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Abstract—Designing optimal topology of network graph is 

one of the most prevalent issues in neural network applications. 

Number of hidden layers, number of nodes in layers, activation 

functions, and other parameters of neural networks must suit 

the given data set and the prevailing problem. Massive learning 

datasets prompt a researcher to exploit probability methods in 

an attempt to find optimal structure of a neural network. 

Classic Bayesian estimation of network hyperparameters 

assumes distribution of specific random parameters to be 

Gaussian. Multivariate Normality Analysis methods are 

widespread in contemporary applied mathematics. In this 

article, the normality of probability distribution of vectors on 

perceptron layers was examined by the Multivariate Normality 

Test. Ten datasets from University of California, Irvine were 

selected for the computing experiment. The result of our 

hypothesis on Gaussian distribution is negative, ensuring that 

none of the set of vectors passed the criteria of normality. 

 
Index Terms—Bayesian Optimization, Gaussian 

Distribution, Hyperparameters, Neural Networks. 

 

I. INTRODUCTION 

Many industries have been disrupted by the influx of 

neural networks. The last decade has yielded an incredible 

amount of attention at neural networks in many areas such 

as face recognition, big data clusterization, and signal 

processing. 

In real deep learning projects, tuning hyperparameters is 

the primary key to build a network that provides accurate 

predictions for a specific problem. Common 

hyperparameters comprise the number of network layers, 

nodes in each layer, the activation function, and how many 

times (epochs) training should be repeated. Hyperparameters 

determine how the neural network is structured, how it is 

trained, and how its different elements function. The 

optimization problems for neural network size reduction and 

hyperparameters are well known. Actually, one of the first 

books on this topic was published by Kevin Swingler in 

1996 [1]. Optimizing hyperparameters is an art: there are 

several ways ranging from manual trial and error to 

sophisticated algorithmic methods. 

Recognized algorithms for hyperparameters estimation 

are the Grid search, Random search, Bayesian optimization, 

Gradient approach, and Evolutionary optimization.    

Grid search assumes a researcher can construct 
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multidimensional grid for feasible values of parameters. The 

idea behind the method lies in comparison of objective 

function values on grid points [2]. 

Random search [3] for estimation of neural network 

hyperparameters is an extension of the grid search. A  

statistical distribution is implemented for each 

hyperparameter under tuning, and their values are randomly 

sampled using the distributions.  

Most papers on Bayesian optimization assume that the 

researcher is able to observe the objective function. 

Bayesian approach exploits past evaluation results to 

construct a probabilistic mapping hyperparameters to a 

probability of objective function values [4], [5]. The 

advantage of Bayesian method lies in looking for better 

hyperparameters based on previous trials.  

As for Gradient approach [6], gradients are computed 

based on performance of cross-validation with respect to all 

hyperparameters. This occurs via chaining derivatives 

backwards through the training procedure. One can find 

optimization solution by any method of the first order. 

Evolutionary algorithms are methods of the global 

optimization of black-box functions with noise. 

Evolutionary hyperparameter search follows the biological 

concept. Initial set that named initial population contains 

random generated hyperparameters [7], [8]. Algorithm 

checks fitness of each element of population and replaces 

the worst element with new one generated through 

evaluation procedure; that is crossover and mutation 

operations. The algorithm stops when the evaluation does 

not improve the population. 

Bayesian optimization is considered the most 

contemporary and systematic method for neural network 

hyperparameters optimization. It cannot guarantee optimal 

solution; however, it provides near-optimal reasonable 

values of hyperparameters.  
 

II. PROBLEM, MATERIALS AND SOFTWARE 

The problem under consideration lies in the domain of 

neural network hyperparameters optimization. Bayesian 

optimization of neural network hyperparameters estimates 

random vector error calculation [9], which is supposedly 

normally distributed. Actually, input set of neural network 

in some papers presumed to be distributed in accordance 

with normal law [10]. Authors of this article have checked 

normality of vector sets on neural network layers using 

hypothesis-testing methods. Neural networks were designed 

as multilayer perceptrons with 3-5 hidden layers. Each 

learning data was passed through layers; and vector values 

on each layer were considered as material for numerical 

testing.  

The initial data were collected from an open library of the 

machine learning datasets [11] of University of California, 
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Irvine. In total, 11 datasets were checked. They are as 

follows: Brazilian high school (3 problems of classification), 

Hepatitis, Lymphography, Liver disorder (2 classifications), 

Dermatology, Glass identification, Adult (census data), and 

Wine quality. As usual, nominative variables were digitized 

in a conventional manner; e.g. a woman’s gender was 

indicated as 0, whereas a man’s gender as 1. Other 

nominative characteristics were enumerated by integers 0, 1, 

…, n.  

Open software Anaconda [12] with its instruments Keras 

and TensorFlow in Python were used for our neural network 

design and learning procedures. Keras provides an access 

into the structure of network layers, so a researcher can 

easily get matrices for further multivariate testing. 

Numerous software vendors offer systems and modules 

for statistical analysis. R language is one of the most 

prevalent languages in data science. It provides an efficient 

interface for testing process. R script for the multivariate 

data examination was developed with Multi Variate 

Normality (MVN) library from the CRAN project [13]. 

Calculation was done for neural networks as well as MVN 

on usual desktop. It exploited only CPU unit. Computing 

time for each dataset under examination was within 25 

minutes in total for both, neural network and MVN test. 

 

III. MULTIVARIATE NORMALITY TESTS 

Mathematicians have discovered normal distribution 

about two centuries ago. Fisher and Kolmogorov-Smirnov 

tests for one-dimension data are such reliable measurements. 

There are special applications for testing multidimensional 

data. The measure of non-normality for both univariate and 

multivariate data depends upon asymmetry, tail weight, 

outliers, and modality. Both univariate and multivariate 

skewness and kurtosis measure the same characteristics. 

However, the comparison is done on the joint distribution of 

numerous variables against a multivariate normal 

distribution. This is an alternative to the comparison of one 

variable distribution against a univariate normal distribution. 

Skewness and kurtosis are the most efficient values as H. 

Scheffe has remarked in his book [14]. He noted that 

kurtosis and skewness are the key indicators of the degree to 

which nonnormality impacts the usual inferences made in 

variance analysis.  

Moreover, skewness and kurtosis are an instinctive way 

to comprehend normality. If skewness differs from zero, 

then distribution deviates from symmetry; whereas if 

kurtosis differs from zero, then distribution diverges from 

normality in tail mass and shoulder.  

There are various formulations for skewness and kurtosis 

in literature. In 1998, Joanes and Gill [15] originated three 

common formulations for univariate skewness and kurtosis.  

If a sample variance is normally distributed, then kurtosis 

is equal to zero. It implies that the standard error of variance 

will be underestimated when kurtosis is positive; and 

overestimated otherwise. Kurtosis has an impact on variance 

estimates when the sample sizes are large; whereas in small 

samples, mean estimates are only affected. Yuan et al. [16] 

indicated that the characteristics of mean estimates are not 

influenced by either skewness or kurtosis asymptotically; 

however, standard error of sample variance is actually a 

function of kurtosis.  

Tests on multivariate normality were verified by K. V. 

Mardia, K. V. Baringhaus [17], and N. Henze [18]. 

Actually, there exists several measures for multivariate 

skewness and kurtosis; however, Mardia’s ones are 

definitely the most common. 

 

IV. EXPERIMENT ON DATASETS NORMALITY 

In our experiment, a test was performed on the 

distribution of neurons in the neural network in order to 

verify the hypothesis of a multidimensional normal 

distribution. There are tables demonstrating the skewness 

and kurtosis of our neural network, generated chi-square 

multivariance, t- and normal distribution. The hypothesis of 

univariate normality on single component of some initial 

datasets was checked as well.   

Large hidden layers usually permit the neural network to 

suit the training data very well. However, since 

regularization is typically used, it is essential to go for large 

hidden layers. Using the same size for all of the hidden 

layers most likely works better than choosing a decreasing 

or increasing size. Using a first hidden layer that is larger 

than the input layer, tends to work better too. With 

unsupervised pre-training, the layers ought to be much 

bigger than when implementing purely supervised 

optimization. 

Univariate normality for two initial datasets had been 

verified by skewness and kurtosis estimation approach as 

well. The significance level for all tests was equal to 0.05. 

We created and trained 11 neural networks, instances of a 

multilayer perceptron; as a training sample, we selected 

multivariate statistical data on various topics, such as human 

diseases, characteristics of school students, etc. 

Before computing results of the perspective values of the 

datasets and in order to simplify and make it possible to 

compare the results of the test, every dataset size was 

restricted to 8 divisions and from 150 to 600 vectors. 

MVN package has methods to calculate the mean and 

other significant parameters of the data. To concretely 

demonstrate the impact of skewness and kurtosis, tests were 

implemented.  

As a result of the tests carried out on different variants of 

the trained neural networks, the following skewness and 

kurtosis values were obtained. 
 

TABLE I: MULTIVARIATE NORMALITY TEST 

Data  Size Skewness Kurtosis MVN 

Braz_School 395*8 1.278e3 2.618e1 No 

Braz_Stud32 395*8 9.684e2 1.533e1 No 

Braz_Stud33 395*8 2.116e3 3.297e1 No 

Hepatitis 154*8 2.684e2 6.092e-1 No 

Lymphography 148*8 1.332e3 3.569e1 No 

Liver1 165*5 5.577e1 2.880e1 No 

Liver2 165*5 5.428e2 2.815e1 No 

Dermatol 366*6 2.232e3 1.288e2 No 

Glass 214*7 3.932e3 1.041e2 No 

Adult 562*8 2.386e3 3.146e2 No 

Wine 500*7 4.336e3 7.677e2 No 
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TABLE II: UNIVARIATE PARAMETERS FOR BRAZ_SCHOOL 

№ Mean Std. Dev Median Skew Kurtosis Normal 

1 1.740e-1 2.448e-1 1.147e-1 8.269e-1 2.262e-1 No 

2 1.715e-1 1.965e-1 1.769e-1 -8.148e-2 -3.690e-1 Yes 

3 1.279e-1 2.106e-1 1.224e-1 1.036e-1 -7.000e-2 Yes 
4 1.915e-1 1.645e-1 1.834e-1 2.538e-1 9.413e-1 No 

5 2.696e-2 9.171e-1 2.199e-2 4.406e-1 1.188e0 No 

6 8.447e-2 1.286e-2 8.463e-2 6.300e-1 2.268e0 No 
7 5.345e-2 5.377e-2 4.840e-2 1.2907e0 4.663e0 No 

8 4.051e-2 1.314e-1 1.988e-2 5.389e-1 -1.282e-1 No 

 

TABLE III. UNIVARIATE PARAMETERS FOR HEPATITIS 

№ Mean Std. Dev Median Skew Kurtosis Normal 

1 4.624e-4 1.640e-3 4.854e-4 -4.853e-1  1.815e-1 No 
2 4.561e-1 3.418e-1 4.280e-1 -1.006e-1 -7.676e-1 No 

3 2.647e-1 4.162e-1 1.819e-1 -5.003e-2 -8.358e-1 No 

4 1.774e-1 3.553e-1 1.544e-1 8.843e-2 -6.118e-1 Yes 
5 2.041e-1 3.-1793 1.441e-1 2.802e-1 -6.705e-1 No 

6 1.322e-1 2.562e-1 6.537e-2 9.728e-1 5.972e-1 No 

7 6. 620e-2 9.590e-1 6.530e-2 -1.048e-1 -3.164e-1 Yes 
8 4.631e-4 3.331e-2 -5.762e-3 1.187e0 1.184e0 No 

 

V. CONCLUSION 

During testing, it was evident that the distribution of 

neurons in a neural network is not multivariate normal. 

Through conducting a comparative analysis of the skewness 

and kurtosis values for various types of multivariate 

distributions, it was clear that for the chi-square case, the 

skewness and kurtosis values for the sample size 200-400 

are out of the critical values of the multivariate normal 

distribution. 

Some components of initial datasets have occurred inside 

the confident interval for univariate normality.  

The values extracted from our experiment prove the 

independence of the results of testing the distribution of 

neurons of a neural network from the input data for training, 

the number of network layers, and the number of nodes in 

each layer.   
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