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Abstract. The all pairs shortest paths search in a graph has many different application domains. This paper analyzes
the known algorithms for solving the problem and considers its parallelization and scaling to the graph size and multiprocessor
architecture. It considers a class of shortest paths block-parallel algorithms and studies their advantages and disadvantages.
Modeling and simulation have shown that the block algorithms give a manifold reduction in the exchange of data between the
hierarchical memory levels for certain ratios of the graph size to the cache memory size. However, if the graph size is too large
its characteristics are close to the Floyd-Warshall algorithm characteristics. To improve the performance, the homogeneous
block algorithm has been transformed into a heterogeneous one, which reduces the block computation time. Further
improvement has been achieved through the development of a cooperative multi-thread scheduler and a block-parallel
algorithm that target large graphs and change the order of block calculation, localize data processing, reduce the critical path,
decrease the operation time on a multi-core system, and improve the hierarchical memory operation. Studies have shown that
the parallel cooperative multi-thread algorithm works well together with the heterogeneous algorithm, since the problem
solving time reduces. The carried out analysis and the conducted computational experiments have made it possible to outline
the directions for further development of models and algorithms for scaling the all pairs shortest paths problem.
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Problem formulation.

The problem of finding the shortest paths in a weighted graph [1 — 5] is formulated in different
settings: for an directed or undirected, sparse or dense graph, with weighted edges and/or weighted
vertices, positive or possibly negative weights, between a pair of vertices (SSSP — Single Source Shortest
Path) or all pairs of vertices (APSP — All Pairs Shortest Path), with the obligatory passage of all vertices
(the traveling salesman problem) or an optional passage, etc. The computational complexity of different
problem statements is different: the search for the shortest path between a pair of vertices is solved in

39



Ceovmasn Meacoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA u ananus

8b1COK020 yposHay, Munck, Pecnyonuxa benapycw, 19-20 mas 2021 2o0a

polynomial second degree time by Dijkstra's algorithm; the search for the shortest paths between all pairs
of vertices is solved in polynomial time of the third degree by the Floyd—Warshall algorithm; finding the
shortest path with the mandatory passage of all vertices of the graph is an NP-hard problem in
combinatorial optimization.

The APSP task plays an important role in many applications [6 — 8]: reducing city traffic,
optimizing network infrastructure in data centers, planning tasks, implementing augmented reality,
network analysis, microelectronics, programming, computer networks, computer games etc. At the same
time, even the Floyd—Warshall algorithm has a search time proportional to the value of 1.25x10 for a
graph of 5000 vertices, which is practically unacceptable even on modern computer architectures. In many
application domains, real graphs reach much larger sizes, for which the Floyd - Warshall algorithm
consumes unrealistically large amount of time.

Works [3 — 5] propose APSP algorithms, which have lower computational complexity over Floyd—
Warshall algorithm in special cases. The undirected all-pairs shortest paths algorithm presented in [3, 4]
runs on a pointer machine in time O(mxnxao(m, n)) where m and n are the number of edges and vertices,
respectively, and o(m,n) is Tarjan's inverse-Ackermann function. It improves upon all previous APSP
algorithms when the graph is sparse, i.e., when m = o(n log n). Seidel's algorithm [5] solves the APSP
problem for undirected, unweighted, connected graphs in O(n®xlog(n)) expected time, where o < 2.373.
Despite the lower computational complexity, these algorithms cannot be applied to general-case APSP
problem. Moreover, they do not solve the graph scaling problem by means of algorithm parallelization
on multi-processor systems.

Another approach for solving the APSP scaling problem is the development of shortest paths
algorithm versions, which decompose the large graph and adjacency and weight matrices into blocks of
smaller size. Such blocks fit in the size of local cache memory and accelerate the computational process.
The blocked Floyd—Warshall algorithm that is proposed and investigated in [9 — 16] helped to solve two
major problems: 1) to localize the data processing within blocks and thereby reduce the number of
exchange operations in hierarchical memory; 2) to organize the parallel computation of blocks on a multi-
processor system. The further development of the blocked algorithm was carried out in [17 — 22]. First,
the authors proposed the cooperative threaded parallel APSP algorithm. It runs by means of a cooperative
threads scheduler. Second, the homogeneous blocked APSP algorithm was extended to a more powerful
heterogeneous blocked APSP algorithm.

Solving large-scale problems in reasonable time is impossible without intensive utilizing the
parallelism provided by modern multi-processor systems. The paper aims at analyzing the strength and
weakness of known APSP algorithms, at identifying ways of developing new block-parallel algorithms
that solve the scaling problem at both the level of graph size and at the level of the processor count in a
multi-processor system or the core count in the multi-core system. Improving parameters of the algorithms
and their implementations can be only achieved by increasing the efficiency of utilizing all resources of
the basic computing system (processors and processor cores, all parts of the hierarchical memory,
operating system tools etc.)

Analysis of all pairs shortest paths basic algorithms.

Let a directed weighted graph G = (V, E) with a set V of N vertices and a set E of edges be
represented by a matrix W of positive edge weights, in which w;;=0 for i =0...N-1 and wjj=oo for
(i, J) ¢ E. The lengths of the shortest paths between pairs of vertices are described by a matrix D. The
Floyd-Warshall (FW) algorithm [1, 2] recalculates the D matrix at steps 0...k...N corresponding to the
vertices of the graph, thus forming a sequence of matrices D(0)...D(k)...D(N), in which D(0)=W and D(k)
is the matrix of the lengths of the shortest paths passing through the vertices 0, 1, ..., k-1. Matrix D(N) is
the resulting matrix of the shortest distances. Figure 1 illustrates the transition from step k-1 to step Kk,
where the length Djj(k) of the shortest path from vertex i to vertex j is calculated over the elements of the
D(k-1) matrix:

D, (k) =min{ D, (k-1), D, (k-1)+D,(k-1);
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As the k index increases, the row and column are shifted along the D(k) matrix from top to bottom
and from left to right. The pseudo-code of the Floyd-Warshall algorithm (Figure 2) consists of three loops
along indices k, i and j. It uses the single D matrix of dimension NxN instead of a sequence D(0)...D(N)
of matrices. Since all elements are calculated in the similar way, the algorithm is highly homogeneous,
and its computational complexity is O(N®). Note that due to the accumulation of all intermediate data in
one matrix D, the permutation of the cycle along k with cycles along i and j leads to incorrect results.

0 k-1 N-1 0 k N-1
0 0
k-1 : K
N-1 N-1

D(k-1) D(K)

Figure 1. Recalculating pairs shortest path lengths over vertex k

Algorithm Floyd Warshall (W) {
D=W,
for k=0...N-1 {
fori=0...N-1 {
for j=0...N-1 {
S = Dik + Dy;;
if(Djj > s) Djj=s;
}

1}

Figure 2. Floyd-Warshall algorithm

The basic Floyd-Warshall algorithm is not capable of processing huge graphs represented by huge
matrices, therefore it does not solve the APSP scaling problem. A single thread implements the algorithm.
As a result, the thread runs on one core of a multi-core system, and all data pass through a local cache of
small size. This leads to a huge number of line misses in the hierarchical memory, therefore cache flaking
can be observed during the algorithm execution.

The FW algorithm has no parallelism in its control flow. But the algorithm data flow can be
parallelized automatically by an OpenMP compiler, or can be parallelized manually to a multi-thread
(multi-process) architecture using thread-based programming facilities or MPI libraries. The drawback of
such a solution is that the algorithm as is possesses a hidden parallelism that cannot be extracted
automatically by a parallelization compiler. Therefore, parallel modifications of the Floyd-Warshall
sequential algorithm have to be developed before creating a program realization. These will be able to
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solve the scaling problem and to find the all pairs shortest paths in large graphs on many processors of
the basic computing system. The efficient solution of this problem is impossible without developing
methods of reducing the consumption of computational resources.

Homogeneous blocked APSP algorithms.

Works [9, 10] generalized the Floyd-Warshall (FW) algorithm to the blocked APSP algorithm
(BFW) for finding the shortest paths in a graph whose D matrix of the NxN dimension is divided into
blocks of the BxB dimension, thus forming a matrix of blocks of the MxM dimension, where M = N / B.
Figure 3 illustrates the block algorithm flow and the order of calculating blocks. The calculation of blocks
is carried out in a loop along m = 0...M-1. At first iteration of the loop, the diagonal DO block with (0, 0)
coordinates and the blocks of the cross are calculated, including the blocks C1 of column 0 and blocks
C2 of row 0. The remaining peripheral blocks P3 are calculated over blocks C1 and C2. At second iteration
of the loop, the diagonal block DO with coordinates (1, 1) and the blocks of the shifted cross, including
the C1 and C2 blocks of column 1 and row 1, are calculated. The peripheral P3 blocks are calculated over
blocks C1 and C2. At subsequent iterations, the cross is shifted step by step from the upper left to the
lower right corner of the matrix, and the block recalculation procedure remains the same. At one iteration
of the loop, one diagonal block, 2x(M-1) cross blocks and (M-1)? peripheral blocks are calculated. At all
iterations, BFW recalculates M® blocks.

0 1 2 3 0 1 2 3

Om C2 | C2 | C2 o P3| C1 | P3| P3
1

11 C1| P3| P3| P3 C2 C2 | C2

2| C1 | P3| P3| P3 2| P3| C1 | P3| P3

3| C1 | P3| P3| P3 3| P3| C1 | P3| P3

Figure 3. Block calculation flow in the blocked APSP algorithm

Figure 4 depicts the BFW algorithm. Its operation is represented by a loop along index m, at each
iteration of which the universal BCA algorithm (Figure 5) recalculate all blocks. This allows the BFW
algorithm to be called homogeneous. In Figure 5, argument B! is a calculated block, and arguments B?
and B?® are blocks, through which the calculation is carried out. M iterations of the loop, recalculate each
block M times. The BCA algorithm has the computational complexity of O(B®). Note that it is difficult to
transform and modify the BCA because of its versatility.
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Algorithm BFW {
for m=0...M-1 {
BCA (Bm,m,Bmm,Bmm); /I type DO
for i=0...m-1 {
BCA (Bi,m,Bi,m,Bm,m); /i type C1l
BCA (Bm,Bmm,Bmi);  // type C2

¥
for i=m+1...M-1{
BCA (Bim,Bim,Bmm);  //type C1 Algorithm BCA (B*, B?, B%) {
BCA (Bm,i,Bm,m,Bm,i); 1/ type C2 for k=0...B-1 {
I b3 = row(B? K);
for i=0...m-1{ for i=0...B-1 {
for J=0...m-1 blri — rOW(Bl |)
BCA (Bi;,Bim,Bmj); //type P3 o2 .
for j=m+1...M-1 b2 R Bik;
BCA (Bi;,Bim,Bmj); //type P3 for j=0...B-1 {
Y bii= b2 + b3'k;;
for i=m+1...M-1 { if (017 > byj) { b1 = by}
for j=0...m-1 }
BCA (Bi;,Bim,Bmj); //type P3 13y
for j=m+1.. M-1
BCA (Bij,Bim,Bmj); //type P3
+
1}
Figure 4. Blocked Floyd-Warshall algorithm Figure 5. Block calculation algorithm

BFW helped to localize the data processing in multi-level memory and to reduce the number of
exchange operations between levels, as well as to parallelize the process of calculating blocks. The
possibilities of BFW parallelization are shown in [11 — 16]. The block of DO type works in series with
other blocks. All C1 and C2 blocks can work mutually in parallel, and work seriously with DO and P3
blocks. All P3 blocks can work mutually in parallel.

0 50 100 150 200 250

—e— load —-9—-store

Figure 6. Reduction in number of line read (solid) and write (dash) operations given by BFW against
FW (times) vs. matrix size in times to cache size

Comparison of FW and BFW while scaling the APSP problem. We have developed a tool [23] for
the simulation of the fully associative cache to find out how the increase in the size of matrix D influences
the features of FW and BFW. For the matrix size from 4 to 36 times larger to the cache size, the reduction
in the number of line reads produced by BFW slightly exceeds 4 times against FW (Figure 6). When the
matrix size grows from 64 to 121 times, the reduction reaches 8.79 times. This is a big advantage of BFW
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against FW. For a larger matrix where the row size is equal to the three blocks size, the reduction rapidly
falls down to 1.0, which means the BFW has no advantage to the FW regarding the usage of cache for
solving very large size problems. We can explain this as BFW localizes accesses to lines within one block,
but it does not localize data dependencies among blocks.

Heterogeneous blocked APSP algorithms.

Analysis of all calls to the BCA algorithm from the BFW algorithm for calculating a block shows
that the calls distinguish four profiles of arguments B, B? and B2, which are closely related to the specifics
of BCA operation in the BFW algorithm. The profile of type 0, where B=B?=B?, occurs only for the
diagonal block DO (Figure 3). The profile of type 1, where B!=B2£B?, occurs for C1 blocks of the cross
column. The profile of type 2, where B1=B3#B?, occurs for C2 blocks of the cross row. The profile of type
3, where B1B?#B3, occurs for peripheral P3 blocks. Differences in the arguments profile and the block
behavior itself can be used to find methods that reduce the computational resources consumption during
the execution of the BCA algorithm. In particular, the goal is to reduce the operational activity of the
cache, as well as to reduce the block computation time. Thus, in [22] it was proposed to use four new
more efficient algorithms DOBCA, C1BCA, C2BCA and P3BCA instead of one BCA algorithm. New
algorithms are obtained by revising and formal transformation of the FW algorithm, taking into account
the peculiarities of calculating blocks of each type. The BFW algorithm that uses the new algorithms of
calculating blocks is further called HBFW.

Algorithm DOBCA for calculating diagonal block. Let's change the main principle of the Floyd-
Warshall algorithm. The sequence of vertices k of the range from 0 to B-1 will be associated with the
process of stepwise adding the vertices to the graph Gm. As a result, a sequence Gm(0), Gm(1)... Gm(K)...
Gm(B-1) of graphs is generated. The matrix of distances between pairs of vertices in the Gm(K) graph is
denoted by B(k). We represent the block calculation algorithm as a recurrent procedure that calculates
the BY(k) matrix from the B(k-1) matrix and the weights wik and wi; of the edges connecting the added
vertex k with vertices i, j € {0,...,k-1} (Figure 7).

First, the procedure carries out the A operation of adding the k row and k column to the B*(k) matrix
by means of calculating Bik(k) as

B (k)= mi.p_l(sli,- k-D+w,)

0 k-1 k 0 k

B'(k-1) || = — Bl(k)

k-1

k ij k

Figure 7. Recurrent procedure of computing the diagonal block and calculating B(k) using a similar
formula.

Then the procedure carries out the U operation of updating the B*(k-1) matrix to the B*(k) matrix using the
formula

BY (k) = min{ B (k ~1), Bk (k) + Bl (K) |

The recurrent procedure iteratively executes on all vertices of graph Gm. Multiple execution of the
procedure generates a sequence of pairs of the operations: AgUo—A1U1—...—An-1Un-1. Since the operations

44



Ceovmasn Meacoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA u ananus

8b1COK020 yposHay, Munck, Pecnyonuxa benapycw, 19-20 mas 2021 2o0a

of AxUx pair are incompatible in sense of merging the loops along i and j, and the operations of UxAx+1
pair are compatible, it is preferable to use the resynchronized sequence UoAi—U1A>—...—Un-2AN-1—Un-1
taking into account that Ao is replaced by a zero initialization of the B(0) matrix. In the UxAx+1 pair,
operation U is a delayed update of the B*(k) matrix, which is carried out simultaneously with the addition
of the k+1 vertex. Figure 8 shows the pseudo-code of the DOBCA algorithm, in which d" and d° are row
k and column k respectively, and the row(B!,k) operation addresses row k of B1(k) matrix. In DOBCA, the
number of overall iterations of the most nested loop body is B%/3, which is three times less than in BCA.

After removing the calculation of the diagonal block from the BCA algorithm, it still calculates the
C1, C2 and P3 blocks. Its new feature is that it becomes possible to arbitrarily permute the loops along
indices k, i and j in six permutation options for each of the CIBCA, C2BCA and P3BCA algorithms. For
instance, Figure 9 depicts the P3BCA algorithm that calculates the peripheral block using i-j-k
permutation.

To carrying out computational experiments, we implemented the homogeneous BFW algorithm and
heterogeneous HBFW algorithm using OpenMP 3.0. Figure 10a shows that HBFW gives on average an
acceleration of 10.88% on Intel® Core ™ i3 CPU 550 @ 3.20 GHz 3.19 GHz (processor cpul) and of
13.67% on Intel (R) Core (TM) i5-6200UCPU @ 2.20 GHz (processor cpu2) compared to BFW on a
2x2 block matrix. The DOBCA algorithm of calculating the diagonal block (Figure 10b) has mostly
contributed in the speedup. It won over 30% on the cpul processor against BCA, and won up to 60% on
the cpu2 processor.

Algorithm DOBCA(B?) {
d'o=o0; w=Blo;
fork=1...B-1 {
d® = row(Bt,k-1); we=row(B*k);
fori=0...k-1 {b%=o0;}

for i=0...k-1 {
bmin = o0;
for j=0... k-1 {

z=d+d5; if(BYj>z) Blj=z;

i 1 R2 B3
So = BYj+ Wi if(bmin > S0) b'min = So0; Algorithm P3BCA(B*,B*,B°) {

— RL. g Co— - fori=0...B-1 {
} By O e b2" = row(B2,i);
b'j = blmin: d1"=row(B1,i);
} forj=0...B-1 {
fori=0...k-1 { Amin = o0;
Bhi=b%; Blik=di=bi;, W= Bliku; for k=0... B-1 {
} Wik = Bk, s = b2'k + B3y;
} if(dmin > S) dmin = S;
fori=0...B-2 { }
forj=0... B-2 ; r. . ro—=.. -
ZJ: dii + dS; {if(Blij >7) Blj=z; 1} 'H(eLy> dmin) oLy = din
h3 s
Figure 8. New algorithm DOBCA of recalculating Figure 9. Peripheral block recalculation
diagonal block algorithm P3BCA (index order i-j-k)
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Figure 10. Acceleration (%) of a) HBFW over BFW and b) DOBCA over BCA vs. block size
(B=100...2000) at M=2 and N=2*B on cpul (solid) u cpu2 (dash)

Cooperative multi-thread APSP algorithms.

Nowadays, multi-core processors are widely used in many application domains. The number of
cores on a chip goes up to dozens, and for specialized chips it reaches dozens of thousands. The
performance of computing system based on a multi-core processor depends very much on the multi-thread
software algorithms used, and depends very much on how the algorithms are developed and implemented
[24, 25]. From one side, the algorithms can speed up the computing process, but from other side, the
algorithms might give no acceleration effect, moreover they may slowdown the computations. In the case
of thorough development and optimization, the multi-core-based parallelization may realize speedup
factors near the number of cores, or even more if the problem is decomposed to fit in each core's cache,
avoiding accesses to slower main memory. To carry out a multi-thread application, the operating system
can move threads among different processors. Assigning processors to specific threads can improve
performance by eliminating thread migration across processors; such an association between a thread and
a processor is called processor affinity.

In [20], a fast cooperative threaded block-parallel algorithm CTBFW is proposed for solving the
APSP problem. It is based on the BFW algorithm and on a cooperative model [18, 19] of optimizing the
threads execution. The CTBFW algorithm is implemented by a special cooperative scheduler [21].

Let D be a matrix MxM of blocks. Let the equalitiesN mod B=0,M=N/Band M mod P = 0 hold
for the block size B, where P is the number of processors. The calculation of the (i, j) block at the | level
is denoted by D'ij. Matrix L describes the levels of all blocks at each step of the CTBFW operation. To
calculate the blocks, M treads t = 0...M-1 are introduced. To localize data, blocks of row t of matrix D are
assigned to the t thread. Thread t satisfying the condition t mod P = g is included and localized on the
processor (group) geP.

CTBFW changes the order of calculating blocks as compared to BFW in order to increase the
processor load, reduce data exchange between levels of hierarchical memory, and reduce the time it takes
to find the shortest paths. It distinguishes four types of blocks depending on the values of i, j and I: central,
horizontal, vertical and peripheral.

The block D'j j is considered as central if i=j=I-1. Its input data are the D'-%; j block. The D'; j
block is considered as horizontal if i=I-1 and i»j. Its input data are D'-%; j and D'j-1,1-1 blocks. The D'j j
and D'|_1,1.1 blocks are located in one thread i. The D'i,j block is considered as vertical if j=1-1 and i=j.
Its input data are D'"%j j and D'-1,1-1 blocks. Dependence of the D'; j block on the D'\-1,-1 block is

resolved through the switch thread operation, if these are blocks of the same group, otherwise, through
the wait for and notify set operations, if these are blocks of different groups.

The D'i,j block is considered as peripheral for i#l—1 and j#l-1. Its input data are Dl'li,j, Dli,|-1 and
D'\-1,j blocks. Despite the presence of the dependence of the D'ij block on the D'j ;-1 block, the
dependence resolution is not required, since both blocks are in the same row of D matrix. The resolution
of the D'i,j block dependence on the D'|-1,j block is performed using the switch thread operation, if these
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are blocks of the same group, otherwise by means of wait for and notify set operations, if these are blocks
of different groups.

In [9], when proving the correctness of the proposed recursive block algorithm, it was shown that
the D'i j block can be correctly calculated through D'"1; j, DY, j-1 and DY|.1,j blocks, in case when v>I-
1 and u > I-1. The CTBFW algorithm uses this relaxation of requirements to reorder block computations
in order to more efficiently parallelize threads, increase processor utilization, and improve the localization
of data access to the cache. Each thread implements the algorithm that switches from one operating mode
to another. CTBFW uses six modes: master, slave, complement, passive_A, passive_B and passive_C.
Figure 11 depicts the step-by-step parallel operation of the CTBFW algorithm on a matrix D [4x4] and
on two processors. The algorithm is implemented in two versions: homogeneous and heterogeneous.
Table 1 reports results that show the average gain of 6.16% the heterogeneous HCTBFW algorithm has
against the homogeneous CTBFW, and show the average gain of 10.99% (without affinity of threads to
processors) the HBFW that is realized using OpenMP has against BFW, and the gain of 11.37% (with
affinity) the HBFW has against BFW.

t, — control switch to thread tg (master mode) after calculation of D3y block

1 . . .
1y — control switch to thread t; right after changing operational mode to passive (B) D i —block of row i in column j of matrix D, calculated to [ level

Slave Master mode Passive mode (B) Passive mode (C) End ‘?f
mode ! execution
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Figure 11. Timing diagram of CTBFW operation on a matrix of 4x4 blocks on two processors (the time
unit is the time of calculating one block at one level)

o1 2 3 4 5 6 7 8

Table 1. Comparison of parallel heterogeneous HBFW to parallel homogeneous blocked APSP

algorithms
Graph size in node HBFW over BFW
count HCTBFW over CTBFW without affinity with affinity
2400 6.62% 9.67% 9.74%
4800 6.47% 11.68% 12.90%
9600 5.39% 11.63% 11.46%

Conclusion. The basic Floyd-Warshall algorithm does not solve the APSP scaling problem since it
is not capable of processing huge graphs. The direct parallelization of the algorithm leads to multi-thread
applications, which cannot manage the computational resources of a multi-core system efficiently. The
blocked Floyd-Warshall algorithm solves two main tasks: it localizes the data processing within caches
and reduces the number of exchange operations between the hierarchical memory levels. It also allows
the parallel execution of the blocks. The next step in solving the APSP scaling problem is the
heterogeneous blocked APSP algorithm. Its advantage to the homogeneous blocked algorithm is the usage
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of a separate specific block calculation algorithm for each of four block types, which takes into account
the specific features of computing architecture and accelerates computations. The contribution of the
CTBFW algorithm in the APSP scaling is the reduction of processor time spent on the thread execution
control, and the increase of core load. Moreover, the algorithm efficiently works together with the
heterogeneous algorithm. Our further research will be devoted to the development of memory
management techniques embedded in the APSP algorithms. For instance, the assumption that all blocks
of a block matrix row are assigned to one processor can be applied to a distributed memory multiprocessor
system, but it is not justified for a shared memory multi-core system where the blocks do not fit in the
core local cache.
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AunHotanus. [IpoOnema moucka KpaTyalMx IyTed MEXAy BCEMU I1apaMH BepIIMH rpada HUMeeT MHOro
pa3sHOOOpa3HBIX 00JACTe NMPaKTHYECKOro IPHMEHEeHWs. B craThe maH aHaIU3 U3BECTHBIX alTOPUTMOB €€ PELICHHS U
paccMoTpeHa mpobiieMa pacrapaiieIMBaHusA M MacliTaOUpOBaHU K pa3Mepy rpada U apXUTeKType MHOTOIPOLECCOPHON
cucrembl. MccnenoBan kiiacc OJI0YHO-IIApaJUICNIBHBIX alTOPUTMOB MOMCKA KpaT4aMIIMX MyTel, H3y4eHbl UX JOCTOMHCTBA U
HefocTaTku. [lyTeM MMUTaIMOHHOIO MOJEIMPOBAHKA ITOKA3aHO, YTO IPH ONPEAEICHHBIX COOTHOIICHUAX pa3Mepa rpada u
pa3Mepa K3II HaMATH, OJIOYHBIN aNrOpUTM JaeT MHOTOKpPAaTHOE COKpalleHHe OoOMeHa IaHHBIMH MEXIYy YPOBHAMHU
HepapXUIeCcKOH MaMATH, OXHAKO MPH CIUIIKOM OOJNBIIOM YBETHYECHHH pa3Mepa rpada ero XapakKTepHCTUKH MPUOIMKAIOTCS
K XxapakTtepuctukam anropurma @noiina-Yopmemna. C 1enbl0 MOBBINICHHS TPOU3BOAUTEIBHOCTH, OJHOPOIHBIN OJOYHBIN
QITOPUTM TpaHC(HOPMHUPOBAH B PA3HOPOAHBIN, COKpAILAIONIN BpeMs pacuera omHoro Oioka. [lajibHeiilee yiydlieHHe
XapaKTEPUCTUK JOCTHTHYTO 33 CUET pa3pabOTKH KOOIEPaTHBHOI'O MOTOKOBOTO IUIAHMPOBILMKA M OJOYHO-TAPAIIIENBEHOTO
aJITOPUTMA, OPHEHTUPOBAHHOI'O Ha Tpadbl OONBIIOro pasMepa M OTIMYAIONMIErocs W3MEHEHHEM IOpsKa pacuera OJIOKOB,
JIOKanu3anue 00pabOTKH TaHHBIX, COKpAIICHHEM KPUTHYECKOro MyTH, yMEHBLIEHHEM BpeMeHH PaboThl Ha MHOTOSAEPHON
CHCTEME, YIyqIIEeHHEM PabOThl HEpapXUUECKOM MaMATH. MccrenoBaHus MOKa3aly, YTO apauIebHbIN MOTOKOBBIH alrOPUTM
XOPOIIO COYETAETCS C HEOAHOPOAHBIM alITOPUTMOM, TIPH 3TOM BpEMsI PEIICHHS 3a/1a9 COKpalaeTcs. BolmomHeHHbI aHam3 1
MIPOBEACHHBIC BBHIYMCIUTEIBHBIE SKCIIEPUMEHTHI MO3BOJIMIN HAMETUTh HAIPABIICHUS AANBHEWIIEro pa3BUTHS MOJIEICH U
JITOPUTMOB PEIICHHS TPOOIIEMBI TOMCKA KPaTYAHIINX ITyTel ¥ MaciTaOMpOBaHUs 3TOM MPOOIEMBI.

KiloueBble cjioBa: KpaT4admmil myTh, anroputMm Dioiima-Yopmemia, MacmTabupoBanue, OJOYHBIA aITOPHTM,
Pa3HOPOJHBIN OJIOYHBIA aITOPUTM, MHOTOIIOTOYHBIH aJlTOPUTM, KOOTIEPATHBHOE BBHITIOTHEHUE, MHOTOIIPOLIECCOPHAs CUCTEMA,
nepapxuieckast mamsThb.
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