ОПТИЧЕСКИЕ ХАРАКТЕРИСТИКИ АНТИОТРАЖАЮЩИХ ПОКРЫТИЙ НА ОСНОВЕ Al₂O₃—SiO₂ ДЛЯ КРЕМНИЕВЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТОВ

Сулейманов С. Х. (Foreign) 1,

Гременок В. Ф. (Foreign) 2

Хорошко В. В. з,

Иванов В. А. (Foreign) 4,

Дыскин В. Г. (Foreign) 5,

Джанклич М. У. (Foreign) 6,

Кулагина H. A. (Foreign) 7

- 1, 5, 6 Foreign (Институт материаловедения научнопроизводственного объединения "Физика – Солнце" АН Республики Узбекистан, Ташкент, Узбекистан)
- 2, 4 Foreign (Научно-практический центр НАН Беларуси по материаловедению, Минск, Беларусь)
- 2, 3 Кафедра ПИКС, Белорусский государственный университет информатики и радиоэлектроники, Минск Беларусь

Ключевые слова: композиционное антиотражающее покрытие, коэффициент отражения, кремниевый солнечный элемент, эффективность солнечного элемента.

Аннотация: Представлены результаты моделирования, получения и исследования интегрального коэффициента отражения (R_S) однослойных композиционных антиотражающих покрытий Al_2O_3 - SiO_2 для кремниевых солнечных элементов с интегральным коэффициентом отражения $R_S \pm 10$ %. Показано, что при концентрациях $Al_2O_3 = 52\text{-}84$ мас.% и $SiO_2 = 16\text{-}48$ мас.% и толщине 53-97 нм минимальные значения для Al_2O_3 $R_S = 73\text{-}77$ %, для SiO_2 $R_S = 27\text{-}23$ % и толщине 69-75 нм. Экспериментально показано, что для слоев Al_2O_3 : $SiO_2 = 75\text{:}25$ % толщиной 72 нм $R_S = 3.53$ %, что примерно в два раза ниже, чем R_S для покрытия Si_3N_4 .

Источник публикации: Оптические характеристики антиотражающих покрытий на основе Al_2O_3 – SiO_2 для кремниевых солнечных элементов / С. Х. Сулейманов [и др.] // Журнал прикладной спектроскопии. – 2020, № 87 (4). – С. 667-671.

Интернет-ссылка на источник:

https://zhps.ejournal.by/jour/article/view/678.