ввиду наличия человеческого фактора, многие показательные мелочи могут быть не замечены и не учтены. Например, порой банку выгодно выдать кредит зная, что он будет просрочен, в случае чего банк сможет получить прибыль с штрафов просрочки [2, 3].

Автоматическая система принятия решения о выдаче кредита могла бы анализировать гораздо большие объемы информации, вместе с тем находя более сложные зависимости и выделяя наиболее важные виды данных о клиенте, характеризующие его как потенциально успешного заемщика.

В работе рассматривались различные модели машинного обучения для построения такого решения на основе данных 1000 клиентов и решения банка: выдавать кредит или нет.

Исследовалась нейронная сеть patternnet, которая при проверке на тестовых данных показала точность 96,7%, общая точность – 92,4.

При экспериментах с сетью lvqnet (learning vector quantization neural network), получено более длительное время обучения (8 сек.) и значения точности хуже (91%), что демонстрирует нецелесообразность использования данной сети для решения поставленной задачи.

Исследовались и классические модели машинного обучения с различными архитектурами многослойных перцептронов. В таблице 1 ниже представлены исследованные модели с наилучшими параметрами и наилучшие результаты, соответствующие данным моделям:

Таблица 1 – Различные модели машшиного обучения с наилучшими параметрами

Модель	Параметры	Время	Время	F1 оценка	Точность
		обучения всех	обучения		
		исследованных	лучшей модели		
		моделей			
Логистическая	Алгоритм	40.94 секунд	0.0149 секунды	0.9595015576	90.5%
регрессия	оптимизации lbfgs,				
	L2 регуляризация,				
	C 0.23				
SVM	Ядро sigmoid, С	3.02 секунды	0.005 секунды	0.9565217391	91.1%
	0.17				
Случайный лес	265 базовых	32.95 секунды	0.34 секунды	0.9620253165	91.5%
	алгоритмов,				
	построение				
	деревьев до конца				
Нейронная	Оптимизатор	23611.46	4.925 секунды	0.9565217391	95.5%
сеть	adam, количество	секунд ≈ 6.5			
	слоев 1,	часов			
	количество				
	нейронов 61,				
	dropout rate				
	0.4625,				
	коэффициент				
	обучения 0.0741,				
	обучение в				
	течение 50 эпох				

В работе рассмотрены следующие модели машинного обучения: логистическая регрессия, метод опорных векторов (SVM), алгоритм случайного леса (random forest), нейронные сети. Наилучшие результаты удалось получить с использованием нейронных сетей.ы

Список использованных источников:

1. Что такое кредитный скоринг? [Электронный ресурс]. – Режим доступа: https://creditregister.by/Help/WhatlsCreditScoring. - Дата доступа: 16.02.2020.

2. Как банки принимают решение о выдаче кредита [Электронный ресурс]. – Режим доступа:

https://mycreditinfo.ru/kak_banki_prinimaut_reshenie_o_vydache_kredita. - Дата доступа: 16.02.2020

3. Как банки проверяют заемщиков [Электронный ресурс]. – Режим доступа: https://www.sravni.ru/enciklopediya/info/kak-

banki-proverjajut- zajomshhikov. - Дата доступа: 16.02.2020