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Abstract 

The model of low-energy quantum gravity by the author is based on 
the conjecture about the existence of the background of super-strong in- 
teracting gravitons, gravity is considered as the screening effect. The 
Newton constant G and the Hubble constant H are computable in the 
model. In this chapter, main effects of the model are discussed, some cos- 
mological consequences are confronted with observations. Galaxy num- 
ber counts/redshift and counts/magnitude relations are considered. It is 
shown that this model can fit observations with the theoretical luminosity 
distance without dark energy. The Hubble parameter of this model is a 
linear function of the redshift, that is consistent with existing observa- 
tions. Results of numerical modeling of the influence of the additional 
deceleration of bodies, and some possibilities to verify the model are de- 
scribed. 

PACS : 98.80.Es, 04.50.Kd, 04.60.Bc 

 
1 Introduction 

There exist very different approaches to unify general relativity with quantum 
mechanics or with the standard model of particle physics (SM), but there are 
almost not theoretical predictions which may be verified by experiments or ob- 
servations. Known predictions, if the ones are possible, concern mainly Planck- 
scale physics and geometry, for example, foamy space-time in loop quantum 
gravity. This poorness of theoretical predictions of existing models and the 
absence of manifestations of quantum gravity accepted by the scientific com- 
munity make the situation around quantum gravity very vague: theorists are 
not sure in the validity of used approaches, experimentalists and observers do 
not know what to search to help them. Taking into account logical difficulties 
of existing approaches, the main sought by H. Nicolai [1] about the situation is 
that we have no other choice but to try to create a future consistent theory out 
of purely theoretical basics. It seems that one of the possible ways is to choose 
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some symmetry group which may lead us further as it was by the creation of the 
SM. But the SM’s symmetries were established due to big experimental efforts. 
From another side, the SM’s continuous symmetries may result from underlying 
discrete symmetries if the fundamental fermions are the two-component com- 
posite particles [2, 3]. In any case, even the appearance of the consistent model 
of quantum gravity talking us about Planck-scale physics cannot help to under- 
stand why micro particles prefer not to move along geodesics by small energies 
which are very far from the Planck scale. Perhaps, we should search and in- 
troduce some more non-evident ideas to come nearer to the unknown quantum 
nature of gravity. 

In the model of low-energy quantum gravity [4, 5, 6], gravitation is considered 
as the screening effect in the sea of super-strong interacting gravitons. The 
Newton constant G and the Hubble constant H are computable in the model as 
functions of the background temperature. There is not a need of any expansion 
of the universe and dark energy in the model to fit corresponding cosmological 
observations. The two-parametric theoretical luminosity distance of the model 
is caused by forehead and non-forehead collisions of photons with gravitons. The 
additional deceleration of massive bodies has the same nature as the redshift of 
remote objects in the model: these effects are caused by collisions with gravitons, 
but we should take into account both forehead and backhead collisions with 
gravitons in a case of massive bodies [7]. Some consequences of the model are 
described in this chapter. 

 
2 Main features of the model 

I would like to describe here some important features of my model of low-energy 
quantum gravity [4, 5, 6]. It is supposed in it that the background of super- 
strong interacting gravitons exists with the same temperature T as CMB. In the 
sea of gravitons, a pressure force of single gravitons and a repulsive force due to 
scattered gravitons are approximately equal for any pair of usual bodies. But 
they are three order greater than the Newtonian force between bodies. It leads 
immediately to the very surprising conclusion: Einstein’s equivalence principle 
would be roughly violated for black holes, because this repulsive force is equal 
to zero for them. The ratio of gravitational to inertial masses of a black hole is 
equal to 1215.4. For a binary system of a black hole and a usual body, the third 
Newtonian law will be broken, too. 

If single gravitons of running flux associate in pairs which are destructed in 
collisions, then we have for the Newton constant G : 

4 
G ≡ 

3 
· 

D2c(kT )6
 

π3h̄3 · I2, (1) 

where I2 = 2.3184 10−6. It follows from this expression that by T = 2.7K the 

new constant D should have the value: D = 0.795 10−27m2/eV 2. The inverse- 
square law of classical gravity describes the main quantum effect of this model. 
The possibility to calculate G makes the model underlying for general relativity. 
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To have the condition of big distances: σ(E, < ϵ >) 4πr2, where σ(E, < ϵ >) 
is the cross-section of interaction of gravitons with an average energy < ϵ > 
with a particle having an energy E, r is a distance between massive particles, be 
fulfilled, it is necessary to accept an ”atomic structure” of matter, i.e. gravitons 
cannot interact with big bodies in the aggregate, they may interact only with 
”small particles” of matter - for example, with atoms. 

For photons, there are two small effects in the sea of super-strong interacting 
gravitons: average energy losses of a photon due to forehead collisions with 
gravitons and an additional relaxation of a photonic flux due to non-forehead 
collisions of photons with gravitons. The first effect leads to the geometrical 
distance/redshift relation: 

r(z) = ln(1 + z) · c/H0, (2) 

where H0 is the Hubble constant. The both effects lead to the luminosity 
distance/redshift relation: 

DL(z) = c/H0 · ln(1 + z) · (1 + z)(1+b)/2, (3) 

where the ”constant” b belongs to the range 0 - 2.137 (b = 2.137 for a very soft 
radiation, and b   0 for a very hard one). In the general case it should depend 
on a rest-frame spectrum and on the redshift. Because of this, the Hubble 
diagram should be a multivalued function of the redshift: for a given z, b may 
have different values for different kinds of sources. 

The average time delay of photons due to multiple interactions with gravitons 
of the background is computed in my paper [8]. The two variants of evaluation of 
the lifetime of a virtual photon are considered: 1) on a basis of the uncertainties 
relation (it is a common place in physics of particles) and 2) using a conjecture 
about constancy of the proper lifetime of a virtual photon. In the first case 
Lorentz violation is negligible: the ratio of the average time delay of photons 

to their propagation time is equal approximately to 10−28; in the second one 
(with a new free parameter of the model), the time-lag is proportional to the 

difference 
√

E01     
√

E02, where E01,  E02 are initial energies of photons, and 
more energetic photons should arrive later, also as in the first case. The effect 
of graviton pairing is taken into account. 

The Hubble constant may be computed in the model, too: 

1 
H0 = 

2π D · ϵ¯ · (σT 4) = (G 
45

 
σT 4I2 

4 )1/2, (4) 
c3I2 

where ϵ¯ is an average graviton energy, I4 = 24.866. We  have for its value: 
H0 = 2.14  10−18  s−1 = 66.875 km   s−1  Mpc−1. 

The additional deceleration w of massive bodies has the same nature as the 
redshift of remote objects in the model: these effects are caused by collisions 
with gravitons, but we should take into account both forehead and backhead 
collisions with gravitons in a case of massive bodies [7]. The deceleration w is 
equal to: 

w = −w0 · 4η2 · (1 − η2)0.5, (5) 
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Figure 1: A star orbit in a galaxy with M = 1010 · MⓈ by u = 5 · 105 m/s and 
r(0) = 1 kpc; t   30 Gyr, single loops interflow, the change of the distance to 

the center Δr/r(0) = −0.034. 

 
where w0     H0c = 6.419   10−10  m/s2, if we use the theoretical value of H0 in 
the model; η     V /c, V is a body’s velocity relative to the graviton background. 
For small velocities we have: 

 

w   −w0 · 4η2. (6) 

3 Modified dynamics in the graviton background 

Some results of numerical modeling of a motion of bodies in the central field by 
the influence of this additional deceleration are described in this section [10]. 

In the Newtonian approach, if u is a more massive body’s velocity relative to 
the background, M is its mass, and V = v + u is the velocity of the small body 
relative to the graviton background, we will have now the following equation of 
motion of the small body: 

r̈ = −G
M  

· 
r  

+  
4w0 (u · u − | v + u | · (v + u)), (7) 

 

where r is a radius-vector of the small body. 
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Figure 2: A star orbit in a galaxy with M = 1010 MⓈ by u = 5 105 m/s and 
r(0) = 100 kpc; t      300 Gyr, the first unclosed external loop corresponds to 
29.2 Gyr. 

 
To model the motion in the central field, I have slightly modified the program 

in C++ written for our work [9] to work in 3 dimensions using Eq. 7. 
Let us consider the initial conditions by which a material point trajectory in 

the classical case is circular, i.e. v(0) = (G M/r(0))0.5, and v(0) r(0), T is a 
period of motion in the classical case of a circular trajectory by the given initial 
distance to the center. To evaluate a stability of planetary orbits in the solar 
system in a presence of the anomalous deceleration w, we can use the following 
trick: to increase w by hand to see a very small change of the orbit’s radius, and 
to re-calculate a value of the resulting effect. In a case of the Earth-like circular 
orbit, i.e.  by M = MⓈ, r(0) = 1 AU, given u = 4 105 m/s and that three vectors 
r, v, u lie in one plane, we get by the replacement: w 104 w for one classical 

period T : Δr/r(0) = 1.08 10−8 yr−1 by Δt = 10−10 T. It means that by the 

anomalous deceleration w we should have now: Δr/r(0) = 1.08  10−12 yr−1. 

For the case when u is perpendicular to r, v we have: Δr/r(0) = 7.2  10−13 

yr−1. The Earth orbit will be stable enough to have not contradictions with the 
estimated age of it in the solar system. 

Results of modeling a star orbit in a galaxy in the similar way are shown 

in Figures 1 and 2 for M = 1010 · MⓈ, u = 5 · 105 m/s by r(0) = 1 kpc (Fig. 
1) and r(0) =  100 kpc (Fig.   2).   The ratio   w0       is equal to 2.2 and 0.00022 
respectively. By r(0) = 1 kpc the relative change of the distance to the center 



6  

· · · 
· · 

· 

—   

· · 

· · 

· / · 

 
 
 

 

 
 

Figure 3: The deviation z(t) (solid) of a star orbit in a galaxy (with M = 
1010 MⓈ by u = 5 105 m/s and r(0) = 10 kpc) from the classical plane (x, y) 

for the case of v(0) = 1.2 (G M/r(0))0.5; T = 0.781 Gyr, the graph of 10−4 y(t) 
(dotted) is shown for the comparison. 

 
is Δr/r(0) =     0.034 during the time interval of      30 Gyr. By r(0) = 1 kpc the 
first unclosed external loop in Fig. 2 corresponds to 29.2 Gyr. We see that at 
all scales closed orbits do not exist in the model: bodies inspiral to the center 
of attraction, but for the Earth-like orbits this effect is very small. 

When u is perpendicular to r, v, another effect takes place: the motion of 
the body in the central field is not planar. The deviation z(t) of a star orbit 
in a galaxy  (with  M  =  1010  MⓈ by  u  =  5  105  m/s  and  r(0)  =  10  kpc) 
from the classical plane (x, y) is shown in Figures 3 and 4. For the case of 
v(0) = (G M/r(0))0.5  (the classical orbit would be circular), deviations from 
the classical plane (x, y) occur in one side off this plane, with returns to it (Fig. 
4). In the case of the Earth-like circular orbit, the maximal deviation from the 
classical plane is lesser of 1 mm by u = 4 105 m/s. If v(0) = (G M/r(0))0.5, 
deviations from the classical plane (x, y) occur in both sides off this plane (Fig. 
3, v(0) = 1.2 (G M/r(0))0.5), and the ones may be interpreted as a slow 
revolution of a quasi-classical planar orbit around some axis in this plane. 

The described results show two peculiarities of modified dynamics in the 
model: an absence of closed orbits and a possibility of the non-planar motion 
of massive bodies in the central field due to the anomalous deceleration by 
the graviton background. These effects are negligible for the Earth-like orbits 
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Figure 4:  The same graphs as in Fig.  3, but for the case of v(0) = (G·M/r(0))0.5; 

T = 0.781 Gyr, 10−4 · y (dotted), z (solid). 

 
and, perhaps, too small to be observable during an acceptable time interval 
in galaxies. But the interaction of photons with the background leads to the 
observable effects which can be essential for our understanding of the universe. 

 
4 Cosmological consequences of the model 

Small additional effects of this model have essential cosmological consequences. 
In the model, redshifts of remote objects and the dimming of supernovae 1a may 
be interpreted without any expansion of the Universe and without dark energy. 
Some of these consequences are discussed and confronted with galaxy number 
counts, supernovae 1a, long GRBs, and QSOs observations in this section. It 
is shown that the two-parametric theoretical luminosity distance of the model 
fits observations with high confidence levels, if all data sets are corrected for no 
time dilation. These two parameters are computable in the model. 

 
4.1 Galaxy number counts 

In this subsection, I consider galaxy number counts/redshift and counts/magnitude 
relations on a basis of this model [11]. I assume here that a space is flat and 
the Universe is not expanding. 
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Figure 5: The graph of the function f2(z) (solid) of this model. The typical 
error bar and data point are taken from paper by Loh and Spillar [13]. 

 
4.1.1 The galaxy number counts-redshift relation 

Total galaxy number counts dN (r) for a volume element dV = dΩr2dr is equal 
to: dN (r) = ngdV = ngdΩr2dr, where ng is the galaxy number density (it is 
constant in the no-evolution scenario), dΩ is a solid angle element. Using the 
function r(z) of this model, we can re-write galaxy number counts as a function 
of the redshift z: 

dN (z) = ngdΩ(H0/c) 

Let us introduce a function (see [12]) 

2(1 +  ) 

1 + z 
dz. (8) 

f2(z) ≡ 

then we have for it in this model: 

(H0/c)3dN  (z)
;
 

ngdΩz2dz 

 
ln2(1 + z) 

f2(z) =  
z2(1 + z) 

. (9) 

A graph of this function is shown in Fig. 5; the typical error bar and data 
point are added here from paper by Loh and Spillar [13]. There is not a visible 
contradiction with observations. There is not any free parameter in the model 
to fit this curve; it is a very rigid case. 

It is impossible to count a total galaxy number for big redshifts so as very 
faint galaxies are not observable. For objects with a fixed luminosity, it is 
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Figure 6: Magnitude changes Δm as a function of the redshift difference z2 z1 
in this model for z1 = 0.001 (solid); 0.01 (dot); 0.1 (dash). 

 
easy to find how their magnitude m changes with a redshift. So as dm(z) 
under  a  constant  luminosity  is  equal  to:   dm(z)  =  5d(lgDL(z)),  we  have  for 

1     2 z1  
Δm(z1, z2) = 5lg(f1(z2)/f1(z1)). (10) 

The graph of this function is shown in Fig. 6 for z1 = 0.001; 0.01; 0.1. 

 
4.1.2 Taking into account the galaxy luminosity function 

Galaxies have different luminosities L, and we can write ng as an integral: 
ng =     dng(L), where dng(L) = η(L)dL, η(L) is the galaxy luminosity function. 
I shall use here the Schechter luminosity function [14]: 

η(L)dL = φ  (
 L 

)αexp(−
 L 

)d( 
L 

) (11) 
∗  

L∗
 

L∗ L∗ 

with the parameters φ∗, L∗, α. So as we have by a definition of the luminosity 
distance DL (z) that a light flux I is equal to:  I = L 

L 
, and a visible 

magnitude m of an object is m = 2.5 lg I + C, where C is a constant, then m 
is equal to: 

m = −2.5 lg I + 5 lg DL(z) + (C − 4π). (12) 

We can write for L : 
D2 (z) 

L = A     L , (13) 
κm 
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Figure 7: The relative difference (f3(m) a(m))/a(m) as a function of the 
magnitude m for α =    2.43 by 10−2  < A1  < 102  (solid), A1  = 104  (dash), 
A1 = 105 (dot), A1 = 106 (dadot). 

 
where κ = 100.4, A = const. For a thin layer with z = const we have: 

∂L 
dL dm, 

∂m 

where 

 

Then 

 
∂L 2 ( ) 

∂m 
−mκ · A   

κm 
= −mκL. (14) 

dng(m, z) = −(φ∗κ) · lα(m, z) exp(−l(m, z)) · (m · l(m, z))dm, (15) 

where (−dm) corresponds to decreasing m by growing L when z = const, and 

L(m, z) 
l(m, z) ≡ 

L 
. 

Let us introduce a function f3(m, z) with a differential 

dN (m, z) 
df3(m, z) ≡ 

dΩ(−dm). 
(16) 

We have for this differential in the model: 
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Figure 8: Number counts f4(m, z) (dot) and f5(m1, m2) (solid) (logarithmic 
scale) as a function of the redshift by A1 = 105 for α = 2.43, m1 = 10 and 
different values of m = m2 : 15, 20, 25, 30; m = 10 (only f4(m, z)). 

 

df (m, z) = ( 
φ∗κ 

) · m · l 

 
α+1 

(m, z) · exp(−l(m, z)) · 
ln2(1 + z) 

(1 + z)   
dz, (17) 

where a = H0/c. An integral on z gives the galaxy number counts/magnitude 
relation: 

(   ) = ( 
φ∗κ 

) 

∫ zmax 

  

 
( )   exp( ( ))  

ln2(1 + z) 
 

; (18) 

I use here an upper limit zmax = 10. To compare this function with observations 
by Yasuda et al. [15], let us choose the normalizing factor from the condition: 
f3(16) = a(16), where 

a(m) ≡ Aλ · 100.6(m−16) (19) 

is the function assuming ”Euclidean” geometry and giving the best fit to obser- 
vations [15], Aλ = const depends on the spectral band. In this case, we have two 
free parameters - α and L∗ - to fit observations, and the latter one is connected 
with a constant A1 ≡ 

a2L∗ 
if 

 
2(  ) 

l(m, z) = A1  1 . 
κm 

0 
· m · 
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Figure 9: The theoretical Hubble diagram μ0(z) of this model (solid); Super- 
novae 1a observational data (580 points of the SCP Union 2.1 compilation) are 
taken from [18] and corrected for no time dilation. 

 

 
If we use the magnitude scale in which m = 0 for Vega then C = 2.5 lg IV ega, 

and we get for A1 by H0 = 2.14  10−18 s−1 (it is a theoretical estimate of H0 
in this model): 

A        5 · 1017 · 
LⓈ , (20) 

where LⓈ is the Sun luminosity; the following values are used: LV ega = 50LⓈ, 
the distance to Vega rV ega = 26 LY. 

Without the factor m, the function f3(m) by exp(−l(m, z) → 1 would be 
close to a(m) by α = −2.5. Matching values of α shows that f3(m) is the closest 

to a(m) in the range 10 < m < 20 by α = −2.43. The ratio f3(m)−a(m)  is 
shown in Fig. 7 for different values of A1 by this value of α (to turn aside 
the problem with divergencies of this function by small L for negative values 
of α, all computations are performed here for z  > 0.001). All such the curves 
conflow by A1 102 (or 5 1015 < L∗), i.e. observations of the galaxy number 
counts/magnitude relation are non-sensitive to A1 in this range. For fainter 
magnitudes 20 < m < 30, the behavior of all curves is identical:  they go 
below of the ratio value 1 with the same slope. If we compare this figure with 
Figs. 6,10,12 from [15], we see that the considered model provides a no-worse 
fit to observations than the function a(m) if the same K-corrections are added 
(perhaps, even the better one if one takes into account positions of observational 
points in Figs. 6,10,12 from [15] by m  < 16 and m > 16) for the range 102 < 

A1 < 107 that corresponds to 5 · 1015 > L∗ > 5 · 1010. 
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Figure 10: Values of k(z) (580 points) and < k(z) >, < k(z) > +σk, < k(z) > 

−σk (lines) for the SCP Union 2.1 compilation. 

 
Observations of N (z) for different magnitudes are a lot more informative. If 

we define a function f4(m, z) as 

a3 

f4(m, z) ≡ ( 
φ κ 

) · 
df3(m, z) 

, 
dz 

this function is equal in the model to: 

 
α+1 

 
 

ln2(1 + z) 
 f4(m, z) = m · l (m, z) · exp(−l(m, z)) · 

(1 + z)   
. (22) 

 

Galaxy number counts in the range m1 < m < m2 are proportional to the 
function: 

f5(m1, m2) ≡ 

m2 

f4(m, z)dm = (23) 
m1 

= 

∫ m2 
 

( )   exp( ( ))   
ln2(1 + z) 

Graphs of both f4(m, z) and f5(m1, m2) are shown in Fig. 8 by α = 2.43, A1 = 

105; they are very similar between themselves. We see that even the observa- 
tional fact that a number of visible galaxies by z 10 is very small allows us to 
restrict a value of the parameter A1 much stronger than observations of N (m). 
Quasar number counts are considered in [11], too. 

(21) 

m1 
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Figure 11: The theoretical Hubble diagram μ0(z) of this model with b = 2.365 
(solid); Supernovae 1a observational data (31 binned points of the JLA com- 
pilation) are taken from Tables F.1 and F.2 of [19] and corrected for no time 
dilation. 

 
4.2 Fitting observations with the theoretical luminosity 

distance 

4.2.1 The Hubble diagram of this model 

In this model, the luminosity distance is given by Eq. 3. The theoretical value 
of relaxation factor b for a soft radiation is b =  2.137. Let us begin with 
this value of b, considering the Hubble constant as a single free parameter to 
fit observations [16]. All observational data should be corrected for no time 
dilation as: μ(z) μ(z) + 2.5 lg(1 + z) in this model without expansion. 

Two big compilations of SN 1a observations are used here: the SCP Union 
2.1 compilation (580 supernovae) [18] and the JLA compilation (740 supernovae) 
[19]. These compilations may be used to evaluate the Hubble constant in this 
approach.  Using  the  definition  of  distance  modulus:  μ(z) = 5lgDL(z)(Mpc) + 
25, we get from Eq. 3 for the theoretical distance modulus μ0(z): μ0(z) = 
5lgf1(z)+ k, where f1(z)      ln(1 + z)  (1 + z)(1+b)/2, and the constant k is equal 
to: 

k ≡ 5lg(c/H0) + 25. 

If the model fits observations, then we shall have for k(z): 

k(z) = μ(z) − 5lgf1(z), (24) 

where μ(z) is an observational value of distance modulus. The weighted average 
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Figure 12: Values of k(z) (31 binned points) and < k(z) >, < k(z) > +σk, < 

k(z) > −σk (lines) for the JLA compilation. 

 
value of k(z) :  

2 

< k(z) > i , 
i 

(25) 

where σ2 is a dispersion of μ(zi), will be the best estimate of k. Here, σ2 is 
i 

defined as: σ2 = σ2 + σ2 
i 

. The average value of the Hubble constant may 
i 

be found as: 
i stat i sys 

c · 105
 

 

< H0 >= 
10<k(z)>/5 · Mpc

. (26) 

For a standard deviation of the Hubble constant we have: 

σ   =  
ln10· < H0  >  

· σ  , (27) 
 

where σ2 is a weighted dispersion of k, which is calculated with the same weights 
as < k(z) > .  

The theoretical Hubble diagram μ0(z) of this model with < k(z) > which is 
calculated using the SCP Union 2.1 compilation [18] is shown in Fig. 9 together 
with observational points corrected for no time dilation. Values of k(z) (580 
points) and < k(z) >,  < k(z) > +σk,  < k(z) >    σk  (lines) are shown in Fig. 
10. For this compilation we have: < k >   σk = 43.216    0.194. Calculating the 
χ2 value as: 

χ2 = 
(k(zi) < H0 >)2

 
 

 

2 
i 

, (28) 

we get χ2 = 239.635. By 579 degrees of freedom of this data set, it means 
that the hypothesis that k(z) = const cannot be rejected with 100% C.L. Using 

σ 
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Figure 13: The theoretical Hubble diagram μ0(z) of this model (solid); long 
GRBs observational data (109 points) are taken from Tables 1,2 of [20] and 
corrected for no time dilation. 

 
Eqs. 25, 26, we get for the Hubble constant from the fitting: 

< H0 > ±σ0 
= (2.211 0.198)   10−18  s−1 = (68.223 6.097) 

    km    
. 

s · Mpc 

The theoretical value of the Hubble constant in the model: H0 = 2.14 10−18 s−1 = 
66.875  km   s−1 Mpc−1 belongs  to  this  range.  The  traditional  dimension 
km s−1 Mpc−1 is not connected here with any expansion. 

To repeat the above calculations for the JLA compilation, I have used 31 
binned points from Tables F.1 and F.2 of [19] (diagonal elements of the cor- 
relation matrix in Table F.2 are dispersions of distance moduli). We have for 
this compilation by b = 2.137:  < k >   σk = 43.174     0.049 with χ2 = 51.66. 
By 30 degrees of freedom of this data set, it means that the hypothesis that 
k(z) = const cannot be rejected only with 0.83% C.L. Varying the value of b, 
we find the best fitting value of this parameter: b = 2.365 with χ2 = 30.71. 
It means that the hypothesis that k(z) = const cannot be rejected now with 
43.03% C.L. This value of b is 1.107 times greater than the theoretical one. For 
the Hubble constant we have in this case: 

< H0 > ±σ0 
= (2.254 0.051)   10−18  s−1 = (69.54 1.58) 

    km    
. 

s · Mpc 

Results of the best fitting are shown in Figs. 11,12. 
If observations of long Gamma-Ray Bursts (GRBs) for small z are calibrated 

using SNe 1a, observational points are fitted with this theoretical Hubble dia- 
gram, too [6]. But for hard radiation of GRBs, the factor b may be smaller, 
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Figure 14: Values of k(z) (109 points) and < k(z) >, < k(z) > +σk, < k(z) > 

−σk (lines) for long GRBs. 

 
and the real diagram for them may differ from the one for SNe 1a. With this 
limitation, the long GRBs observational data (109 points) are taken from Tables 
1,2 of [20] and fitted in the same manner with b = 2.137. In this case we have: 
<  k >    σk  = 43.262    8.447 with χ2  = 70.39. By 108 degrees of freedom of 
this data set, it means that the hypothesis that k(z) = const cannot be rejected 
with 99.81% C.L. For the Hubble constant we have in this case: 

< H0 > ±σ0 
= (2.162 0.274)   10−18  s−1 = (66.71 8.45) 

    km    
. 

s · Mpc 

Results of the fitting are shown in Figs. 13,14. 
A data set of 44 long Gamma-Ray Bursts was compiled with the redshift 

range of [0.347; 9.4] [21], in which two empirical luminosity correlations (the Am- 
ati relation and Yonetoku relation) were used to calibrate observations. Because 
the GRB Hubble diagram calibrated using luminosity correlations is almost in- 
dependent on the GRB spectra, as it has been shown by the authors, I use here 
values of μ(zi) σi from columns 7 of Tables 2 and 3 of [21], based on the Band 
function, but with both calibrations. If this data set is fitted in the same manner 
with b = 2.137, we have for the Amati calibration: < k > σk = 43.168 1.159 
with χ2 = 40.585. By 43 degrees of freedom of this data set, it means that 
the hypothesis that k(z) = const cannot be rejected with 57.66% C.L. For the 
Hubble constant we have in this case: 

 

< H0 > ±σ0 
= (2.26 1.206)   10−18  s−1 = (69.732 37.226) 

    km    
. 

s · Mpc 
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Figure 15: The theoretical Hubble diagram μ0(z) of this model with b = 1.11 
(solid); GRB observational data with the Yonetoku calibration (44 points) are 
taken from Table 3 of [21] and corrected for no time dilation. 

 
By b = 2.137, we have for the Yonetoku calibration: < k > σk = 43.148 1.197 
with χ2 = 43.148. It means that the hypothesis that k(z) = const cannot be 
rejected with 46.5% C.L. For the Hubble constant we have in this case: 

< H0 > ±σ0 
= (2.281 1.257)   10−18  s−1 = (70.386 38.793) 

    km    
. 

s · Mpc 

But best fitting values of b are less than 2.137 in both cases: b = 1.885 for the 
Amati calibration (< k >   σk = 43.484    1.15, χ2 = 39.92, with 60.57% C.L. 
and < H0 >    σ0 = (1.954    1.035)  10−18  s−1 = (60.309    31.932)km/s/M pc.), 
and b = 1.11 for the Yonetoku one (< k >   σk = 44.439   1.037, χ2 = 
32.58, with 87.62% C.L. and < H0 >   σ0 = (1.259    0.601)  10−18  s−1 = 
(38.841 18.546)km/s/M pc.). Namely smaller values of this parameter for 
bigger photon energies are expected in the model. For best fitting values of b, 
values of distance moduli are overestimated in both calibrations: on  0.225 
for the Amati calibration, and on 1.18 for the Yonetoku calibration, if we 
compare values of < k > with its theoretical value of 43.259. It leads to the 
corresponding underestimation of the Hubble constant. Results of the best 
fitting for the Yonetoku calibration are shown in Fig. 15. 

A new method to test cosmological models was introduced, based on the 
Hubble diagram for quasars [22]. The authors built a data set of 1,138 quasars 
for this purpose. Some later, this method and the data set were used to compare 
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Figure 16: The theoretical Hubble diagram μ0(z) of this model (solid); quasar 
observational data (18 binned points) [23] are corrected for no time dilation. 

 
different models [23]. I have used here the binned quasar data set (18 binned 
points) of the paper [23] to verify my model in the described above manner. 
This data set contains the sum of observed distance modulus and an arbitrary 
constant A. To find this unknown constant for the calibration of QSO observa- 

tions,  I  have  computed  < k′(z) >=< k(z) > +A  and  replaced  < k(z) >  by  its 
value for the JLA compilation; it gave: A = 50.248. This linking means that 
the average values of the Hubble constant should be identical for the two data 
sets. Subtracting this value of A, we get from the fitting of the quasar data by 
b = 2.137: < k > σk = 43.175 0.340 with χ2 = 23.378. By 17 degrees of 
freedom of this data set, it means that the hypothesis that k(z) = const cannot 
be rejected now with 13.73% C.L. For the Hubble constant we have: 

< H0 > ±σ0 
= (2.253 0.340)   10−18  s−1 = (69.534 10.873) 

    km    
. 

s · Mpc 

Results of the fitting are shown in Fig. 16. 

 
4.2.2 Comparison with the LCDM cosmological model 

The luminosity distance in the concordance cosmology by w = −1 is: 

∫ z 

   

where f (z) ≡ (1 + z) 
∫ z 

[(1 + x)3Ω + (1 − Ω )]−0.5, Ω is the normalized 

[(1 + x)3ΩM + (1 − ΩM )]−0.5dx ≡ c/H0 · f2(z),  (29) 
0 

DL(z) = c/H0 · (1 + z) 

M M M 
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LCDM cosmology, let us replace f1(z)   f2(z) and repeat the calculations. Of 
course, all data sets should remain now corrected for time dilation. The results 
of fitting are presented in Table 1; for convenience, the main above results for 
the model of low-energy quantum gravity are collected in the table, too. It is 
obvious, that confidence levels for both models do not allow to reject any of 
them. 

 

the model of low-energy quantum gravity 

Data set b χ2 C.L., % < H0 > ±σ0 
SCP Union 2.1 [18] 2.137 239.635 100 68.22 ± 6.10 

    

    

    

    

    

    

    

 
 

 
 

    

    

    

    

    

    

    

    
 

 

JLA [19] 2.365 30.71 43.03 69.54 1.58 
109 long GRBs [20] 2.137 70.39 99.81 66.71 8.45 
44 long GRBs [21], 2.137 40.585 57.66 69.73 37.23 
the Amati calibration 1.885 39.92 60.57 60.31 31.93 
44 long GRBs [21], 2.137 43.148 46.5 70.39 38.79 
the Yonetoku calibration 1.11 32.58 87.62 38.84 18.55 
quasars [23] 2.137 23.378 13.73 69.53 10.87 

the LCDM cosmological model 

Data set ΩM χ2 C.L., % < H0 > ±σ0 
SCP Union 2.1 [18] 0.30 217.954 100 69.68 ± 5.94 
JLA [19] 0.30 29.548 48.90 70.08 ± 1.56 
109 long GRBs [20] 0.30 66.457 99.94 70.04 ± 8.62 
44 long GRBs [21], 0.30 40.777 56.81 68.99 ± 36.92 
the Amati calibration 0.49 40.596 57.61 60.75 ± 32.44 
44 long GRBs [21], 0.30 38.456 66.85 69.59 ± 36.10 
the Yonetoku calibration 1.0 34.556 81.72 49.51 ± 24.35 

quasars [23] 0.30 21.368 21.03 69.68 ± 10.42 
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Table 1: Results of fitting the Hubble diagram with the model of low-energy 
quantum gravity and the LCDM cosmological model. The best fitting values 
of b and ΩM for 44 long GRBs are marked by the bold typeface. 

 
It is a big surprise that the Einstein–de Sitter model (Eq. 29 with ΩM = 

1) cannot be rejected on a base of the full SCP Union 2.1 data set and the 
χ2 criterion. We get χ2 = 428.579 and 99.9999% C.L. The cause is in a big 
number of small-z supernovae 1a in this set; it leads to a big number of degrees 
of freedom, but to small differences of χ2 for models with similar values of DL(z) 
in this range of z. But if one splits the data set in two subsets, for example with 
z    0.5 and z  > 0.5, and uses the first subset to evaluate < H0 >, then using 
this < H0 > and the second subset to compute χ2 by much smaller number 
of degrees of freedom, one can reject this model with high probability (when 
z > 0.5, we get χ2 = 247.551 by 166 observations and 0.004% C.L.). Results for 
the model of low-energy quantum gravity and the LCDM cosmological model 
are not essentially changed by the splitting. But the Einstein–de Sitter model 
with ΩM =  1 bests the LCDM cosmological model with any amount of dark 
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Figure 17: The ratio H(z)/(1 + z) σ and the weighted value of the Hubble 
constant < H0 > σ0 (horizontal lines). Observed values of the Hubble param- 
eter H(z) are taken from Table 1 of [24] and one point for z  < 0.1 is taken from 
[25]. 

 
energy for the 44 long GRBs data set with the Yonetoku calibration. 

 
4.3 The Hubble parameter of this model 

If the geometrical distance is described by Eq. 2, for a remote region of the 
universe we may introduce the Hubble parameter H(z) in the following manner: 

 

dz = H(z) · , (30) 
c 

to imitate the local Hubble law. Taking a derivative dr , we get in this model 
for H(z) :  

 
It means that in the model: 

H(z) = H0 · (1 + z). (31) 

H(z) 
 

 

(1 + z) 
= H0. (32) 

The last formula gives us a possibility to evaluate the Hubble constant using 
observed values of the Hubble parameter H(z). To do it, I use here 28 points of 
H(z) from [24] and one point for z < 0.1 from [25]. The last point is the result 

dr 
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Figure 18: The ratio H(z)/(1 +z) σ and the weighted value of the Hubble con- 
stant < H0 > σ0 (horizontal lines). Observed values of the Hubble parameter 
H(z) are taken from [26]. 

 
of HST measurement of the Hubble constant obtained from observations of 256 
low-z supernovae 1a. Here I refer this point to the average redshift z = 0.05. 
Observed values of the ratio H(z)/(1 + z) with σ error bars are shown in Fig. 
17 (points). The weighted average value of the Hubble constant is calculated 
by the formula: 

 

< H0 > 

H(zi) 2 

= 1+zi i 
. 

i 

(33) 

The weighted dispersion of the Hubble constant is found with the same 
weights: 

( H(zi) )2 2 
2 = 1+zi i (34) 

σ0 

Calculations give for these quantities: 

Σ 
1/σ2 

.
 

 

< H0 > ±σ0 = (64.40 ± 5.95) km s−1 Mpc−1. (35) 

The weighted average value of the Hubble constant with σ0 error bars are 
shown in Fig. 17 as horizontal lines. 
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Calculating the χ2 value as: 

χ2 = 
Σ

 

 
( H(zi) − < H0 >)2

 
 

 

2 
i 

 

 
, (36) 

we get χ2 = 16.491. By 28 degrees of freedom of our data set, it means that the 
hypothesis described by Eq. 31 cannot be rejected with 95% C.L. 

If we use another set of 21 cosmological model-independent measurements 
of H(z) based on the differential age method [26], we get (see Fig. 18): 

< H0 > ±σ0 = (63.37 ± 4.56) km s−1 Mpc−1. (37) 

The value of χ2 in this case is smaller and equal to 3.948. By 21 degrees of 
freedom of this new data set, it means that the hypothesis described by Eq. 31 
cannot be rejected with 99.998% C.L. 

Some authors try in a frame of models of expanding universe to find deceleration- 
acceleration transition redshifts using the same data set (for example, [24]). The 
above conclusion that the ratio H(z)/(1 + z) remains statistically constant in 
the available range of redshifts is model-independent. For the considered model, 
it is an additional fact against dark energy as an admissible alternative to the 
graviton background. 

 
4.4 The Alcock-Paczynski test of the model 

The Alcock-Paczynski cosmological test consists in an evaluation of the ratio of 
observed angular size to radial/redshift size [27]. This test has been carried out 
for a few cosmological models by Fulvio Melia and Martin Lopez-Corredoira 
[28]. They used model-independent data on BAO peak positions from [29] 
and [30]. For two mean values of z (< z >= 0.57 and < z >= 2.34), the 
measured angular-diameter distance dA(z) and Hubble parameter H(z) give for 
the observed characteristic ratio yobs(z) of this test the values: yobs(0.57) = 
1.264 0.056 and yobs(2.34) = 1.706 0.076. In this model we have: dcom(z) = 
dA(z) = r(z), where dcom(z) is the cosmological comoving distance.  Because 
the Universe is static here, the ratio y(z) for this model is defined as: 

y(z)  = 
     r(z) 

= 
r(z) · H(z) 

= (1 + 
1 

) · ln(1 + z), (38) 

z · d r(z) cz z 

where H(z) is defined by Eq. 31. This function without free parameters charac- 
terizes any tired light model (model 6 in [28]). We have only two observational 
points to fit them with this function. Calculating the χ2 value as: 

 
χ2 = 

(yobs(zi) y(zi))2
 

 

 

2 
i 

 
, (39) 

we get χ2 = 0.189, that corresponds to the confidence level of 91% for two 
degrees of freedom. 

σ 

Σ 

σ 
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5 The light-from-nowhere effect 

The additional relaxation of a photonic flux of a remote galaxy due to non- 
forehead collisions of photons with gravitons is accompanied with the deviation 
of some part of photons from the galaxy-observer direction. Given multiple 
collisions on their long ways, the number of initial photons scattered in such 
the manner rises quickly, and each of them may be scattered again and again. 
It should lead to the appearance of a diffuse background with a complex spec- 
trum. A tentative detection of a diffuse cosmic optical background [33] may be 
connected with this light-from-nowhere effect. 

To evaluate how big is the ratio δ(z) of the scattered flux to the the remainder 
Φ(z) L/D2 (b, z) reaching the observer, we can compute the flux Φ0(z) 
L/D2 (0, z),  where  L  is  the  luminosity,  DL(b, z)  and  DL(0, z)  are  luminosity 
distances by b = 0 and b = 0. Φ0(z) corresponds to the absence of non-forehead 
collisions. Then the ratio may be defined as: 

δ(z) ≡ (Φ(z) − Φ0(z))/Φ(z). (40) 

Using Eq. 3 we get: 

δ(z) = (1 + z)b − 1. (41) 

We have by b = 2.137: δ(1) = 3.34, δ(2) = 9.46, δ(10) = 167.06. To find the 
sky brightness in the optical range, for example, it is necessary to know the 
ratio δ(z), and, at least, the light flux of galaxies and their number counts by 
different redshifts. 

 
6 Conclusion 

The Newton constant G has been measured up to now with the relative standard 

uncertainty only    10−4 (about the long story of these measurements, see [31]). 
In the model, the Newton constant arises as an average value of the stochastic 
variable characterizing the interaction of a couple of bodies with a huge number 
of gravitons.  Uncertainties of G and T are connected as: 

ΔG ΔT 
= 6 . 

G T 

If fluctuations of the temperature of the graviton background have the same 
order of magnitude as the ones of the CMB temperature, then ΔG/G    6 10−4. 
It is important that measured values of G may depend on the orientation of two 
bodies relatively of remote stars. Further attempts to measure G taking into 
account these circumstances may be interesting for the verification. 

In this model, the luminosity distance is a multivalued function of the red- 
shift due to different values of the factor b for soft and hard radiation. It opens 
another way to verify the model by cosmological observations comparing the 
Hubble diagrams of sources with different spectra. But to realize it we should 
have the possibility to calibrate the luminosity, for example, of remote GRBs 
independently of the Hubble diagram of supernovae Ia. 
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The Hubble parameter H(z) of this model is a linear function of z: H(z) = 
H0   (1 + z) (as well as in the Rh = ct cosmological model [32]), that is in 
a big discrepancy with ΛCDM. As it was shown, this function fits available 
observations of H(z) very well [6, 32], and further investigations of this problem 
are important. 

The most important cosmological consequence of the model is the local quan- 
tum nature of redshifts of remote objects. At present, advanced LIGO tech- 
nologies may be partly used to verify this redshift mechanism in a ground-based 
laser experiment [6]. One should compare spectra of laser radiation before and 
after passing some big distance in a high-vacuum tube. If one constructs a future 
version of the LIGO detector with some additional equipment, the verification 
of the redshift mechanism may be performed in parallel with the main task or 
during a calibration stage of the detector. The positive expected result of such 
the experiment would mean also that the universe does not expand. 

It seems that to open minds for the broader perception of possible mani- 
festations of quantum gravity and ways to its future theory, we should doubt 
in some commonly accepted things. The very bright example is the claimed 
existence of dark energy that is unnecessary in the considered model. If red- 
shifts of remote objects have the local quantum nature, the expansion of the 
universe becomes not necessary, and some observable effects may be interpreted 
as the long-awaited exhibition of quantum gravity but in the absolutely unex- 

pected scale of energies 10−3 eV. This scale may move us much closer to the 
understanding of the existing chasm between general relativity and quantum 
mechanics. And, perhaps, it can give us chances to construct if not a bridge 
between them, then a new common base for both. 
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