Министерство образования Республики Беларусь Учреждение образования Белорусский государственный университет Информатики и радиоэлектроники

УДК [621.396.6:004.722]:537.86

Подворная Дана Александровна

Электромагнитная совместимость радиоэлектронных средств фиксированной спутниковой и сухопутной подвижной службы 5 поколения (5G)

АВТОРЕФЕРАТ

на соискание степени магистра технических наук

по специальности 1-39 80 02 «Радиотехника, в том числе системы и устройства радионавигации, радиолокации и телевидения»

Научный руководитель
Козел Виктор Михайлович канд. техн. наук, доцент

Минск 2020

Краткое введение

Решением Государственной комиссии по радиочастотам при Совете Безопасности Республики Беларусь признана необходимость проведения экспертизы на электромагнитную совместимость радиоэлектронных средств (РЭС) сотовой подвижной электросвязи стандарта 5G (IMT-2020) с радиоэлектронными средствами гражданского и специального назначения Министерства обороны.

В соответствии с Регламентом Радиосвязи (в редакции 2015 года) и Таблицей распределения полос радиочастот между радиослужбами Республики Беларусь выделение полос радиочастот 3400-3800 МГц для эксплуатации радиоэлектронных средств (РЭС) сотовой подвижной электросвязи стандарта 5G (ІМТ-2020) соответствует международному и национальному распределению радиочастот, однако требует проведения экспертизы на электромагнитную совместимость с действующими РЭС.

Основными задачами, решаемыми в ходе выполнения работ являются:

- сбор и согласование исходных данных по номенклатуре и тактикотехническим данным действующих РЭС гражданского назначения и специального назначения Министерства обороны, эксплуатируемых и планируемых к внедрению в полосе радиочастот 3400-3800 МГц, включая сбор данных о конкретных местах установки, типе и параметрах действующих РЭС;
- теоретическое и/или экспериментальное определение критериев беспомеховой работы и характеристик восприимчивости приемных трактов РЭС гражданского и специального назначения Министерства обороны к помеховому сигналу стандарта 5G (IMT-2020) с шириной полосы радиочастот до 100 МГц на основании рекомендаций международных организаций, а также результатов экспериментальных или ранее проведенных аналогичных исследований;
- разработка сценариев внедрения радиоэлектронных средств сотовой подвижной электросвязи технологии стандарта 5G (IMT-2020);
- моделирование одиночного и совокупного помехового воздействия группировки РЭС сотовой подвижной электросвязи с временным разделением каналов (TDD) и технологией Massive MIMO стандарта 5G (IMT-2020) по заданным сценариям на приемные тракты РЭС гражданского назначения и специального назначения Министерства обороны;
- предварительная оценка доступного для использования РЭС сотовой подвижной электросвязи технологии стандарта 5G (IMT-2020) объема радиочастотного спектра в полосе радиочастот 3400-3800 МГц с учетом обеспечения электромагнитной совместимости с действующими и перспективными РЭС гражданского назначения и специального назначения Министерства обороны;
- разработка условий использования радиоэлектронных средств сотовой

- подвижной электросвязи технологии стандарта 5G (IMT-2020), обеспечивающих беспомеховую работу РЭС гражданского и специального назначения Министерства обороны;
- оформление заключения по результатам экспертизы на электромагнитную совместимость радиоэлектронных средств сотовой подвижной электросвязи стандарта 5G (IMT-2020).

В данных материалах приведены результаты анализа электромагнитной совместимости РЭС сотовой подвижной связи стандарта IMT-2020 с действующими РЭС гражданского и специального назначения Министерства обороны, а также предложения по международно-правовой защите и координации частотных присвоений РЭС СПС стандарта IMT-2020 на границе Республики Беларусь с сопредельными государствами.

Общая характеристика работы

Целью исследования является определение условий электромагнитной совместимости системы сухопутной подвижной связи стандарта IMT-2020 с действующими и перспективными радиоэлектронными средствами гражданского назначения и специального назначения Министерства обороны.

В рамках исследований в соответствии были решены следующие основные залачи:

-сформированы сигналы, имитирующие излучение РЭС сетей связи 5G;

-разработаны методики проведения экспериментальных исследований, направленных на определение критериев и параметров помехозащищенности действующих РЭС к сигналу РЭС сетей связи 5G;

-проведены экспериментальные исследования помехового влияния излучения РЭС сетей связи 5G на приемные тракты земной станции P-440;

-проведена обработка и обобщены результаты экспериментальных исследований;

-определены условия и мероприятия по обеспечению защиты от помех земных станций P-440 при внедрении радиотехнологий 5G на территории Республики Беларусь;

-проведен анализ условий обеспечения защиты приемных трактов земных станций спутниковой связи типа P-440 в приграничных с сопредельными государствами районах Республики Беларусь;

-определены требования к уровню сигнала на государственной границе Республики Беларусь, обеспечивающие безусловную защиту земных станций спутниковой связи.

Объект исследования — электромагнитная совместимость РЭС спутниковой фиксированной службы и сухопутной подвижной службы 5-го поколения.

Предметом исследования — условия беспомеховой эксплуатации средств электросвязи фиксированной спутниковой службы.

Значимость диссертационной работы заключается в возможности практического применения полученных результатов исследования. На основании данной работы определены условия эксплуатации систем электросвязи стандарта IMT-2020 на территории Республики Беларусь, с учетом приграничных районов, обеспечивающие беспомеховую работу действующих систем связи.

Научная новизна

Данная диссертационная работа посвящена вопросу определения условий беспомеховой работы систем сухопутной подвижной службы стандарта IMT-2020 и действующих РЭС. Научная новизна работы

заключается в определении предельно допустимого уровня электромагнитного излучения радиоэлектронными средствами связи 5G, при непревышении которого обеспечивается корректная работа приемных трактов РЭС спутниковой фиксированной службы связи специального назначения и действующих РЭС гражданского назначения, эксплуатируемых в диапазоне 3400-3800 МГц.

Личный вклад соискателя

Все основные результаты, изложенные в диссертационной работе, а также их обработка, анализ и интерпретация, получены автором самостоятельно. Вклад научного руководителя заключается в формулировке целей и задач исследования.

Основным соавтором опубликованных работ является научный руководитель, кандидат технических наук, доцент В.М.Козел.

Апробация результатов диссертации

Основные положения диссертационной работы докладывались и обсуждались на 56-й научной конференции аспирантов, магистрантов и студентов БГУИР (Минск, Беларусь, 2020).

Опубликованность результатов диссертации

По теме диссертации опубликована 1 печатная работа в сборнике трудов и материалов конференций в БГУИР.

Структура и объем диссертации

Диссертация состоит из введения, общей характеристики работы, четырех разделов, заключения и списка использованных источников.

В первом разделе приведено описание технологии беспроводной радиосвязи 5-го поколения (5G).

Во втором разделе основным рассматриваемым вопросом является исследование электромагнитной совместимости РЭС фиксированной спутниковой службы специального назначения и сухопутной подвижной службы стандарта IMT-2020.

Третий раздел посвящен анализу электромагнитной совместимости РЭС сухопутной подвижной службы стандарта IMT-2020 с РЭС гражданского назначения.

В четвертом разделе приведено исследование защиты земных станций спутниковой связи от воздействия радиоэлектронных средств сетей сотовой подвижной связи стандарта IMT-2020, размещаемых на приграничных территориях.

Общий объем работы составляет 90 страниц, из которых основного текста — 77страниц, 49 рисунков, 30 таблиц, список использованных источников из 15 наименований на 2 страницах.

Основное содержание

Во введении определена область и указаны основные направления исследования, показана актуальность темы диссертационной работы, дана краткая характеристика вопроса.

Первый раздел «Описание технологии беспроводной радиосвязи 5-го поколения (5G)» носит теоретический характер. В данном разделе рассматриваются предпосылки к разработке нового стандарта связи, описывается конфигурация физического уровня данной системы связи. Приведено сравнение основных показателей с технологией ІМТ-2000. Представлены рабочие полосы и распределение каналов согласно международным спецификациям.

Во втором разделе «Исследование электромагнитной совместимости РЭС фиксированной спутниковой службы специального назначения и сухопутной подвижной службы стандарта IMT-2020» приводится описание станции Р-440, методика экспериментальных исследований, результаты измерений, их анализ. Определены предельно допустимые уровни сигнала стандарта IMT-2020 для обеспечения защиты средств фиксированной спутниковой службы специального назначения.

Третий раздел «Исследования электромагнитной совместимости РЭС сухопутной подвижной службы стандарта IMT-2020 с РЭС гражданского назначения» посвящен определению условий эксплуатации сетей связи 5G совместно с действующими и перспективными гражданскими РЭС в полосе частот 3400-3800 МГц. На основе проведенного анализа проведена предварительная оценка доступного объема радиочастотного спектра для эксплуатации сетями связи стандарта IMT-2020 и дано заключение по электромагнитной совместимости системы сухопутной подвижной службы 5-го поколения с действующими и перспективными РЭС гражданского назначения.

В четвертом разделе «Исследование защиты земных станций спутниковой связи от воздействия радиоэлектронных средств сетей сотовой подвижной электросвязи стандарта IMT-2020, размещаемых на приграничных территориях» приведен анализ ЭМС станций Р-440 с перспективными РЭС систем связи 5G, размещенных на границах сопредельных государств. Определены критерии пограничной координации по международным стандартам СЕРТ, разработана методология определения условий беспомеховой работы земной станции Р-440 в приграничных

районах в совмещенных полосах частот с сетями связи 5G и определены максимально допустимые уровни помехового воздействия от РЭС 5G земным станциям Р-440 в приграничных районах. Данные уровни допустимого помехового воздействия позволили сформировать предложения по координации частотных присвоений РЭС сухопутной подвижной службы стандарта IMT-2020.

Заключение

Результаты проведенных исследований позволили определить условия электромагнитной совместимости РЭС сотовой подвижной электросвязи технологии стандарта 5G (IMT-2020) и РЭС гражданского и специального назначения. Также проведена предварительная оценка доступного для использования РЭС сотовой подвижной электросвязи технологии стандарта 5G (IMT-2020) объема радиочастотного спектра в полосе радиочастот 3400-3800 МГц для текущих частотных присвоений земным станциям спутниковой связи и утилизации используемого для организации каналов связи спутника "Ямал-202". Данные по объему доступного радиочастотного спектра могут быть уточнены с учетом перспективы использования в сетях спутниковой подвижной связи других спутников и соответствующего перераспределения частотных присвоений.

Приведенные в настоящем отчете результаты исследований по электромагнитной совместимости с РЭС стандарта связи IMT-2020 сопредельных государств позволяют сформировать переговорную позицию для проведения координационных встреч с администрациями связи сопредельных государств.

Список опубликованных работ

1. Подворная Д.А. IMT-2020: особенности приграничной координации с учетом земных станций с-диапазона / Д.А. Подворная, В.М. Козел // 56-я научная конференция аспирантов, магистрантов и студентов (Республика Беларусь, г.Минск, 18-20 мая 2020). – Минск: БГУИР, 2020.

