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EXACT ANALYTIC REPRESENTATIONS FOR THE INTEGRAL
CHARACTERISTICS OF A FOUR-POINT COHERENCE 
FUNCTION FOR LASER BEAMS IN TURBULENT MEDIA

N. N. Rogovtsova* and V. Ya. Anisimovb UDC 517.937;535.36;537.86.029;537.87;621.371

A new integral-functional equation is derived for the four-dimensional Fourier transform of the four-point coherence 
function of laser beams in turbulent media and two families of exact analytical solutions of this equation are found. 
These solutions hold for any level of fl uctuations of the refractive index of air. They are used to obtain exact analytic 
representations of the integral characteristics of the four-point coherence function. In particular, the truncated 
spectral characteristics of the spatial correlation function of the intensities are found. These representations can be 
used to test asymptotic, numerical, and other methods for fi nding this function and to describe its integral properties.
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Introduction. A whole series of scientifi c and technical problems in ranging, information transformation in open 
optical communications systems, geodesy, plasma theory, the optics of scattering media, radiative transfer theory, and 
astrophysics cannot be solved correctly without studying the effect of regular or random (discrete or continuous) spatial-
temporal variations in the geometric and physical (in particular, optical) characteristics of microscopically inhomogeneous 
media on the scattering of radiation and the formation of radiative fi elds in these media. Geophysical media, in particular 
the earth's atmosphere in its various states and natural or other inclusions in it, are classical examples of these media. In 
the transparent part of the atmosphere, random fl uctuations (they can be regarded as continuous random variations) in the 
refractive index n(r, t) (r is the radius vector of the observation point and t is time) of the air, which are caused by its turbulent 
motion, have a strong infl uence on the propagation of a laser beam. Despite the very small (~10–6–10–5) amplitudes of the 
fl uctuations in the refractive index of the air, over suffi ciently long paths a laser beam passes through a very large number of 
optical inhomogeneities which creates an effect of accumulated distortions in the parameters of the original beam owing to 
multiple scattering on these inhomogeneities. This kind of scattering of the laser light takes place essentially completely in 
the forward direction, and backscattering can be neglected. Changes in the polarization characteristics of the laser light owing 
to refractive index fl uctuations in the earth's atmosphere are also very insignifi cant. These two statements are justifi ed in 
[1–3], with one based substantially on the fact that the characteristic size of the inhomogeneities in the refractive index of the 
earth's atmosphere exceeds the wavelength λ of the light. In many papers ([1–18] and references therein) various theoretical 
and experimental methods are used to establish some fundamental aspects of the propagation of electromagnetic (especially, 
laser) radiation in turbulent media. These theoretical studies mainly employ a scalar quasioptical (parabolic) approximation 
for the wave and related equations. Up to now, however, no exact and effi cient methods of searching for the statistical 
moments (higher than second order) complex amplitudes of the wave fi elds in randomly inhomogeneous media have been 
developed. It should be emphasized specially that moments of this type are used to express such important characteristics as 
the relative dispersion (fl icker index) and spatial intensity correlation function [13].

In this paper we derive a new integral-functional equation for the four-dimensional Fourier transform of the four-point 
coherence function 22 1 2 1 2( , , , ; )z′ ′Γ ρ ρ ρ ρρ ρ ρ ρ  (it depends on nine variables) of a laser beam. The free parameters in this equation 
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include one scalar parameter and one two-dimensional vector. A number of heuristic procedures from a reduction method 
for common invariance relations (GIRRM), which is one of the general and effective methods for solving multidimensional 
problems in radiative transfer theory and mathematical physics [19–28], are used in deriving this equation. An analysis of the 
properties of the derived integral-functional equation is used for the fi rst time to fi nd exact, explicit analytic representations 
for families of integral characteristics of the four-point coherence function of laser beams in turbulent atmospheres. These 
representations are true for any level of fl uctuations in the refractive index of air. They can be used for analyzing the accuracy 
of asymptotic, numerical, and other methods of searching for the four-point coherence function 22 1 2 1 2( , , , ; )z′ ′Γ ρ ρ ρ ρρ ρ ρ ρ   and 
become the basis for a rigorous analysis of its properties.

Statement of the Problem. Let [V] be a closed half-space on the boundary S of which lies the plane OXYZ of a 
rectangular right-hand Cartesian coordinate system. Here we direct the Z axis into [V]. We assume that [V] is fi lled randomly 
by a nonuniform medium whose properties are identical to those of some transparent part of the turbulent atmosphere of the 
earth. On an arbitrary plane z = const (const ≥ 0) we take four points M1, M2, M3, and M4, whose positions are defi ned by 
the radius vectors r1 = (ρ11, ρ12, z), r2 = (ρ21, ρ22, z), 1′r  = 11 12( , , )z′ ′ρ ρρ ρ , and 2′r  = 21 22( , , )z′ ′ρ ρρ ρ . We introduce the notation 
ρ1 = (ρ11, ρ12), ρ2 = (ρ21, ρ22), 1′ρρ  = 11 12( , )′ ′ρ ρ , and 2′ρρ  = 21 2222( , )′ ′ρ ρ . We assume that the semi-infi nite medium is irradiated 
by a spatially bounded monochromatic linearly polarized beam of radiation for which the projections of the electric fi eld 
on the X and Y axes can be written as ei(ωt–kz)U(ρ; z), where i is the imaginary unit, k = 2π/λ is the wave number, λ is the 
wavelength of the radiation, ω is its circular frequency, and U(ρ; z) is the complex amplitude which is a random function 
and varies insignifi cantly over distances on the order of the wavelength (ρ = (ρ1, ρ2) is a two-dimensional vector parallel to 
the OXY plane). We assume that the power of the beam is fi nite. Besides these assumptions, we assume that the volume of 
known information on the coherence properties of the radiation beam is suffi cient to specify the four-point coherence function 

22 1 2 1 2( , , , ; )z′ ′Γ ρ ρ ρ ρρ ρ ρ ρ  on the z = 0 plane. This function is defi ned as follows [13]:

 22 1 2 1 2 1 2 1 2( , , , ; ) ( ; ) ( ; ) ( ; ) ( ; ) ,z U z U z U z U z∗ ∗′ ′ ′ ′Γ = 〈 〉ρ ρ ρ ρ ρ ρ ρ ρρ ρ ρ ρ ρ ρ ρ ρ  (1)

where ...  denotes the operation of averaging over the ensemble of realizations; * denotes complex conjugation; the quantities 
U(ρj; z), where j ∈  {1, 2, 3, 4}, signify the complex amplitudes of the wave fi eld on the plane specifi ed by the applicate z and 
parallel OXY plane at the points M1, M2, M3, and M4, respectively. In [1–3], different methods are used to obtain an initial 
equation for the functions 22 1 2 1 2( , , , ; )z′ ′Γ ρ ρ ρ ρρ ρ ρ ρ  in terms of the above-described assumptions and properties of a turbulent 
medium:

 ( ) ( ) ( ) ( )
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Here Δm and m′Δ  are two-dimensional Laplace operators which are specifi ed in the system OXY by the symbolic equations 
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. The function 22 1 2 1 2( , , , ; )F z′ ′ρ ρ ρ ρρ ρ ρ ρ  in Eq. (2) determines 

the average infl uence of the fl uctuations in the refractive index of the fl uctuations in the refractive index of the turbulent 
atmosphere of the earth on the four-point coherence function 22 1 2 1 2( , , , ; )z′ ′Γ ρ ρ ρ ρρ ρ ρ ρ  during propagation of the radiation in the 
positive Z direction. It can be written in the form [13]

22 1 2 1 2 1 1 2 2 1 2( , , , ; ) 2 [ ( ; ) ( ; ) ( ; )F z H z H z H z′ ′ ′ ′ ′= π − + − + −ρ ρ ρ ρ ρ ρ ρ ρ ρ ρρ ρ ρ ρ ρ ρ ρ ρ ρ ρ

 2 1 2 1 2 1( ; ) ( ; ) ( ; )] ,H z H z H z′ ′ ′+ − − − − −ρ ρ ρ ρ ρ ρρ ρ ρ ρ ρ ρ  (3)

where H(ρ; z) is defi ned by the equation

( ; )H zρρ  = o2 ; )( z
+∞ +∞

ε
−∞ −∞

Φ∫ ∫ q ( ) ( )1 2 1 21 cos ( ) ,   , ,  dq dq q q− ⋅ =ρρq q  
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and ( ; )z°
εΦ q  = const Φε(q; z), where Φε(q; z) has the signifi cance of a spectral density of the fl uctuations in the dielectric 

constant ε of the air, which, since n = ε , is directly related to the density of the fl uctuations in the refractive index n (const, 
a positive number determined by the choice of the form of the forward and inverse Fourier transforms). Symbols of the type 
a·l here and in the following denote the real or formal scalar product of the elements a and l. The function ( ; )z°

εΦ q  satisfi es 
the equation ( ; )z°

εΦ q  = ;( )z°
ε −Φ q , which is used in deriving the desired integral-functional equation. To obtain a unique 

solution of Eq. (2) it is necessary to specify the boundary conditions. We assume that 22 1 2 1 2 0( , , , ; ) zz =
′ ′Γ ρ ρ ρ ρρ ρ ρ ρ   is a known 

function. This is the fi rst boundary condition. Given the fi nite power of the radiation passing through the z = 0 plane and the 
absence of other sources within the open half-space V (i.e., z > 0), the function 22 1 2 1 2( , , , ; )z′ ′Γ ρ ρ ρ ρρ ρ ρ ρ   for arbitrary z ≥ 0 must 
tend to zero, if any one of 1ρ , 2ρ , 1′ρ , 2′ρ  go to +∞.  This behavior of the function 22 1 2 1 2( , , , ; )z′ ′Γ ρ ρ ρ ρρ ρ ρ ρ   at infi nity serves 
as a second boundary condition. These conditions are then used to obtain the integral-functional equation and exact analytic 
representations for the integral characteristics of the four-point coherence function.

Procedure for Deriving the Unknown Relationships and Equations. We transform Eq. (2) sequentially with two 
replacements of variables that are related in form to two standard substitutions of variables that are used in the theory of the 
propagation of laser radiation in a turbulent atmosphere [13]. These substitutions are bijective and can be written in vector 
form:

 s s s′= −ω ρ ρω ρ ρ ,   { }  ,   1, 2s s s s′= + ∈τ ρ ρτ ρ ρ ,   1 2   = −u τ ττ τ ,   1 2= +p τ ττ τ . (4)

After substitutions of Eqs. (4) and including Eq. (3), Eq. (2) takes the form

 ( )1 1 2 2

3

22 1 2, , ;
2 16
ik ik F z

z
×⎡ ⎤∂
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 × ( )22 1 2, , , ; 0 ,z×Γ =u pω ωω ω  (5)

where 1 2, , ,∇ ∇ ∇ ∇ω ωω ω u p  are two-dimensional Hamiltonian operators, and the function ( )22 1 2, , , ; z×Γ u pω ωω ω  is equal to 

22 1 2 1 2( , , , ; )z′ ′Γ ρ ρ ρ ρρ ρ ρ ρ  with the following substitutions:

 ( )( ) ( )( )1 1 1 1
1 1 2 22 2 , 2 2 ,− − − −= + + = + −u p p uρ ω ρ ωρ ω ρ ω         

 
                                 (6)

( )( ) ( )( )1 1 1 1
1 1 2 22 2 , 2 2 .− − − −′ ′= + − = − −u p p uρ ω ρ ωρ ω ρ ω     

The function ( )×
22 1 2  , , ;  F zuω ωω ω  in Eq. (5) has the form

 ( ) ( ) ( )( ) ( )( )( )1 1
22 1 2 1 2, , ; 8 ; [1 cos 2 cos 2  F z z

+∞ +∞
× ° − −

ε
−∞ −∞
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( )( )( ) ( )( ) ( )( )( )(1 1 1
1 2 1 2 1 2cos 2 cos 2 cos 2 .dq dq− − − ⎤− ⋅ + ⋅ + ⋅ − ⎦q q u qω ω ω ωω ω ω ω

Given the above boundary conditions, we fi rst apply the two-dimensional Fourier transform with respect to the 
variable p (p = (p1, p2)) to Eq. (5), and then to the resulting equation — a two-dimensional Fourier transform with respect to 
the variable u (u = (u1, u2)). As a result, we have
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, , , ;
2
k z
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where
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22 1 2 22 1 2 1 2, , , ; 2 , , , ; ,iz e z dp dp

+∞ +∞
− ⋅× ×
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 and  ( ) ( )1 2 1 2, ,   ,= γ γ = ζ ζγ ζγ ζ .

With a series of actions representing invariant embedding, partition [19, 20, 22–27], or bijective transformation 
procedures, this equation can be reduced to the form of an integral-functional equation. For this purpose we break the function 

( )22 1 2, , ;F z× uω ωω ω  into two terms, which contain a single arbitrary scalar parameter ξ and one arbitrary real two-dimensional 
vector α = (α1, α2). The following equation holds:

 ( )22 1 2 1, , ;F z× =uω ωω ω ( 1 2, ; ; , ) z ξω ω αω ω α  + 2 ( 1 2, , ; ; , ) , z ξω ω αω ω αu  (9)

in which
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In place of the function ( )22 1 2, , ;F z× uω ωω ω , we substitute its representation in the form of the right-hand side of 

Eq. (9) in Eq. (8). We transform the result using the Euler formula, the equation ( ; )z°
εΦ q  = ( ); z°

εΦ −q , the even character 

of the cosine, the defi nitions of the functions ( )22 1 2, , , ; z×Γ uω ω γω ω γ  and ( )22 1 2, , , ; z×Γ ω ω ζ γω ω ζ γ , and the elementary bijective 
substitutions of the variables in the three double integrals that show up when reducing the initial Eq. (8) to a form convenient 
for further discussions. As a result, we obtain the integral-differential equation
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( ) ( )( ) ( ) ( )( ) ( )– c 1 2 22 1 2 22 1 2 1 2os ] , , , ; cos , , , ; .z z dq dq× ×⎡ ⎤− ⋅ + Γ − ξ − ⋅ Γ⎢ ⎥⎣ ⎦
ζ ω ω ω ω γ ζ α ω ω ζ γζ ω ω ω ω γ ζ α ω ω ζ γq q q

Equation (10) can be simplifi ed by bijective substitution of the variables

 ( ) ( )1 1 1
1 1 2 22 ,    2 ,    2 .z k z k z k z− − −= = + + = + −ω ω γ ζ ω ω γ ζω ω γ ζ ω ω γ ζ  (11)

Using Eq. (11), Eq. (10) reduces to the form

 ( ) ( ) ( ) ( )
3
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16 2 2
k kz kzz z z z

z
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( ) ( )3
1 22 , , , ; ; , 0 .

2
kzk g z z⎛ ⎞+ π − + − − ξ =⎜ ⎟

⎝ ⎠
ω γ ζ ω γ ζ ζ γ αω γ ζ ω γ ζ ζ γ α

For 0z > , the last term on the left of Eq. (12) is given in terms of the unknown function 22
×Γ ( ) ; this follows 

from Eq. (10). If we assume that the function )(g  in Eq. (12) is a known quantity, then its formal solution can be written as
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1 2 1 2 22 1 2
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( ) ( ) ( )
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16 2

′′⎛ ⎞′′ ′′ ′′ξ = − + − − ξ⎜ ⎟
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( ) ( )1 2,    ,     z z′ ′= − + = − − ψσ ω γ ζ ϑ ω γ ζσ ω γ ζ ϑ ω γ ζ  = 
2

kz′ .

In deriving Eq. (13) we have used the fact that the function 22 1 2, )( , , ; 0×Γ ω ω ζ γω ω ζ γ  is expressed directly in terms of the 

function 22 1 2 1 2( , , , ; 0)′ ′Γ ρ ρ ρ ρρ ρ ρ ρ , the values of which have been assumed known from the start. Equation (13) is the unknown 

integral-differential equation for the unknown function 22 )(×Γ  and makes it possible to represent it in the form of a sum of 
two (or three, for ξ ≠ 0) terms which can be found or estimated in some cases without solving it.

Exact Analytic Representations. Equation (10) implies that the second term in the square brackets in Eq. (13) goes 
to zero for arbitrary ξ and α if either of the following equations is true:

 ( )1 2 2z′− −ω ω ζω ω ζ = ( )1 2 2 ,    z z′ ′± + − ∈ω ω γω ω γ  [0, +∞ ) . (14)

If the "+" sign is chosen in Eq. (14), then the equalities

 ζ= ( )2 ,    0, 0= =0γ ωγ ω ,    ( )1 1 2,b b= =ù b  (15)

should hold, where b is an arbitrary vector parallel to the OXY plane. On the other hand, if the "–" sign is chosen, then the 
equalities
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 ζ = ( )1,   0, 0− = =0γ ωγ ω ,         ( )2 1 2,h h= =hωω  (16)

should hold, where h is an arbitrary vector which, like b, is parallel to the OXY plane. We note that Eqs. (4), (6), and (11) 
imply consistency of each of the conditions (15) and (16). If conditions (15) are satisfi ed, then the analytical solution of the 
integral-differential Eq. (13) has the form

 ( ) ( ) ( )1
22 22, , , ; , , 4 , , , ; 0 ,z z k z× × −Γ = β Γ +b 0 b b 0γ γ γ γ γ γγ γ γ γ γ γ

 
 (17)

where ( ) ( )( )2 1
1

0

 , , exp 4 ; ,
z

z k k z z z dzΔ − ′
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ′′β = − + −
⎜ ⎟⎜ ⎟
⎝ ⎠

′ ′′

⎝ ⎠
∫b bγ γγ γ

( ) ( ) ( )( )° 2 1
1 1 2 ; ; (1 cos 2z z dq dq

+∞ +∞
Δ −

ε
−∞ −∞

= π Φ − ⋅′′ ′′∫ ∫ q qδ δδ δ
 
, and  ( )1 2,= δ δδδ .

Equations (9) and (11) were taken into account in deriving Eq. (17). If Eqs. (16) are satisfi ed, then the analytical 
solution of the integral-differential Eq. (13) can be written in the form

 ( ) ( ) ( )1
22 22, , , ; , , , 4 , , ; 0 . z z k z× × −Γ − = β Γ + −0 h h 0 hγ γ γ γ γ γγ γ γ γ γ γ  (18)

The analytical solutions (17) and (18), with the defi nitions of the functions 22 )(×Γ , the vectors 1 2 1 2, , , , ,u pω ω τ τω ω τ τ  ,
and Eqs. (15) and (16) taken into account and with a number of elementary bijective transformations, can be reduced to the 
following equalities:

 ( ) ( ) ( ) ( ) ( )1 11
22 1 2 1 2 11 22 22 11 22... , , ,  ; , 4 , ...  ; 0 , i ie z d d z e d d

+∞ +∞ +∞ +∞
⋅ ⋅−

−∞ −∞ −∞ −∞

Γ − ρ … ρ = β Γ ρ … ρ∫ ∫ ∫ ∫b bγ ρ γ ργ ρ γ ρρ ρ ρ ρ γρ ρ ρ ρ γ  (19)

  

( ) ( ) ( ) ( ) ( )2 21
22 1 2 1 2 11 22 22 11 22... , , , ; d , 4 , ... 0 . ;i ie z d z e d d

+∞ +∞ +∞ +∞
⋅ ⋅−

−∞ −∞ −∞ −∞

− ρ … ρ = β Γ ρ … ρΓ∫ ∫ ∫ ∫h hγ ρ γ ργ ρ γ ρρ ρ ρ ρ γρ ρ ρ ρ γ  (20)

The integrals in Eqs. (19) and (20) are taken over the entire four-dimensional Euclidean space E4, the elements of 
which are all row-vectors of the form (ρ11, ρ12, ρ21, ρ22). Here the symbol 22 (  ; 0) Γ  in Eqs. (19) and (20) denotes the 
functions

( ) ( )( )1 1
22 1 2 1 22 , , 2 ,  ; 0 ,  k z k z− −Γ + − −ρ γ ρ ρ γ ρρ γ ρ ρ γ ρb

( ) ( )( )1 1
22 1 2 1 2, 2 , , 2  ; 0 .k z k z− −Γ + − −ρ ρ γ ρ ρ γρ ρ γ ρ ρ γ h

To within a factor of ( ) 12k − , the left-hand sides of Eqs. (19) and (20) coincide with two-dimensional Fourier 
transforms of the double integrals

( )22 1 2 1 2 21 22, , ,  ; , z d d
+∞+∞

−∞−∞

Γ − ρ ρ∫ ∫ bρ ρ ρ ρρ ρ ρ ρ

( )22 1 2 1 2 11 12, , , ; z d d
+∞+∞

−∞−∞

Γ − ρ ρ∫ ∫ hρ ρ ρ ρρ ρ ρ ρ
 
.
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These double integrals and the truncated Fourier transforms (19) and (20) are integral  characteristics of the four-
point coherence function 22 1 2 1 2( , , , ; )z′ ′Γ ρ ρ ρ ρρ ρ ρ ρ . We note that for b = 0 and h = 0 the left-hand sides of Eqs. (19) and (20) 
have the signifi cance of truncated spectral characteristics of the spatial correlation function of the intensities. With a two-
dimensional inverse Fourier transform, from Eqs. (19) and (20) we obtain analytic representations for the double integrals 
described above:

 ( ) ( ) ( )( )( ) ( )12 1
22 1 2 1 2 21 22 1 1, , , ;  4 exp , 4 ,    z d d i z

+∞+∞ +∞+∞+∞+∞+∞+∞
− −

−∞−∞ −∞−∞−∞−∞−∞−∞

′′Γ − ρ ρ = π − ⋅ − β∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫b bρ ρ ρ ρ γ ρ ρ γρ ρ ρ ρ γ ρ ρ γ     (21)

( ) ( )( )1 1
22 1 2 1 2 1 2 11 12 21 222 , , 2 , ; 0 ,k z k z d d d d d d− −′′ ′′ ′′ ′′× Γ + − − γ γ ρ ρ ρ ρbρ γ ρ ρ γ ρρ γ ρ ρ γ ρ

and  

 ( ) ( ) ( )( )( ) ( )12 1
22 1 2 1 2 11 12 2 2, , , ;  4 exp , 4 ,  z d d i z

+∞+∞ +∞+∞+∞+∞+∞+∞
− −

−∞−∞ −∞−∞−∞−∞−∞−∞

′′Γ − ρ ρ = π − ⋅ − β∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫h hρ ρ ρ ρ γ ρ ρ γρ ρ ρ ρ γ ρ ρ γ       (22)

( ) ( )( )1 1
22 1 2 1 2 1 2 11 12 21 22, 2 , , 2 ; 0 ,k z k z d d d d d d− −′′ ′′ ′′ ′′× Γ + − − γ γ ρ ρ ρ ρhρ ρ γ ρ ρ γρ ρ γ ρ ρ γ

where ( ) ( )1 11 12 2 21 22 , ,  ,′′ ′′ ′′ ′′ ′′ ′′= ρ ρ = ρ ρρ ρρ ρ .
We emphasize that the right-hand sides of all the exact analytic representations (19)–(22) are expressed in terms of 

boundary values of the four-point coherence function on the z = 0 plane and the function ( )1 ; zΔ ′′δδ , which were initially 
assumed to be known. Equations (19) and (20) have their simplest form for γ = 0. In that case they can be written as

 ( ) ( ) ( )22 1 2 1 2 11 22 22 1 2 1 2 11 22... , , ,  ; , , ... , , ,  ; 0z d d z d d
+∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞

− ρ … ρ = β Γ − ρ … ρΓ∫ ∫ ∫ ∫b 0 b bρ ρ ρ ρ ρ ρ ρ ρρ ρ ρ ρ ρ ρ ρ ρ ,    (23)

and

 
( ) ( ) ( )22 1 2 1 2 11 22 22 1 2 1 2 11 22... , , , ; , , ... , , ,  ; 0 .z d d z d d

+∞ +∞ +∞ +∞

−∞ −∞ −∞ −∞

Γ − ρ … ρ = β Γ − ρ … ρ∫ ∫ ∫ ∫h 0 h hρ ρ ρ ρ ρ ρ ρ ρρ ρ ρ ρ ρ ρ ρ ρ
 

    (24)

If b = h = 0, then β(z, 0, 0) = 1 for arbitrary z ≥ 0 and the right-hand sides of Eqs. (23) and (24) are constants that 
are fully determined by the boundary values of the functions 22 1 2 1 2 0( , , , ; ) zz =

′ ′Γ ρ ρ ρ ρρ ρ ρ ρ . Thus, the left-hand sides of Eqs. (23) 
and (24) for this case are invariant with respect to variations in [ )0,z ∈ +∞ . For this situation, Eqs. (23) and (24) are easily 
obtained from the previously derived Eqs. (46.12)–(46.14) of [18]. However, if b ≠ 0 and h ≠ 0, then the right-hand sides of 
Eqs. (23) and (24) are not constant, and equations themselves generalize the invariant (46.15) from [18]. Here the function 
β(z, 0, δ), which fully describes the dependences of the right-hand sides of Eqs. (23) and (24) on the variable z, takes the form

 ( ) ( )( )( ) ( )2 2 1 °
1 2

0

, , exp 1 cos 2 ; ,
z

z k dq dq z dz
+∞ +∞

−∞

−
ε

−∞

⎡ ⎤
⎢ ⎥β = −π ′′ ′′− ⋅ Φ
⎢ ⎥
⎣ ⎦

∫∫ ∫0 q qδ δδ δ  (25)

where δ = b or δ = h (|δ| ≠ 0). For a Karman fl uctuation spectrum [13] (the equality ( )° ; zεΦ ′′δδ  ≡ ( )° ; zεΦ ⏐ ⏐ ′′δδ   holds) the 
function (25) approaches zero for z → +∞. Thus, the integral characteristics of the four-point coherence function determined 
by the left-hand sides of Eqs. (23) and (24) also approach zero as z → +∞. In addition, for this case the function β(z, 0, δ) can 
also be written in the form

 ( ) ( ) ( )( )2 °
0 0

0

, , exp ( ) 1 J ) ;   ( ,
z

z k w w z dz wdw
+∞

ε

⎡ ⎤
⎢ ⎥β = − π − Φ
⎢ ⎥

′′ ′
⎣

′
⎦

∫ ∫0 δ δδ δ  (26)

where J0 (...) is the zeroth-order Bessel function of the fi rst kind.



228

Conclusions. The explicit exact analytic representations for the integral (in particular, spectral) characteristics of 
the four-point coherence function of laser light obtained here illustrate the possibility in principle of a rigorous and effi cient 
solution of the boundary value problems for Eq. (2) for arbitrary levels of fl uctuations in the refractive index in turbulent 
media. Equations (19)–(24) illustrate the signifi cant effect of the initial data for a laser beam, as well as of the type of the 

dependence of the integral ( )°

0

;
z

z dzε ′′ ′′Φ∫ q  on the variable z and vector δ on variations in the integral characteristics of the 

four-point coherence function for extended path lengths z.
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