УДК 621.391

# ОДНОПОДИТЕРАЦИОННАЯСКЕЛЕТИЗАЦИЯ ИЗОБРАЖЕНИЙ

## Ц. МА, В.Ю. ЦВЕТКОВ, В.К. КОНОПЕЛЬКО

Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь

#### Поступила в редакцию 30 марта 2020

Аннотация. Для построения предельно тонких связанных скелетов бинарных изображений с низкой вычислительной сложностью предложены математическая модель и алгоритмОРСА (One-PassCombinationAlgorithm) одноподитерационной скелетизации на основе комбинации и упрощения моделей одноподитерационной ОРТА и двухподитерационной ZS скелетизации.

Ключевые слова: скелетизация изображений, алгоритм OPTA, алгоритм ZS, одноподитерационная скелетизация.

## Введение

Одним из способов распознавания объектов на изображении является структурный подход, основанный на построении скелета объектов. Существует довольно много подходов, позволяющих скелетизировать изображение. В качестве наиболее известные можно взять параллельные алгоритмы ОРТА и ZS.Для многих одноподитерационных алгоритмов характерно нарушение связности и формирование избыточных фрагментов скелета. Наиболее качественные скелеты формирует известный одноподитерационный алгоритм ОРТА, основанный на 18-ти бинарных масках, но он чувствителен к контурному шуму и имеет высокую вычислительную сложность. Благодаря относительной простоте широкую известность получил двухподитерационный алгоритм Zhang и Suen (ZS), основанный на 6-ти логических условиях, но он размывает диагональные линии толщиной 2 пикселя и удаляет области размером  $2 \times 2$  пикселя. Оба алгоритма не обеспечивают достижение минимальной толщины линий скелета [1-5]. Для устранения данных недостатков и развития алгоритма ZS предложены следующие его модификации: изменение порогового значения в первом логическом условии [6]; использование горизонтальных и вертикальных прямоугольных окон [9-10]. Использование расширенных окон из 11 пикселей [11-13]; расширение алгоритма на полутоновые изображения [14]; расширение условий удаления пикселей на второй подитерации для устранения чрезмерной эрозии [17]. Повышение качества скелетов в данных модификациях достигается за счет роста вычислительной сложности. Многие двухподитерационные алгоритмы, как и одноподитерационные, ориентированы на скелетизацию символов сканированных документов.

Целью работы является формирование связанных скелетов минимальной толщины для объектов произвольной формы на бинарных изображениях с низкой вычислительной сложностью.

## Постановка задачи

Длябинарного изображения  $I = \|i(y, x)\|_{(y=\overline{0,Y-1}, x=\overline{0,X-1})}$  размером  $Y \times X$ , пиксели которого имеют значения 1 или 0 в зависимости от принадлежности площадному объекту или фону соответственно, алгоритмы скелетизации формируют матрицу  $S = \|s(y, x)\|_{(y=\overline{0,Y-1}, x=\overline{0,X-1})}$  скелетизации, значения элементов которой 1 или 0 указывают на фрагменты скелета и фона соответственно.

В алгоритме ОРТА на каждой итерации окрестность единичного элемента  $S_{OPTA}(y,x)$ матрицы  $S_{OPTA}$  скелетизации проходит две проверки (перед первой итерацией значения пикселей бинарного изображения I переносятся в матрицу  $S_{OPTA}$  скелетизации). Если окрестность элемента  $S_{OPTA}(y,x)$  соответствует одной из масок: a) приведенных на рис. 1, a, то  $S_{OPTA}(y,x) \leftarrow 0$  (шаг 1); б) приведенных на рис. 1,b, то  $S_{OPTA}(y,x) \leftarrow 1$  (шаг 2). Затем полученная матрица  $S_{OPTA}$  скелетизации проходит еще одну проверку, в результате которой удаляются единичные элементы  $S_{OPTA}(y,x)$ , окрестность которых совпадает с одной из масок, приведенных на рис. 1, b(шаг 3). Обобщенная маска для алгоритма ОРТА приведена на рис. 1, c, где  $p(1) = S_{OPTA}(y,x)$ .



Рис. 1. Бинарные маски алгоритмов ОРТА и ZS *a* – на шаге 1ОРТА (*x* – безразличное состояние); *б* – на шаге 2ОРТА; *в* –на шаге 3ОРТА; *г* – общий по шагам 1-3ОРТА; *д* –для ZS

На рис. 2 в качестве примера приведены бинарное изображение*I* размером  $15 \times 15$  пикселей (рис. 2, *a*), содержащее несколько объектов, и бинарные изображения матриц скелетизации *S*, соответствующие этомуизображению и сформированные с помощью алгоритмов скелетизации: одноподитерационного OPTA[11](рис. 2, *b*) и двухподитерационного ZS[13] (рис. 2, *b*).



Рис. 2. Бинарное изображение и результаты его скелетизации: *a* – бинарное изображение*I*; *б* – скелеты ОРТА; *в* – скелеты ZS; *г* – скелеты ОРСА

Рис. 2показываетосновные недостатки алгоритмов ОРТА и ZS. В обоих алгоритмах не достигается минимальная толщина линий скелета (многие неузловые элементы имеют более двух соседей). Алгоритм ZS теряет некоторые диагональные линии и области 2×2. Скелеты, формируемые алгоритмом ОРТА, лишены этих недостатков, но подвержены контурному шуму (незначительные искривления контурной линии отражаются на форме скелета).

#### Алгоритм скелетизации

Для построения предельно тонких связанных скелетов (неузловые элементы скелета имеют не более двух соседей) бинарных изображений с низкой вычислительной сложностью предлагается математическая модель OPCA(One-PassCombinationAlgorithm) одноподитерационной скелетизации на основе комбинации и упрощения моделей одноподитерационной OPTA и двухподитерационной ZS скелетизации. Согласно предлагаемой модели на каждой итерации единичный элемент  $S_{OPCA}(y,x)$  матрицы  $S_{OPCA}$  скелетизации обнуляется (перед первой итерацией значения пикселей бинарного изображения*I* переносятся в матрицу  $S_{OPCA}$  скелетизации), если значения элементов выборки  $P = \|p(k)\|_{(k=2,11)}$ , формируемой из элементов окрестности  $S_{OPCA}(y,x)$ , как показано на рис. 1,  $c(p(1) = S_{OPCA}(y,x))$ .

$$2 \le \sum_{k=2}^{9} p(k) \le 6 \tag{1}$$

$$\sum_{k=2}^{9} \left| p(k) - p(\text{mod}_8(k-2+1)+2) \right| = 2$$
<sup>(2)</sup>

$$\neg ((p(4)=1) \land (p(8)=0) \land (p(10)=0) \lor (p(6)=1) \land (p(2)=0) \land (p(11)=0))$$
(3)

После выполнения всех итераций, когда не удаляется ни одного элемента скелета на основании условий (1-3)полученная матрица  $S_{OPCA}$  скелетизации проходит еще одну проверку, в результате которой удаляются единичные элементы  $S_{OPCA}(y, x)$ , удовлетворяющие условию

$$(p(k) = 0) \land (p(\text{mod}_8(k - 2 + 3) + 2) = 1) \land (p(\text{mod}_8(k - 2 + 5) + 2) = 1) \Pi p_{\text{H}} \ k = \{3, 5, 7, 9\}$$
(4)

Исходя из рассмотренной модели предлагается алгоритмОРСА скелетизации на основе комбинации и упрощения алгоритмов ОРТА и ZS. Сущность алгоритмаОРСАсостоит в формировании матрицы  $S_{OPCA}$  скелетизации путем переноса в нее значений пикселей обрабатываемого бинарного изображения; итеративной обработке матрицы  $S_{OPCA}$  скелетизации для удаления ее избыточных единичных элементов с использованием условий(1–3); прекращении итеративной обработки при отсутствии избыточных единичных элементов матрицы  $S_{OPCA}$  скелетизации, для которых выполняются условия(1–3); удалении избыточных единичных элементов матрицы  $S_{OPCA}$  скелетизации с использованием условия (9).

#### Оценка алгоритма скелетизации

Произведено сравнение предложенного алгоритма OPCAc известнымиалгоритмами одноподитерационной OPTA[19] и двухподитерационной ZS скелетизации (алгоритмы реализованы на языке программирования C++ и протестированы на компьютере с OC Windows 8 64-бит, CPUi7 2,6 GHz, RAM 8 GB). Тестовые изображения *I*(1) – *I*(3)показаны на рис. 3.Результаты скелетизациитестовых изображений с помощью алгоритмов OPTA, ZS и OPCAприведены на рис. 4.



Рис. 3. Тестовые бинарные изображения:I(1) - I(3)



Рис. 4. Результаты скелетизации тестовых изображений:  $S_{ZS}$  (1–3) – Результаты ZS;  $S_{OPTA}$  (1–3) – Результаты OPTA;  $S_{OPCA}$  (1–3) – Результаты OPCA

### Заключение

Предложены математическая модель и алгоритм OPCA одноподитерационной скелетизации на основе комбинации и упрощения моделей одноподитерационной OPTA и двухподитерационной ZS скелетизации. OPCA отличается от OPTA исключением масок, предназначенных для удаления избыточных элементов на горизонтальных и вертикальных прямых линиях скелета, использованием упрощенного условия для удаления пикселей в точках изломов линий скелета, исключением масок, предназначенных для удаления осключением масок, предназначенных для удаления избыточных концевых элементов скелета. OPCA отличается от ZS исключением всех условий удаления пикселей, кроме двух основных.

# SKELETONIZATION WITH SINGLE SUBITERATION

## JUN MA, V.Yu. TSVIATKOU, V.K. KONOPELKO

**Abstract.** To construct extremely thin coupled skeletons of binary images with low computational complexity, a mathematical model and OPCA (One-Pass Combination Algorithm) single-feed skeletonization based on a combination and simplification of single-feed OPTA and two-feed ZS skeletonization are proposed.

*Keywords:* skeletonization, algorithm OPTA, algorithm Zhang-Suen, single-iteration skeletonization.

### Списоклитературы

1. Dinneen G.P. // Western Joint Computer Conference. 1955. P. 94–100.

2. Kirsch R.A. // Eastern Computer Conference. 1957. P. 221-229.

- 3. Lam L., Lee S.W., Suen C.Y. // IEEE transactions on pattern analysis and machine intelligence. 1992. vol. 14, № 9. P. 869–885.
- 4. Holt C., Stewart A., Clint C., Perrott R. // Communication ACM. 1987. P. 156–160.
- 5. Manzanera A., [et. al.] // Discrete Geometry for Computer Imagery. 1999. P. 313-324.

6. Bernard T.M., Manzanera A. // Proceedings 10th International Conference on Image Analysis and Processing. 1999. P. 215–220.

- 7. Chen C.S., Tsai W.H. // Pattern Recognition Letters. 1990. vol. 11. P. 471-477.
- 8. Wu R.Y., Tsai W.H. // Pattern Recognition Letters, 1992. vol.13. P. 715–723.

9. Deng W., Lyengar S.S, Brener N.E. // International Journal of High Performance Computing Applications. 2000. P. 65–81.

- 10. Stefanelli R., Rosenfeld A. // Journal of the ACM. 1971. vol. 18. P. 255–264.
- 11. Chin R.T., [et. al.]// Computer Vision, Graphics, and Image Processing. 1987. vol. 40. P. 30-40.
- 12. Harous, S., Elnagar A. // University of Sharjah Journal of Pure & Applied Sciences. 2009. vol. 6, № 1. P. 81–101.
- 13. Zhang T.Y., Suen C.Y. // Comm. ACM. 1984. vol. 27, № 3. P. 236–239.
- 14. Lu H.E., Wang P.S.P. // Communications of the ACM. 1986. vol. 29, № 3. P. 239–242.
- 15. Abdulla W.H., Saleh A.O.M., Morad A.H. // Pattern Recognition Letters. 1988. vol. 7, № 1. P. 13–18.
- 16. Sossa J.H. // Pattern Recognition Letters. 1989. vol. 10. P. 77-80.
- 17. Guo Z., Hall R.W. // Communications of the ACM. 1989. vol. 32, № 3. P. 359–373.
- 18. Guo Z., Hall R.W. // CVGIP: Image Understanding. 1992. vol. 55, № 3. P. 317–328.
- 19. Zhang Y.Y., Wang P.P. // International Conference on Pattern Recognition, Vienna, Austria. 1996. vol. 4. P. 457–461.
- 20. Kundu M.K., Chaudhuri B.B., Majumder D.D. // Pattern Recognition Letters. 1991. vol. 12, № 8.P. 491-494.