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Abstract. Starting from the general Gel’fand-Yaglom approach, we develop the theory of a
new wave equation for a spin 1/2 fermion, which is characterized by three mass parameters. On
the base of a 20-component wave function, three auxiliary bispinors are introduced, in absence
of external fields these bispinors obey three separate Dirac-like equations with different masses.
In presence of external electromagnetic fields or gravitational non-Euclidean background with
a non-vanishing Ricci scalar curvature, the main equation is not split into separated three
equations, instead a quite definite mixing of three Dirac-like equations arises. It is shown that
for neutral Majorana particle, a generalized equation with three mass parameters exists as well.
Such a generalized Majorana equation is not split into three separated equations in the curved
space-time background, if the Ricci scalar of that space-time does not vanish. We have studied
in detail the Majorana case, assuming approximation when an external cosmological background
is taken into account by a constant Ricci parameter, R = const, and the Cartesian coordinates
are used. With the help of a special linear transformation, the system of three linked Majorana
equations transforms into three separate ones, with modified mass parameters, the last are
solvable in the usual way. The spectrum of arising mass parameters is studied analytically and
numerically.

1. Fermion with 3 mass parameter, theory in absence of external fields

Existence of different and more general wave equations than commonly used ones is well known
(7, 7,7, ?7]. In the context of existence of the similar neutrinos of different masses, we examine
a possibility within the theory of relativistic wave equations to describe a spin 1/2 particle with
three mass parameters. Such a generalized equation for fermion with 3 mass parameters is based
on the use of 20-component wave function (bispinor ¥, and vector bispinor ¥,). Omitting many
details of this theory in the frames of Gel’fand—Yaglom approach [?], we start with a system of
equations in spin-tensor form (first, consider the model in absence of external fields)

Clé(’mqju) + %[é(%q’u) —4(0, V)] + M (7, ¥,) =0, (1)
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00 — i 24 1L 5(5,0,) + (9,9,)] + MWy =0 (2)
0¥ — 1—=|—— 0=70,
N Y p wp
2fcs 29c;

TEN,) = D)) + 2 (030 = 1d%0) + ML = (b)) = 0. ()

Numerics ¢, o are real, and cs, ¢4 are complex; f, g € {£1}; we use notation o= YuOp- Physical
sense of the numerical parameters will be clarified later. The system can be transformed to a
the form of equations with respect to three bispinors v,V ,, Vo, 9,¥,:

1 g 2| A
———————— Jciea(er + 3/V6) + feoles| — —=csled] }3(’7 V)
ca(er + c3/V/6) { V6 e

‘ * 4 2 4 2
g, - e Talal T aalala g, g ) 4 v, =0,

C2 M6 cy(cr + c3/V/6)
. : 2
2 Cy4 \[ % o A Cg+g|04| .

— (V6 fcocr — glea|®)O(v, ¥ ,) + ————0V

\/662(61+C3/\/6)( f 2C3 g‘ 4’) (’.Y,u ,u) = 0

-4y feales + gerlea]® 4
- 2(0,,) + M¥, =0,
M6 c2(01+c3/\@) B

M 1 A
N \/6 .= 2 _ + \/6 bl i}
4 62(01_'_63/\/6){ feacs — gled ca(e1 +e3/ )} (% u)
VB s feales] + gerles]? 4
—igM ———0% — (9, W,) + M(8,,) = 0.
IR ca(c1 + c3/v/6) (0 ¥0) (0 )

In brief, it is presented in a matrix form as follows

| e YV A1 B Ry
K| Wy |=M| Wy |, K=|Ay By, Ry|. (4)
¥y 0¥y, A3 Bs R3

The numerical matrix K can be diagonalized, there arises a cubic equation for diagonal
elements \;:

A0 0 ar az as
V=80, SKS'=K'=|0 X 0/, S=|b by b3,
0 0 /\3 T T T3
AP = N (c1 + ca) + Aerez — fles® — gleal?) + fezles|? + gerles|* = 0, (5)

The rows of the matrix S satisfy to corresponding subsystems:
a1A1 + agAsy + azAz = Ma1, a1B1+ aeBs + a3Bs = Maz, aiRy + axRa + a3R3 = A\ias;
b1 Ay + baAg + b3As = Aaby, b1 By + baBy + b3Bs = Aoba, biR1 + baRy + b3 Rz = A\abs;
r1A1 +roAo + 1343 = A3ry ,r1B1 +12Bo +13Bs = A3y, 71 Ry + roRo + 13R3 = A3rs.
Their solutions have similar structure:
—igescy(cr + %))\1
Area(A1 — c2) + (M1 — c2)[feales|? + gerleal?] — Ai(er + %)Q|C4|27

ag = aq

o 4ay c3(A1 — c2)[feales|® + gei|eal?]
V6M Aica(A — c2) + (M — c2)[feales|? + ger|ea|?] — Ai(er + %)9|C4|27

az =



XXVI International Conference on Integrable Systems and Quantum symmetries IOP Publishing
Journal of Physics: Conference Series 1416 (2019) 012040  doi:10.1088/1742-6596/1416/1/012040

and results for b;, r; are similar: by, b, b3 == Ag, 11,772,173 => A3.

In this way we transform the system into three unlinked Dirac-like equations with different
masses: My = M /Ay, My = M /g, M3 = M /3. We are to examine possible values of the roots
A1, A2, Az of characteristic cubic equations (5). It is readily proved that real positive values are
possible if ¢; > 0, co >0, f =—1, g = —1. Using simplifying notations

2 2
2 2 2 2 Cla + CQb
C = Qa y C: = b N ]__‘ - 9 6
i s e ()
we can introduce simple parametrization for the roots:
M W M m
My =— = = — € (0, = 7
P70\  cosa’ H (c1+¢2) a € ’2)’ (7)
M
Mo = a (8)

DY sin?(ov/2) + v/sin*(a/2) =T/ cosa
Thus, in absence of external electromagnetic fields, the initial system is reducible to the form
of three separated Dirac-like equations for bispinors:
Oy = a1 (V) + a2¥o + a3(9,¥,), (04 M)®L =0, My =DM/\;
$y = by (’}/M\I’M) + baWq + bg(au\l’u), (8 + MQ)(I)Q =0, My,= M/)\Q ;
O3 = r1(7, V) + 120 +1r3(0,¥,), (0+ M3)®P3=0, Mz=DM/)A3. 9)
2. The presence of electromagnetic field

Now, let us take unto account external electromagnetic fields. To this end, we are to turn back
to the system (1)—(3) and modify the derivative operator, D, = 0, — ieA,(x):

~ 4iC4 1.
oDV — 7 [(DH\I/“) - 4D(7H\I/“)] + MYy =0, (10)
C3 | 2 463
(c1 + %)D(’m%) - %(Du‘lj#) + M (7,9,) =0, (11)
2fct 3 1, .
- \/63 [4D2 - Z(_ZSF/\,D) Txp ] (7. %0)
2igcy |3 1 . M .
\/64 ZD2 - 4(—zeFAp)aAp} Wo — - D(yu¥yu) + M (DyTy) =0, (12)

Equation in (12) contains a 2-nd order operator D? = D, D,. With the help of two first
equations, we may exclude such an operator from the third equation. Further, we can reduce
the system to a different (but equivalent) form

- - - - AflesP. - digescho -
A1D ® BiD o Do M O - Yo — — Yoy =
1D 1+ B1D @2+ R D 3+ 1+3 i LT3 2 =0,
AsD) &y + BoD By + RoD By + M By + 21155 § +%ME<I> =0
2 1 2 2 2 3 i LT 37 2 =0,
. . . B
AsD ¢ + B3D &5 + R3D &3+ M &3 + %fcz)) Yo, — Z% gcy2 Po =0, (13)

where 1 = v, V¥, &3 = ¥y, ®3=D,¥,, X = —ieFy, 0y, . The system (13) differs from
similar one (4) in free case: it contains additional mixing terms depending on the tensor F, of
the external electromagnetic field.
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From equations (13), for three new bispinors

P, = al(i)l + ag(i)g + a3<i>3, Py = bl‘i)l + bg(i)g + bgég, P3 =1 ‘i)l + 72 &32 + 73 ég,

(14)
we derive a system with a more symmetric structure
40263 % = . %=
()\1D + M)Py + —— Wi A (A1 —¢2) B(x) [fez 1 — igeyP2)] =0,
40203 * = . %=
(/\QD + M)(I)g + — 30 )\2()\2 — CQ) E(l‘) [ng b, — ch4<I>2] =0,
46263 % = . x=
()\3D + M)Ps + —— i A3(Az — c2) () [fez P1 —igeyPa] = 0. (15)
Expressing @j through ®;, we get
Dy (z) + M &y (x) + Y] B(2)®(z) =0,
D®y(z) + Mo®y(x) + Yo X(2)®(2) =0,
D®s3(z) + M3®3(x) + Yz S(z)®(z) = 0 (16)
In the system (16) the notations are used
®(z) = L1P1(z) + La®a(z) + L3Ps(z),
I — —Lley|* = Lles|* + 2 — ca(Aa + Az) + Aods
! LCQ 63(/\1 — )\2)()\1 — )\3) ’
I, — —L’C4’2 — L’63’2 + 022 — CQ(/\3 + )\1) + A3 A1
2 L02 03(/\2 — /\3)()\2 — )\1) ’
I —Lles|* = Lles|* + 22 — ca(A1 + A2) + A1 Ag
3 LCQ 63()\3 — )\1)()\3 - /\2) '
4cg . C3
Y, = —co( A — =1,2,3, L= —, 17
i 3M62( c2), i ) CH—\/é (17)
Equations (16) can be presented in a matrix form
D+M 0 0 ®, Yil, YiL, YiLs || &,
0 D + M, 0 Py | + E(.’L’) YoLi YoLo Yolg by | =0. (18)
0 0 D+ Ms || P3 YsL1 Y3Le YsLs || @3

Let it be |c4| = a, |c3| = b; taking in mind that according the relations (8) parameter (¢ + c2)

may be taken up by arbitrary M, we set ¢; = 1,co = 1. Then the the elements of the mixing
matrix read

—L(a® + %) +1— A2+ A3) + XX
YiL, — 3M()‘1_1) ( ) (A2 4+ A3) + A2As

LA — A2) (A1 — A3) ’
R
YiLs = 3?\4“1—1) L(a? MQJ_&;&KZ?;M Yo
YoLi= 210 s z?i)ltl/\;)((;\fj))\\j))Jr)\g/\g,
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VoL = 3iM()‘2 _ bl +L122>\)2+—1)\;)E:\\§ + 13 g h
o = ga =)
Y3l = 3iM()‘3 1) —L(a® + lzj\)l+ 1 —)((i\f +;\§)) + )\2)\37
YLs = SL(Ag gy Hes i);_ LDt ) tinly
N

3. Riemannian space-time geometry

Let us extend the model to a curved space-time. Instead of ict-metric, now we use the metric
tensor gos(x) and slightly other Dirac matrices, also we apply more complicated derivative
operations

O' —o!
ot 0

Y ; Do(7) = Vo + Do(z) +iedq(z), D =v%(2)Do(z), (19)

o_ |0 [ _
NP

where I',(z) is the conventional bispinor connection, and tetrad based local Dirac matrices
7 (x) = fy“e?‘a)(a;). The final system of equations for a fermion with three mass parameters in
Riemannian space-time has the form

i (z) [0 + Ta(z) +ieAq(x)] @1(x) — M1 P (z) + Y1 X(x)P(x) =0,

iv*(z) [0 + Da(z) +ieAq(x)] Po(x) — Ma®o(z) + Yo X(x)P(x) =0,

i7" (2) [0 + Ta(z) + teAn(x)] P3(x) — M3Ps(x) + Y3 X(z)P(x) =0 (20)
where X(z) = —ieFn30°°(z) + $R(z), R(z) is a Ricci scalar. It should be noticed that

for geometrical models with non-vanising Ricci scalar, R(x) # 0, even in absence of the
electromagnetic interaction, equations (20) link three bispinors in the unified system. And
what is more, because in any Majorana the following properties of Dirac matrices and bispinor

connection hold
[iv*(@)]" = iv*(z), Th(z)="Ta(2),

the above system (20) describes Majorana-type neutral fermions with three mass parameters as
well/ The system remains the same only with change: 0, + I'n(z) +ieAq(x) = 04 + Ta(2).

Therefore, this theory permits us to take into account the effects of cosmological geometry
background on such a complicated fermion. The most simple physically interpretable example
is as follows: we may employ an approximation when locally the use of Cartesian coordinates
is justified, and an external cosmological background is described by a non-vanishing constant
Ricci scalar.

4. Model example
For simplicity, let us follow a simple 1-dimensional case (t,z,y = 0,z = 0). So we start with the
system

(i7°0; + iy' 0y — M1)®y + dy (L1 @y + Lo®y + L3®3) =0,
(170 + iy 01 — My)®y + do(L1®1 + Lo®y 4 L3P3) =0,
(iV°0 + iy 01 — M3)®3 + d3(L1®1 + La®s + L3®3) = 0; (21)
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where d; = Y; %, i =1,2,3. The system (21) is transformed to the matrix form
d, M — My +di L4 di1Ls diLs d,
(i7°0; + iyt — M) | g | = — doLy M — My + doLo doLs Dy |,
P5 dsl dsLo M — M3+ dsLs Ps

or in brief A ® =T &, A = —(i7°9; +iy'01 — M). The 3-column ® is subject to a linear
transformation to diagonalize the mixing matrix 7"

- pr 00
d=80, STS'=Ty=| 0 pw 0 |. (22)
0 0 w3

After that we will have three separate Dirac-like equations with new mass parameters Mj:
(%0 +in'0r — My ) @1 =0, My =M+ p;
(i7°0; +iv'01 — Mo ) @2 =0, Mo=M + pg;
(i°0 +iy'0r — M3 ) @3 =0, Mz=M + p3, (23)

by physical reason we assume the real-valuedness of p;, and positiveness of M + p; . To find the
transformation S, we should solve the equation ST = TyS. It leads to three linear subsystems.
For diagonal elements in Ty we get a cubic algebraic equation. To get a more simple form of
this equation we are to make several steps. First, we apply the substitution M; = )\M , where M
is arbitrary. We may simplify the task without loss of generality by setting ¢; = 012 =1, then
the cubic equation for \; give simple roots

1 1 1
N =222+ (1+E)A—k=0, A3=1,A1,2:§:F§\/1—4/<;, k:(a2+b2)€(0,1). (24)

Correspondingly, the masses M; equal to

2M 1

My=M, Myay=—" ke(0,). 25
’ M s VI-dk .7 (25)

4

It is convenient to introduce dimensionless parameter r: R = 6r M? = d; = Mrb(\; — %) =

MD;, and the notation L = 14+ -%,0 < 2b < 1. Besides, the roots may be done dimensionless
as well u; = M A,.
In this way, we arrive at the following cubic equation for A;:

V6 1—4k V6 1—4k)
1+<1_2(\/6+b) o )7’ A+<1+2(\/€+b) 5% )r—(), (26)

where 0 < k < % , 0 < b < 2. Taking in mind relationship R = 6rM?2, we expect dimensionless
parameter r is small, because effect of geometry in the model under consideration should be
small. Besides, there exist two physically different possibilities: » > 0 at positive curvature, and
r < 0 at negative curvature. We have followed several case of weak and strong gravitation of
different curvature sings:

A3+2]{;1€7_1A2+

r=+10""r=+10""r = 4+107%,r = +10%,r = +1;
r=—10"%r=-10"r=-10"3,r=-10"2,r = —1. (27)

The cases r = £1072, +1 correspond to very strong curvature of space. Numerical study showed
that dependence of the roots A; upon parameter b € (0,2) is very small, by this reason below
we take the value b = 0.

Numerical study shows that at the values of curvature in the region 7 = £1072, -1 the model
becomes non-interpretable, because there appear complex-valued roots.
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Table 1.

The roots atb =0, r = —107°.

Aq Ao As

0.24
0.20
0.16
0.12
0.08
0.04

0.0000104 0.667  1.500
0.0000125 0.382 2.618
0.0000156 0.250  4.000
0.0000208 0.162 6.171
0.0000313 0.096, 10.404
0.0000626 0.043  22.956

Table 2.

The roots ath = 0, r = +107°.

AL Ay As

0.24
0.20
0.16
0.12
0.08
0.04

0.667 1.500 -0.00001
0.382 2.618 -0.00001
0.250  3.999 -0.00002
0.162 6.171 -0.00002
0.096 10.404, -0.00003
0.044 22.956 -0.00006

Table 3. The roots atb =0, » = —1072.

kA Ay As
0.24 0.011 0.637 1.519
0.20 0.013  0.363 2.624
0.16 0.017  0.231 4.002
0.12 0.025 0.137 6.172
0.08 10.403 0.485+0.256 i 0.485-0.256 i
0.04 22.955 0.22640.4701 0.226-0.470 i
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Table 4. The roots atb =0, r = +1072.

k Aq As Az
0.24 0.697 1480 -0.010
0.20 0.399 2.613 -0.012
0.16 0.267 3.998 -0.015
0.12 0.181 6.171  -0.019
0.08 0.120 10.405 -0.025
0.04 0.077 22.958 =-0.035

Table 5. The roots atb =0, r = +1.

k Al AZ A3

0.24 1.2654+1.131 -0.362 1.265-1.13 1
0.18 1.173 2.804 -0.422

0.12 0.695 6.128 -0.489

0.06 0.503, =14.727 -0.563

Table 6. The roots atb =0, r = —1.

k Al AQ A?)

0.24 2.339 -0.864+0.66 1  -0.86-0.66 i
0.18 =3.556 -0.2474+0.631 -0.24-0.63 i
0.12 6.213 0.60+40.58 i 0.60-0.58 i

0.06 14.468 0.99640.531 0.996-0.53 i
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