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Abstract: The internal stresses of the aluminum films deposited at various substrate temperatures and evaporation 
rates are studied. It is shown that tensile stresses are present in the aluminum film. The tensile stresses values are 
equal to (1.0-3.5)·107 N/m2 to be comparable with the aluminum yield point (2.3·107 N/m2). 
Theoretical and experimental studies of deformation and stress at the porous aluminum oxide-aluminum interface 
are discussed. It is shown that the internal stresses in the growing porous oxide are always compressive stresses 
and practically do not depend on the internal stresses in the initial aluminum film. The last testifies the fact of 
reaching the aluminum yield point at the oxide formation. 
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1. Introduction 

 
In recent years, there is an intensive development 

of sensor technology that reaches a new level of 
sensitivity. Electrochemical, acoustic, optical sensors 
and biosensors are developed. Among the optical 
sensors, it should be noted the devices on the surface 
plasmon resonance (SPR), reflectometric 
spectroscopy sensors, waveguide sensors, including 
waveguide sensors on a metal underlayer (WSMP). 
WSMP which is a thin film structure consisted of a 
waveguide layer of porous anodic aluminum oxide on 
the aluminum sublayer is of particular interest. 
Technology of coatings based on anodic alumina for 
sensor applications (SPR- sensors and WSMP) 
includes the following stages: the vacuum deposition 
of aluminum films on the dielectric substrate; the one-
step anodic oxidation for the formation of the alumina 
film and a translucent aluminum film; the chemical 
etching for widening of pores with controlled optical 

parameters of nanostructured coatings. So, control of 
mechanical stress of the film on the basis of which the 
device is formed is very important for designing 
devices with required parameters [1-3]. 

Recently it is well-known that stress takes place in 
the system oxide-metal both in the oxide growth 
process and in the stable state. Beginning from Pilling 
and Bedworth [4], who were the first to pay attention 
to the significance of the volumetric ratio between 
metal and its oxide (Pilling-Bedworth ratio), a lot of 
investigators have attempted to detect, measure and 
explain stresses in the oxide-metal system resulting 
from the difference in the specific volumes of oxide 
and metal. However, results of theoretical and 
experimental investigations of the internal stresses that 
appear in oxide ceramic coatings formed by plasma-
electrolytic oxidation (PEO) on aluminum surfaces 
were reported to be always much lower than calculated 
by the coefficients of the volume growth [5]. It turned 
out that the coefficient of the oxide volume increase is 
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not the only factor determining a stress level and that 
a mechanism of the metal conversion into oxide is 
realized to provide minimum stress. In this connection 
a key role of the motion of anions and cations in the 
process of the oxide growth was pointed out. Recently 
this concept provides the basis on which the internal 
stresses in the oxide-metal system can be studied. In 
accordance with this concept, the stress value depends 
on a number of transferred anions and cations and is a 
maximum in the case of the 100 % anion transfer, 
resulting in a compressive stress in oxide and a tensile 
stress in metal. Depending on the stress value during 
the oxide growth, metal can undergo elastic or even 
plastic deformation. In this case the dislocation 
motion, accumulation and transition through the 
metal-oxide interface are inevitable. The dislocation 
presence to a greater or lesser extent when they act as 
vacancy sinks can change the oxidation kinetics 
because the vacancy diffusion along the dislocation  
is facilitated.  

Thus, a pronounced stress effect on the oxidation 
process is obvious. So, it is of theoretical and practical 
importance to know the state of the two- layer oxide-
metal system as a whole and the effect of the formation 
conditions of both the aluminum film and porous 
oxide on the stress level.  

 
 

2. Experimental 
 

Electron-beam evaporation was used for the 
aluminum deposition on the 165 μm thick rectangular 
glass strips in the length-to-width ratio of 10:1 to 
measure stresses by the console method as the simplest 
and easy-to-use method for the vacuum evaporated 
films. The stress σ was calculated by the Stoney’s 
formula: 
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where E is the modulus of elasticity (Young modulus) 
for the substrate; d is the substrate thickness; x is the 
flexure of the free end; l is a substrate length; h is the 
thickness of the evaporated film; μ is the Poisson's 
ratio. 

The modulus of elasticity for the substrate was 
measured by hanging of a plummet to the console end 
and determining of the glass flexure. This was 
calculated by the formula: 

 

,
 (2) 

 

where G is the plummet weight, and w is the substrate 
width. Young modulus was equal to 5·1010 N/m2. 

The aluminum evaporation was made at various 
substrate temperatures and deposition rates. The 
flexure values x were measured at the room 

temperature when the samples were taken out of the 
vacuum chamber. 

The internal stress in the two-layer “porous 
alumina – aluminum” system was studied theoretically 
and experimentally during the aluminum anodization. 
To this end, an experimental assembly was made 
allowing a deflection of the glass console with the 
deposited aluminum film from the initial position to be 
measured directly the porous anodization process. A 
design of the measurement unit of the assembly is 
shown in Fig. 1. 

A sample of a squared shape is cramped in a 
special hermetic holder where a voltage is supplied to 
the aluminum film to be anodized. A negative 
potential is supplied to the cathode. The sample is 
entirely immersed into the electrolyte. A microscope 
ocular is provided with a scale. The end surface of the 
sample is aligned with the scale divisions in the 
microscope focus. During the anodization the sample 
end surface image shifts and a value of this shift is 
measured with the scale. To exclude the influence of 
electrostatic forces, a shift reading is made after the 
anodization voltage cut off. 

 
 

 
 

Fig. 1. A design of the basic unit (cell) of the experimental 
assembly: (1) Holder; (2) Special screw; (3) Cell;  
(4) Cylindrical cathode; (5) Sample; (6) Microscope ocular; 
(7) Anode; (8) Rubber gasket; (9) Stage; (10) Washer;  
(11) Screw; (12) The end surface of the sample. 

 
 

With this assembly the console shift values from 
the initial position depending on the porous oxide 
thicknesses, current densities, and voltages were read. 

 
 

3. Results and Discussion 
 
3.1. Internal Stress in the Aluminum Films 
 

Fig. 1 – Fig. 2 show dependences of the internal 
stresses calculated by the Eq. (1) on the thickness of 
the aluminum films deposited at various substrate 
temperatures and evaporation rates.  
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Fig. 2. Dependence of the internal stresses on the thickness 
of the aluminum films at various substrate temperatures. 

 
 

Referring to Fig. 1, in the aluminum films the 
internal stresses are reduced with the increase in the 
film thickness and the substrate temperature. The glass 
substrate flexes towards the deposited film. This is 
indicative of the tensile stress presence in the 
aluminum film. In contrast to thin films, in more than 
1 μm thick aluminum films the tensile stresses are 
reduced when the deposition rate increases, as shown 
in Fig. 3. 

 
 

 
 

Fig. 3. Dependence of the internal stresses on the 
deposition rate of the aluminum films. 

 
 

The tensile stresses values are equal to  
(1.0-3.5)·107 N/m2 to be comparable with the 
aluminum yield point (2.3·107 N/m2). 

It is clear that stresses measured are characteristic 
of residual stresses including thermal stresses resulted 
from the difference in the linear expansion coefficients 
of aluminum and the substrate material. Thermal 
stresses are calculated by the formula: 

 

, (3) 

where Δd is the difference in the linear expansion 
coefficients of aluminum and glass; ΔT is the 
difference between the condensation point and the 
room temperature; μ is a Poisson's ratio. 

For aluminum μ = 0.348 and σT = (2-3)·108 N/m2 
to be 10 times higher than residual stresses. This is 
evidence of high ability of the aluminum films to a 
stress relaxation by means of a plastic deformation. 

Thus, the aluminum films are plastically deformed. 
So, they have a developed dislocation arrangement up 
to the structure typical of the afterflow stage when a 
splitting of the initial aluminum grains is possible due 
to the net of dislocation clusters. However, to all 
appearance such the structure is not characteristic of 
the whole thickness of the aluminum film. The 
reduction of the internal stresses in the film-substrate 
system with the aluminum thickness and the 
deposition rate, as discussed above, testifies that in this 
case not a two-layer system but at the least a three-
layer one consisting of the substrate, a transition 
plastically deformed aluminum layer, and an outer 
elastically stressed aluminum layer should be 
considered. Then the stress reduction with the film 
thickness can be explained by the expansion of the 
transition layer. With thin aluminum films,  
the aluminum yield point increases almost by  
the order and therefore the relaxation of the stresses is 
difficult [5]. 

 
 

3.2. Deformation and Stress at the Porous 
Alumina-aluminum Interface 

 
Based on the well-known fact about the sphericity 

of the interface "porous alumina cell/aluminum", we 
can ignore the influence of the free surface and assume 
that the deformation in the oxide-metal system will be 
approximately the same as in an infinite matrix (metal) 
with spherical inclusion (oxide). For this model, a 
solution of the known Eshelby task of an ellipsoidal 
inclusion in an array [7] may be used. 

Let the inclusion is subjected to a transformation 
from which its relative volume increased by eT as 
compared with the position outside of the matrix. 
Then, dilation eT is equal to the sum of relative 
deformations eT

xx, eT
yy, and eT

zz of the inclusion along 
the corresponding axes. If the elastic modulus of the 
matrix is equal to the elastic modulus of the inclusion, 
cubic strain e0 of the array is defined by the following 
expression: 
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where ν is a Poisson's ratio. 
The deformation eI of the inclusion in the matrix is 

equal to: 
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If the transformation changes elastic modulus of 
the inclusion, this change may be taken into account 
by entering a new deformation e-T free of stress. For 
uniform case, this strain e-T correlates with eT by the 
following expression: 
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where χ and χ* are compression moduli of the matrix 
and the inclusion correspondingly. 

Evaluate the matrix deformation as applied to the 
alumina/aluminum system. Free dilation, which 
corresponds to an increase in the specific volume of 
the oxide (inclusion) by 1.5 times compared to the 
metal (matrix), is equal to 0.5. We set ν =ν* = 1/3; 
modulus of elasticity for aluminum  
E = 6.6·1010 N/m2; modulus of elasticity for alumina 
E* = 2.7·1011 N/m2. In this case χ/χ* ≈ E/E* = 1/4, and 
by formula (6) we find that e-T = 4/3eT. That is, greater 
inclusion rigidity results in an increase of 1/3 in eT as 
compared with the case of equal moduli. The cubic 
deformation of the matrix determined by Formula (4) 
is equal to 0.355. A linear deformation comprises 1/3 
of the cubic one and is equal to 0.1185. 

The solution of the Eshelby task and the evaluation 
based on this solution are true in the elastic 
deformation range. It is obvious that high-plastic 
aluminum cannot be deformed elastically almost by 
12 %. Therefore, a range of plastically deformed metal 
is formed near alumina. Determine a size of this range 
in the same approximation where the alumina cell is 
imaginable as the spherical inclusion within the metal 
matrix. To calculate the range thickness, we use the 
task of plastic deformation of a sphere with a cavity 
loaded from the inside by pressure, which is known in 
the theory of plasticity. As applied to our task, the 
inclusion may be considered as only inducing stress in 
the matrix. Two things should be taken into account:  

1) The matrix, in contrast to the spherical shell, has 
an infinite extent;  

2) A pressure (stress) at the inclusion-matrix 
interface is unknown. It is possible to take proper 
account of the first factor by tending an outer radius to 
infinity in the solution for sphere. Then the radius of 
the plastic strain range C near the spherical inclusion 
is defined by the following expression: 
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where α is the radius of the inclusion; p is the pressure 
at the interface; σs is the yield point of matrix material. 
For the purely elastic task, p can be defined by the 
deformation eI inside the inclusion. The plastic range 
formation results in a considerable stress relaxation at 
the inclusion-matrix interface, and p may be defined 
indirectly from the geometrical sizes of this range. 
Taking the logarithm of the expression (7),  
we obtain: 
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Thus, to find p we should know the ratio C/a. The 

last we can find using the following expression for the 
displacement in the plastic deformation range: 
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Here r is the radial coordinate of set point in the 

spherical coordinate system. The inclusion broadening 
is provided by the displacement of matrix material; in 
this case the ratio eT= 3Ur-α/α takes place, using which 
and neglecting ln C/α in comparison with (C/α)3 from 
(9) obtain the expression for the relative radius of the 
range: 
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A numerical evaluation by the formula (10) yields 

the range size C-a ≈ 3a. For the calculation eT = 0.4 
and ν = 0.33 were assumed. A value of σs was taken 
high by 8 times of the yield point of bulk cold-rolled 
aluminum (2.3⋅107 N/m2) since this precise value for 
aluminum films is not defined so far, but it is known 
that material strength in a thin-film form is 3 – 10 
times higher than this of bulk samples. Stress at the 
alumina-aluminum interface calculated by Formula 
(8) is equal to about 3.5σs, correlating with the 
inclusion linear deformation of 0.8 %. The calculation 
in the framework of the theory of elasticity gives the 
inclusion linear deformation of about 1.5 %, i.e. 
practically the plastic range formation equal to three 
radii of the porous alumina cell decreases a stress level 
about by half. 

From an early stage, the deformation of  
aluminum is accompanied by its hardening. Define the 
radius C and the pressure p of the range taking into 
account linear strengthening of the matrix. Taking into 
consideration the features of our task, we obtain the 
expression for the pressure at the inclusion-matrix 
interface: 
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are constants. 
The expression (11) for ideal plasticity (n=1, m=0) 

grades into (7). For the displacement Ūr, taking into 
account the strengthening, we obtain the following 
expression: 
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(12) 
 
Comparing the expressions (12) and (11), it is 

evident that the strengthening manifests itself as an 
appearance of a common multiplier (1-4ωM)-1, 
coefficient n before the second summand and the third 
summand. Using the expression (12), an equation for 
defining C/a taking into account the strengthening of 
material may be composed. 

For the numerical evaluation, m and n constants 
should be defined where m is a strengthening 
coefficient represented as a slope ratio of the linear 
range in the deformation curve of the second stage and 
n is a segment on the voltage ordinate axis. The 
deformation curves for polycrystalline aluminum at 
the room temperature have a cusp form and do not 
show the linear range of the second strengthening 
stage. If we approximate the parabolic deformation 
curves for the 99.999 % pure aluminum with linear 
functions, we obtain that n≈ 1, m ≈ 5. It is noticeable 
that the deformation curves depend considerably on 
the metal graininess and in our case it should be guided 
by the curve for the large-grained sample because the 
cell size is less than the crystal size. The numerical 
evaluation of the strengthening effect on the plastic 
range radius shows that it slightly (~1 %) decreases. 
This results from the small enough value of the 
aluminum strengthening coefficient. The evaluation of 
stress at the phase interface by (11) shows that it 
increases up to p ~ 5.6σs, i.e. by 40 % higher than 
obtained by (8). 

Thus, the deformation calculation in the 
framework of the theory of elasticity disclosed that 
aluminum plastic deformation should occur at the 
alumina-aluminum interface. In this case the plastic 
deformation range is equal to about three radii of a 
barrier region of porous alumina. Integrally the porous 
alumina-aluminum interface should be presented by 
way of several characteristic ranges as shown  
in Fig. 4. 

The range of elastically deformed aluminum 
transferring into the range of plastically deformed 
metal is located between initial aluminum and formed 
porous oxide. The width of the plastic deformation 
range is equal to three radii of the spherical base of the 
porous oxide cell. The relaxation of the internal 
stresses takes place in the plastic deformation range to 
be associated with the increase of the  
dislocation density and the formation of the 
dislocation net causing grain splitting. To all 
appearance, this explains independence of the porous 
oxide cell morphology on the initial structure of the 
aluminum film.  

 

 
 

Fig. 4. The porous alumina-aluminum interface: (1) porous 
alumina; (2) a range of plastically deformed aluminum; (3) 
a range of elastically deformed aluminum; (4) aluminum. 

 
 

To check the above calculations, the internal 
stresses in the “porous anodic alumina-aluminum” 
system were studied experimentally during the 
aluminum anodization. With the assembly described 
above the console shift values from the initial position 
depending on the porous oxide thicknesses, current 
densities, and voltages were read. These dependences 
are presented in Fig. 5 and Fig. 6. The σ – dependence 
on the oxide thickness was obtained at the anodization 
in 4% aqueous solution of the oxalic acid. The 
dependence shown in Fig. 6 was obtained at the 
anodization in various electrolytes.  

 
 

 
 

Fig. 5. Dependence of the internal stresses on the thickness 
of porous alumina. 

 
 

 
 

Fig. 6. Dependence of the internal stresses in alumina 
on the anodization voltage. 
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For anodization voltages up to 30 V the solutions 
of the sulfuric acid were used. The anodization with 
the voltage in the range from 30 V to 70 V was made 
in the oxalic acid solutions. When anodized with the 
voltage above 70 V, the aqueous solutions of the 
orthophosphoric acid were used. The solution 
concentrations were selected to provide the same 
anodization current density. 

As seen from Fig. 5, the internal stresses in the 
porous oxide decrease with the oxide thickness 
increase and the current density rise. Referring to 
Fig. 6, the internal stresses decrease as well with the 
increase in the formation voltage. However, it is 
significant that the value of these stresses is 
comparable with the aluminum yield point for all cases 
while the above calculations show that the internal 
stresses at the oxide-metal interface can be few times 
above the yield point. It is well-known that at σ > σs 
aluminum undergoes structural transformations 
characteristic of the afterflow stage, resulting in the 
internal stress relaxation up to the level σ ≈ σs. 
Therefore, in the ideal case we should to have had a 
constant σ value close to σs irrespective of the 
parameters shown in Fig. 5. Obviously, the deviation 
from ideality is referred to the dependence of the 
relaxation level of the internal stresses on both the 
oxide layer thickness (Fig. 5) and the plastically 
deformed aluminum range width (Fig. 4). 

The internal stresses in the growing porous oxide 
were found in these experiments to be always 
compressive stresses (the console flexes in the 
direction opposite to the oxide location) and are 
practically independent on the internal stresses in the 
initial aluminum film. The last once more testifies the 
fact of reaching the aluminum yield point at the  
oxide formation. 

 
 

4. Conclusions 
 

Thus, the analysis of the internal stresses in 
deposited aluminum layers has showed that internal 
stress in aluminum films decreases with increasing 
film thickness and substrate temperature. Tensile 
stresses are present in the aluminum film. At the same 

time, in aluminum films with a thickness of more than 
1.103 nm, the tensile stress decreases with an increase 
in the deposition rate.  

Theoretical and experimental studies of 
deformation and stress at the porous aluminum oxide-
aluminum interface have shown that the internal 
stresses in the growing porous oxide are always 
compressive stresses and practically do not depend on 
the internal stresses in the initial aluminum film. 

The study may be applied to fabricate the 
nanoporous alumina coatings for different kinds of 
high-sensitive sensors. 
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