
Cедьмая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ

высокого уровня», Минск, Республика Беларусь, 19-20 мая 2021 года

39

UDC [611.018.51+615.47]:612.086.2

ALL PAIRS SHORTEST PATHS SEARCH IN LARGE GRAPHS

А.А. Prihozhy

Professor at the Computer and System

Software Department,

Doctor of Technical Sciences,

Full Professor

O.N. Karasik

Tech Lead at ISsoft Solutions

(part of Coherent Solutions) in

Minsk, Belarus, PhD in

Technical Science

Belarusian National Technical University, Belarus

ISsoft Solutions (part of Coherent Solutions), Belarus

E-mail: prihozhy@yahoo.com, karasik.oleg.nikolaevich@gmail.com

A.A. Prihozhy
Full professor at the Computer and system software department of Belarusian national technical

university, doctor of science (1999) and full professor (2001). His research interests include programming and

hardware description languages, parallelizing compilers, and computer aided design techniques and tools for
software and hardware at logic, high and system levels, and for incompletely specified logical systems. He has

over 300 publications in Eastern and Western Europe, USA and Canada. Such worldwide publishers as IEEE,

Springer, Kluwer Academic Publishers, World Scientific and others have published his works.

O.N. Karasik
Tech Lead at ISsoft Solutions (part of Coherent Solutions) in Minsk, Belarus; PhD in Technical Science

(2019). Interested in parallel computing on multi-core and multi-processor systems.

Abstract. The all pairs shortest paths search in a graph has many different application domains. This paper analyzes

the known algorithms for solving the problem and considers its parallelization and scaling to the graph size and multiprocessor

architecture. It considers a class of shortest paths block-parallel algorithms and studies their advantages and disadvantages.

Modeling and simulation have shown that the block algorithms give a manifold reduction in the exchange of data between the
hierarchical memory levels for certain ratios of the graph size to the cache memory size. However, if the graph size is too large

its characteristics are close to the Floyd-Warshall algorithm characteristics. To improve the performance, the homogeneous

block algorithm has been transformed into a heterogeneous one, which reduces the block computation time. Further

improvement has been achieved through the development of a cooperative multi-thread scheduler and a block-parallel

algorithm that target large graphs and change the order of block calculation, localize data processing, reduce the critical path,

decrease the operation time on a multi-core system, and improve the hierarchical memory operation. Studies have shown that

the parallel cooperative multi-thread algorithm works well together with the heterogeneous algorithm, since the problem

solving time reduces. The carried out analysis and the conducted computational experiments have made it possible to outline

the directions for further development of models and algorithms for scaling the all pairs shortest paths problem.

Keywords: shortest path, Floyd-Warshall algorithm, scaling, block algorithm, heterogeneous algorithm, multithreaded

algorithm, cooperative execution, multiprocessor system, hierarchical memory.

Problem formulation.

The problem of finding the shortest paths in a weighted graph [1 – 5] is formulated in different

settings: for an directed or undirected, sparse or dense graph, with weighted edges and/or weighted

vertices, positive or possibly negative weights, between a pair of vertices (SSSP – Single Source Shortest

Path) or all pairs of vertices (APSP – All Pairs Shortest Path), with the obligatory passage of all vertices

(the traveling salesman problem) or an optional passage, etc. The computational complexity of different

problem statements is different: the search for the shortest path between a pair of vertices is solved in

Cедьмая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ

высокого уровня», Минск, Республика Беларусь, 19-20 мая 2021 года

40

polynomial second degree time by Dijkstra's algorithm; the search for the shortest paths between all pairs

of vertices is solved in polynomial time of the third degree by the Floyd–Warshall algorithm; finding the

shortest path with the mandatory passage of all vertices of the graph is an NP-hard problem in

combinatorial optimization.

The APSP task plays an important role in many applications [6 – 8]: reducing city traffic,

optimizing network infrastructure in data centers, planning tasks, implementing augmented reality,

network analysis, microelectronics, programming, computer networks, computer games etc. At the same

time, even the Floyd–Warshall algorithm has a search time proportional to the value of 1.251011 for a

graph of 5000 vertices, which is practically unacceptable even on modern computer architectures. In many

application domains, real graphs reach much larger sizes, for which the Floyd - Warshall algorithm

consumes unrealistically large amount of time.

Works [3 – 5] propose APSP algorithms, which have lower computational complexity over Floyd–

Warshall algorithm in special cases. The undirected all-pairs shortest paths algorithm presented in [3, 4]

runs on a pointer machine in time O(mn(m, n)) where m and n are the number of edges and vertices,

respectively, and (m,n) is Tarjan's inverse-Ackermann function. It improves upon all previous APSP

algorithms when the graph is sparse, i.e., when m = o(n log n). Seidel's algorithm [5] solves the APSP

problem for undirected, unweighted, connected graphs in O(nlog(n)) expected time, where  < 2.373.

Despite the lower computational complexity, these algorithms cannot be applied to general-case APSP

problem. Moreover, they do not solve the graph scaling problem by means of algorithm parallelization

on multi-processor systems.

Another approach for solving the APSP scaling problem is the development of shortest paths

algorithm versions, which decompose the large graph and adjacency and weight matrices into blocks of

smaller size. Such blocks fit in the size of local cache memory and accelerate the computational process.

The blocked Floyd–Warshall algorithm that is proposed and investigated in [9 – 16] helped to solve two

major problems: 1) to localize the data processing within blocks and thereby reduce the number of

exchange operations in hierarchical memory; 2) to organize the parallel computation of blocks on a multi-

processor system. The further development of the blocked algorithm was carried out in [17 – 22]. First,

the authors proposed the cooperative threaded parallel APSP algorithm. It runs by means of a cooperative

threads scheduler. Second, the homogeneous blocked APSP algorithm was extended to a more powerful

heterogeneous blocked APSP algorithm.

Solving large-scale problems in reasonable time is impossible without intensive utilizing the

parallelism provided by modern multi-processor systems. The paper aims at analyzing the strength and

weakness of known APSP algorithms, at identifying ways of developing new block-parallel algorithms

that solve the scaling problem at both the level of graph size and at the level of the processor count in a

multi-processor system or the core count in the multi-core system. Improving parameters of the algorithms

and their implementations can be only achieved by increasing the efficiency of utilizing all resources of

the basic computing system (processors and processor cores, all parts of the hierarchical memory,

operating system tools etc.)

Analysis of all pairs shortest paths basic algorithms.

Let a directed weighted graph G = (V, E) with a set V of N vertices and a set E of edges be

represented by a matrix W of positive edge weights, in which wi,i=0 for i = 0…N-1 and wi,j= for

(i, j)  E. The lengths of the shortest paths between pairs of vertices are described by a matrix D. The

Floyd-Warshall (FW) algorithm [1, 2] recalculates the D matrix at steps 0…k…N corresponding to the

vertices of the graph, thus forming a sequence of matrices D(0)…D(k)…D(N), in which D(0)=W and D(k)

is the matrix of the lengths of the shortest paths passing through the vertices 0, 1, …, k-1. Matrix D(N) is

the resulting matrix of the shortest distances. Figure 1 illustrates the transition from step k-1 to step k,

where the length Dij(k) of the shortest path from vertex i to vertex j is calculated over the elements of the

D(k-1) matrix:

 )1()1(),1(min)( kDkDkDkD kjikijij

Cедьмая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ

высокого уровня», Минск, Республика Беларусь, 19-20 мая 2021 года

41

As the k index increases, the row and column are shifted along the D(k) matrix from top to bottom

and from left to right. The pseudo-code of the Floyd-Warshall algorithm (Figure 2) consists of three loops

along indices k, i and j. It uses the single D matrix of dimension NN instead of a sequence D(0)…D(N)

of matrices. Since all elements are calculated in the similar way, the algorithm is highly homogeneous,

and its computational complexity is (N3). Note that due to the accumulation of all intermediate data in

one matrix D, the permutation of the cycle along k with cycles along i and j leads to incorrect results.

0

N-1

0 N-1

D(k-1)

k-1

k-1

0

N-1

0 N-1

D(k)

k

k

Figure 1. Recalculating pairs shortest path lengths over vertex k

Algorithm Floyd_Warshall (W) {

D = W;

for k=0…N-1 {

for i=0…N-1 {

for j=0…N-1 {

s = Dik + Dkj;

if(Dij > s) Dij = s;

}

}

}}

Figure 2. Floyd-Warshall algorithm

The basic Floyd-Warshall algorithm is not capable of processing huge graphs represented by huge

matrices, therefore it does not solve the APSP scaling problem. A single thread implements the algorithm.

As a result, the thread runs on one core of a multi-core system, and all data pass through a local cache of

small size. This leads to a huge number of line misses in the hierarchical memory, therefore cache flaking

can be observed during the algorithm execution.

The FW algorithm has no parallelism in its control flow. But the algorithm data flow can be

parallelized automatically by an OpenMP compiler, or can be parallelized manually to a multi-thread

(multi-process) architecture using thread-based programming facilities or MPI libraries. The drawback of

such a solution is that the algorithm as is possesses a hidden parallelism that cannot be extracted

automatically by a parallelization compiler. Therefore, parallel modifications of the Floyd-Warshall

sequential algorithm have to be developed before creating a program realization. These will be able to

Cедьмая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ

высокого уровня», Минск, Республика Беларусь, 19-20 мая 2021 года

42

solve the scaling problem and to find the all pairs shortest paths in large graphs on many processors of

the basic computing system. The efficient solution of this problem is impossible without developing

methods of reducing the consumption of computational resources.

Homogeneous blocked APSP algorithms.

Works [9, 10] generalized the Floyd-Warshall (FW) algorithm to the blocked APSP algorithm

(BFW) for finding the shortest paths in a graph whose D matrix of the NN dimension is divided into

blocks of the BB dimension, thus forming a matrix of blocks of the MM dimension, where M = N / B.

Figure 3 illustrates the block algorithm flow and the order of calculating blocks. The calculation of blocks

is carried out in a loop along m = 0…M-1. At first iteration of the loop, the diagonal D0 block with (0, 0)

coordinates and the blocks of the cross are calculated, including the blocks C1 of column 0 and blocks

C2 of row 0. The remaining peripheral blocks P3 are calculated over blocks C1 and C2. At second iteration

of the loop, the diagonal block D0 with coordinates (1, 1) and the blocks of the shifted cross, including

the C1 and C2 blocks of column 1 and row 1, are calculated. The peripheral P3 blocks are calculated over

blocks C1 and C2. At subsequent iterations, the cross is shifted step by step from the upper left to the

lower right corner of the matrix, and the block recalculation procedure remains the same. At one iteration

of the loop, one diagonal block, 2(M1) cross blocks and (M-1)2 peripheral blocks are calculated. At all

iterations, BFW recalculates M3 blocks.

 0 1 2 3 0 1 2 3

0 D0 C2 C2 C2 0 P3 C1 P3 P3

1 C1 P3 P3 P3
1

C2 D0 C2 C2

2 C1 P3 P3 P3 2 P3 C1 P3 P3

3 C1 P3 P3 P3 3 P3 C1 P3 P3

Figure 3. Block calculation flow in the blocked APSP algorithm

Figure 4 depicts the BFW algorithm. Its operation is represented by a loop along index m, at each

iteration of which the universal BCA algorithm (Figure 5) recalculate all blocks. This allows the BFW

algorithm to be called homogeneous. In Figure 5, argument B1 is a calculated block, and arguments B2

and B3 are blocks, through which the calculation is carried out. M iterations of the loop, recalculate each

block M times. The BCA algorithm has the computational complexity of (B3). Note that it is difficult to

transform and modify the BCA because of its versatility.

Cедьмая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ

высокого уровня», Минск, Республика Беларусь, 19-20 мая 2021 года

43

Algorithm BFW {

for m=0…M-1 {

BCA (Bm,m,Bm,m,Bm,m); // type D0

for i=0…m-1 {

BCA (Bi,m,Bi,m,Bm,m); // type C1

BCA (Bm,i,Bm,m,Bm,i); // type C2

};

for i=m+1…M-1 {

BCA (Bi,m,Bi,m,Bm,m); // type C1

BCA (Bm,i,Bm,m,Bm,i); // type C2

};

for i=0…m-1 {

for j=0…m–1

BCA (Bi,j,Bi,m,Bm,j); // type P3

for j=m+1…M–1

BCA (Bi,j,Bi,m,Bm,j); // type P3

};

for i=m+1…M-1 {

for j=0…m–1

BCA (Bi,j,Bi,m,Bm,j); // type P3

for j=m+1…M-1

BCA (Bi,j,Bi,m,Bm,j); // type P3

};

}}

Algorithm BCA (B1, B2, B3) {

for k=0…B-1 {

b3rk = row(B3,k);

for i=0…B-1 {

b1ri = row(B1,i);

b2 = B2
i,k;

for j=0…B-1 {

bij= b2 + b3rk
j;

if (b1ri
j > bij) { b1ri

j = bij;}

}

}}}

Figure 4. Blocked Floyd-Warshall algorithm Figure 5. Block calculation algorithm

BFW helped to localize the data processing in multi-level memory and to reduce the number of

exchange operations between levels, as well as to parallelize the process of calculating blocks. The

possibilities of BFW parallelization are shown in [11 – 16]. The block of D0 type works in series with

other blocks. All C1 and C2 blocks can work mutually in parallel, and work seriously with D0 and P3

blocks. All P3 blocks can work mutually in parallel.

Figure 6. Reduction in number of line read (solid) and write (dash) operations given by BFW against

FW (times) vs. matrix size in times to cache size

Comparison of FW and BFW while scaling the APSP problem. We have developed a tool [23] for

the simulation of the fully associative cache to find out how the increase in the size of matrix D influences

the features of FW and BFW. For the matrix size from 4 to 36 times larger to the cache size, the reduction

in the number of line reads produced by BFW slightly exceeds 4 times against FW (Figure 6). When the

matrix size grows from 64 to 121 times, the reduction reaches 8.79 times. This is a big advantage of BFW

Cедьмая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ

высокого уровня», Минск, Республика Беларусь, 19-20 мая 2021 года

44

against FW. For a larger matrix where the row size is equal to the three blocks size, the reduction rapidly

falls down to 1.0, which means the BFW has no advantage to the FW regarding the usage of cache for

solving very large size problems. We can explain this as BFW localizes accesses to lines within one block,

but it does not localize data dependencies among blocks.

Heterogeneous blocked APSP algorithms.

Analysis of all calls to the BCA algorithm from the BFW algorithm for calculating a block shows

that the calls distinguish four profiles of arguments B1, B2 and B3, which are closely related to the specifics

of BCA operation in the BFW algorithm. The profile of type 0, where B1=B2=B3, occurs only for the

diagonal block D0 (Figure 3). The profile of type 1, where B1=B2B3, occurs for C1 blocks of the cross

column. The profile of type 2, where B1=B3B2, occurs for C2 blocks of the cross row. The profile of type

3, where B1B2B3, occurs for peripheral P3 blocks. Differences in the arguments profile and the block

behavior itself can be used to find methods that reduce the computational resources consumption during

the execution of the BCA algorithm. In particular, the goal is to reduce the operational activity of the

cache, as well as to reduce the block computation time. Thus, in [22] it was proposed to use four new

more efficient algorithms D0BCA, C1BCA, C2BCA and P3BCA instead of one BCA algorithm. New

algorithms are obtained by revising and formal transformation of the FW algorithm, taking into account

the peculiarities of calculating blocks of each type. The BFW algorithm that uses the new algorithms of

calculating blocks is further called HBFW.

Algorithm D0BCA for calculating diagonal block. Let's change the main principle of the Floyd-

Warshall algorithm. The sequence of vertices k of the range from 0 to B-1 will be associated with the

process of stepwise adding the vertices to the graph Gm. As a result, a sequence Gm(0), Gm(1)… Gm(k)…

Gm(B-1) of graphs is generated. The matrix of distances between pairs of vertices in the Gm(k) graph is

denoted by B1(k). We represent the block calculation algorithm as a recurrent procedure that calculates

the B1(k) matrix from the B1(k-1) matrix and the weights wik and wkj of the edges connecting the added

vertex k with vertices i, j  {0,…,k-1} (Figure 7).

First, the procedure carries out the A operation of adding the k row and k column to the B1(k) matrix

by means of calculating B1
ik(k) as

 jkij
kj

ik wkBkB 


)1(min)(1

1...1

1

B
1
(k-1)

wik

wkj

0

k-1

0 k-1 k

B1(k)

0

0

k

k

k

Figure 7. Recurrent procedure of computing the diagonal block and calculating B1

kj(k) using a similar

formula.

Then the procedure carries out the U operation of updating the B1(k-1) matrix to the B1(k) matrix using the
formula

 )()(),1(min)(1111 kBkBkBkB kjikijij 

The recurrent procedure iteratively executes on all vertices of graph Gm. Multiple execution of the

procedure generates a sequence of pairs of the operations: A0U0–A1U1–…–AN-1UN-1. Since the operations

Cедьмая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ

высокого уровня», Минск, Республика Беларусь, 19-20 мая 2021 года

45

of AkUk pair are incompatible in sense of merging the loops along i and j, and the operations of UkAk+1

pair are compatible, it is preferable to use the resynchronized sequence U0A1–U1A2–…–UN-2AN-1–UN-1

taking into account that A0 is replaced by a zero initialization of the B1(0) matrix. In the UkAk+1 pair,

operation Uk is a delayed update of the B1(k) matrix, which is carried out simultaneously with the addition

of the k+1 vertex. Figure 8 shows the pseudo-code of the D0BCA algorithm, in which dr and dc are row

k and column k respectively, and the row(B1,k) operation addresses row k of B1(k) matrix. In D0BCA, the

number of overall iterations of the most nested loop body is B3/3, which is three times less than in BCA.

After removing the calculation of the diagonal block from the BCA algorithm, it still calculates the

C1, C2 and P3 blocks. Its new feature is that it becomes possible to arbitrarily permute the loops along

indices k, i and j in six permutation options for each of the C1BCA, C2BCA and P3BCA algorithms. For

instance, Figure 9 depicts the P3BCA algorithm that calculates the peripheral block using i-j-k

permutation.

To carrying out computational experiments, we implemented the homogeneous BFW algorithm and

heterogeneous HBFW algorithm using OpenMP 3.0. Figure 10a shows that HBFW gives on average an

acceleration of 10.88% on Intel® Core ™ i3 CPU 550 @ 3.20 GHz 3.19 GHz (processor cpu1) and of

13.67% on Intel (R) Core (TM) i5-6200UCPU @ 2.20 GHz (processor cpu2) compared to BFW on a

22 block matrix. The D0BCA algorithm of calculating the diagonal block (Figure 10b) has mostly

contributed in the speedup. It won over 30% on the cpu1 processor against BCA, and won up to 60% on

the cpu2 processor.

Algorithm D0BCA(B1) {

dr
0 = ; wr

0 = B1
01;

for k=1…B-1 {

dc = row(B1,k-1); wc = row(B1,k);

for i=0…k-1 { bc
i = ; }

for i=0…k-1 {

br
min = ;

for j=0… k-1 {

z = dr
i + dc

j; if(B1
ij > z) B1

ij = z;

s0 = B1
ij + wr

j; if(br
min > s0) br

min = s0;

s1 = B1
ij + wc

i; if(bc
j > s1) bc

j = s1;

}

br
j = br

min;

}

for i=0…k-1 {

B1
ki = bc

i; B1
ik = dr

i = br
i; wr

j = B1
i,k+1;

} wr
k = B1

k,k+1;

}

for i=0…B-2 {

for j=0… B-2 {

z = dr
i + dc

j; if(B1
ij > z) B1

ij = z;

}}}

Algorithm P3BCA(B1,B2,B3) {

for i=0…B-1 {

b2r = row(B2,i);

d1 r = row(B1,i);

for j=0…B-1 {

dmin = ;

for k=0… B-1 {

s = b2r
k + B3

kj;

if(dmin > s) dmin = s;

}

if(d1 r
j > dmin) d1 r

j = dmin;

}}

Figure 8. New algorithm D0BCA of recalculating

diagonal block

Figure 9. Peripheral block recalculation

algorithm P3BCA (index order i-j-k)

Cедьмая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ

высокого уровня», Минск, Республика Беларусь, 19-20 мая 2021 года

46

a)

b)

Figure 10. Acceleration (%) of a) HBFW over BFW and b) D0BCA over BCA vs. block size

(B=100…2000) at M=2 and N=2*B on cpu1 (solid) и cpu2 (dash)

Cooperative multi-thread APSP algorithms.

Nowadays, multi-core processors are widely used in many application domains. The number of

cores on a chip goes up to dozens, and for specialized chips it reaches dozens of thousands. The

performance of computing system based on a multi-core processor depends very much on the multi-thread

software algorithms used, and depends very much on how the algorithms are developed and implemented

[24, 25]. From one side, the algorithms can speed up the computing process, but from other side, the

algorithms might give no acceleration effect, moreover they may slowdown the computations. In the case

of thorough development and optimization, the multi-core-based parallelization may realize speedup

factors near the number of cores, or even more if the problem is decomposed to fit in each core's cache,

avoiding accesses to slower main memory. To carry out a multi-thread application, the operating system

can move threads among different processors. Assigning processors to specific threads can improve

performance by eliminating thread migration across processors; such an association between a thread and

a processor is called processor affinity.

In [20], a fast cooperative threaded block-parallel algorithm CTBFW is proposed for solving the

APSP problem. It is based on the BFW algorithm and on a cooperative model [18, 19] of optimizing the

threads execution. The CTBFW algorithm is implemented by a special cooperative scheduler [21].

Let D be a matrix MM of blocks. Let the equalities N mod B = 0, M = N / B and M mod P = 0 hold

for the block size B, where P is the number of processors. The calculation of the (i, j) block at the l level

is denoted by Dl
i,j. Matrix L describes the levels of all blocks at each step of the CTBFW operation. To

calculate the blocks, M treads t = 0…M-1 are introduced. To localize data, blocks of row t of matrix D are

assigned to the t thread. Thread t satisfying the condition t mod P = g is included and localized on the

processor (group) gP.

CTBFW changes the order of calculating blocks as compared to BFW in order to increase the

processor load, reduce data exchange between levels of hierarchical memory, and reduce the time it takes

to find the shortest paths. It distinguishes four types of blocks depending on the values of i, j and l: central,

horizontal, vertical and peripheral.

The block Dl
i , j is considered as central if i=j=l1. Its input data are the Dl -1

i , j block. The Dl
i , j

block is considered as horizontal if i=l1 and ij. Its input data are Dl -1
i , j and Dl

l -1, l -1 blocks. The Dl
i , j

and Dl
l -1 ,l -1 blocks are located in one thread i. The Dl

i , j block is considered as vertical if j=l1 and ij.

Its input data are Dl -1
i , j and Dl

l -1,l -1 blocks. Dependence of the Dl
i , j block on the Dl

l -1, l -1 block is

resolved through the switch thread operation, if these are blocks of the same group, otherwise, through

the wait for and notify set operations, if these are blocks of different groups.

The Dl
i , j block is considered as peripheral for i≠l1 and j≠l1. Its input data are Dl -1

i , j, D
l
i , l -1 and

Dl
l -1, j blocks. Despite the presence of the dependence of the Dl

i , j block on the Dl
i , l -1 block, the

dependence resolution is not required, since both blocks are in the same row of D matrix. The resolution

of the Dl
i , j block dependence on the Dl

l -1 , j block is performed using the switch thread operation, if these

Cедьмая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ

высокого уровня», Минск, Республика Беларусь, 19-20 мая 2021 года

47

are blocks of the same group, otherwise by means of wait for and notify set operations, if these are blocks

of different groups.

In [9], when proving the correctness of the proposed recursive block algorithm, it was shown that

the Dl
i , j block can be correctly calculated through Dl -1

i , j, D
v

i, l -1 and Du
l -1, j blocks, in case when vl-

1 and u  l-1 . The CTBFW algorithm uses this relaxation of requirements to reorder block computations

in order to more efficiently parallelize threads, increase processor utilization, and improve the localization

of data access to the cache. Each thread implements the algorithm that switches from one operating mode

to another. CTBFW uses six modes: master, slave, complement, passive_A, passive_B and passive_C.

Figure 11 depicts the step-by-step parallel operation of the CTBFW algorithm on a matrix D [44] and

on two processors. The algorithm is implemented in two versions: homogeneous and heterogeneous.

Table 1 reports results that show the average gain of 6.16% the heterogeneous HCTBFW algorithm has

against the homogeneous CTBFW, and show the average gain of 10.99% (without affinity of threads to

processors) the HBFW that is realized using OpenMP has against BFW, and the gain of 11.37% (with

affinity) the HBFW has against BFW.

Figure 11. Timing diagram of CTBFW operation on a matrix of 44 blocks on two processors (the time

unit is the time of calculating one block at one level)

Table 1. Comparison of parallel heterogeneous HBFW to parallel homogeneous blocked APSP

algorithms

Graph size in node

count
HCTBFW over CTBFW

HBFW over BFW

without affinity with affinity

2400 6.62% 9.67% 9.74%

4800 6.47% 11.68% 12.90%

9600 5.39% 11.63% 11.46%

Conclusion. The basic Floyd-Warshall algorithm does not solve the APSP scaling problem since it

is not capable of processing huge graphs. The direct parallelization of the algorithm leads to multi-thread

applications, which cannot manage the computational resources of a multi-core system efficiently. The

blocked Floyd-Warshall algorithm solves two main tasks: it localizes the data processing within caches

and reduces the number of exchange operations between the hierarchical memory levels. It also allows

the parallel execution of the blocks. The next step in solving the APSP scaling problem is the

heterogeneous blocked APSP algorithm. Its advantage to the homogeneous blocked algorithm is the usage

Cедьмая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ

высокого уровня», Минск, Республика Беларусь, 19-20 мая 2021 года

48

of a separate specific block calculation algorithm for each of four block types, which takes into account

the specific features of computing architecture and accelerates computations. The contribution of the

CTBFW algorithm in the APSP scaling is the reduction of processor time spent on the thread execution

control, and the increase of core load. Moreover, the algorithm efficiently works together with the

heterogeneous algorithm. Our further research will be devoted to the development of memory

management techniques embedded in the APSP algorithms. For instance, the assumption that all blocks

of a block matrix row are assigned to one processor can be applied to a distributed memory multiprocessor

system, but it is not justified for a shared memory multi-core system where the blocks do not fit in the

core local cache.

References
[1] Floyd, R.W. Algorithm 97: Shortest path / R.W. Floyd // Communications of the ACM, 1962, 5(6), p.345.

[2] Hofner, P. Dijkstra, Floyd and Warshall Meet Kleene / P. Hofner and B. Moller // Formal Aspect of
Computing, Vol.24, No.4, 2012, № 2, pp. 459-476.

[3] Pettie, S. Computing shortest paths with comparisons and additions / S. Pettie, V. Ramachandran //

Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2002, pp. 267–276.
[4] Pettie, S. A new approach to all-pairs shortest paths on real-weighted graphs / S. Pettie // Theoretical

Computer Science. 312 (1), 2004: 47–74.

[5] Seidel, R. On the All Pairs Shortest paths Problem in Unweighted Undirected Graphs / R. Seidel // Journal

of Computer and System Sciences. 51 (3), 1995, pp. 400-403.
[6] Anu, P. Finding All-Pairs Shortest Path for a Large-Scale Transportation Network Using Parallel Floyd-

Warshall and Parallel Dijkstra Algorithms / P. Anu, M. G. Kumar // Journal of Computing in Civil Engineering. –

2013. – Vol. 27, №. 3. – P. 263–273.
[7] Floyd-Warshall all-pair shortest path for accurate multi-marker calibration / L. Wang [et al.] // 2010

IEEE International Symposium on Mixed and Augmented Reality. – Seoul, South Korea: IEEE, 2010. – P. 277–

278.

[8] Ridi, L. Developing a Scheduler with Difference-Bound Matrices and the Floyd-Warshall Algorithm /
L. Ridi, J. Torrini, E. Vicario // IEEE Software. – 2012. – Vol. 29, №. 1. – P. 76–83.

[9] Venkataraman, G. A Blocked All-Pairs Shortest Paths Algorithm / G. Venkataraman, S. Sahni, S.

Mukhopadhyaya // Journal of Experimental Algorithmics (JEA), Vol 8, 2003, pp. 857-874.
[10] Park, J.S. Optimizing graph algorithms for improved cache performance / J.S. Park, M. Penner, and

V.K. Prasanna // IEEE Trans. on Parallel and Distributed Systems, 2004, 15(9), pp.769-782.

[11] Albalawi, E. Task Level Parallelization of All Pair Shortest Path Algorithm in OpenMP 3.0 / E.
Albalawi, P. Thulasiraman, R. Thulasiram // 2nd International Conference on Advances in Computer Science and

Engineering (CSE 2013), 2013, Los Angeles, CA, July 1-2, 2013, pp. 109-112.

[12] Tang, P. Rapid Development of Parallel Blocked All-Pairs Shortest Paths Code for Multi-Core

Computers / P. Tang // IEEE SOUTHEASTCON 2014, pp. 1-7.
[13] Solomonik, E. Minimizing Communication in All Pairs Shortest Paths / E. Solomonik, A. Buluc, and J.

Demmel // IEEE 27th International Symposium on Parallel & Distributed Processing, 2013, pp.548-559.

[14] Singh, A. Performance Analysis of Floyd Warshall Algorithm vs Rectangular Algorithm / A. Singh,
P.K. Mishra // International Journal of Computer Applications, Vol.107, No.16, 2014, pp. 23-27.

[15] Madduri, K. An Experimental Study of a Parallel Shortest Path Algorithm for Solving Large-Scale

Graph Instances / K Madduri,.D. Bader, J.W. Berry, J.R. Crobak // Proceedings of the Ninth Workshop on
Algorithm Engineering and Experiments (ALENEX), 2007, pp.23-35.

[16] Лиходед Н.А, Сипейко Д.С. Обобщенный блочный алгоритм Флойда – Уоршелла. Журнал

Белорусского государственного университета. Математика. Информатика. 2019;3: 84 – 92.

[17] Прихожий, А.А. Исследование методов реализации многопоточных приложений на
многоядерных системах / А.А. Прихожий, О.Н. Карасик // Информатизация образования, 2014, № 1, с. 43-

62.

[18] Прихожий, А.А. Кооперативная модель оптимизации выполнения потоков на многоядерной
системе / А.А. Прихожий, О.Н. Карасик // Системный анализ и прикладная информатика, 2014, № 4..

[19] Прыхожы, А. А. Кааператыўныя блочна-паралельныя алгарытмы рашэння задач на

шмат'ядравых сістэмах / А. А. Прыхожы, А. М. Карасік // Сістэмны аналіз і прыкладная інфарматыка. –

2015. – № 2. – С. 10–18.

Cедьмая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA и анализ

высокого уровня», Минск, Республика Беларусь, 19-20 мая 2021 года

49

[20] Карасик, О. Н. Потоковый блочно-параллельный алгоритм поиска кратчайших путей на графе /
О. Н. Карасик, А. А. Прихожий // Доклады БГУИР. – 2018. – № 2. – С. 77–84.

[21] Карасик, О. Н. Усовершенствованный планировщик кооперативного выполнения потоков на

многоядерной системе / О. Н. Карасик, А. А. Прихожий // Системный анализ и прикладная математика. –
2017. – № 1. – С. 4–11.

[22] Прихожий, А. А. Разнородный блочный алгоритм поиска кратчайших путей между всеми

парами вершин графа / А. А. Прихожий, О. Н. Карасик // Системный анализ и прикладная информатика. –
№ 3. – 2017. – С. 68–75.

[23] Prihozhy A.A. Simulation of direct mapped, k-way and fully associative cache on all pairs shortest paths

algorithms. «System analysis and applied information science». 2019; (4):10 --18.

[24] Prihozhy, A.A. Asynchronous scheduling and allocation / A.A. Prihozhy / Proceedings Design,
Automation and Test in Europe. Paris, France. – IEEE, 1998, pp. 963-964.

[25] Prihozhy, A.A. Analysis, transformation and optimization for high performance parallel computing /

A.A. Prihozhy / Minsk: BNTU, 2019. – 229 p.

ПОИСК КРАТЧАЙШИХ ПУТЕЙ МЕЖДУ ВСЕМИ ПАРАМИ ВЕРШИН В

ГРАФАХ БОЛЬШОГО РАЗМЕРА

А.А. ПРИХОЖИЙ
Профессор кафедры «Программное обеспечение

информационных систем и технологий»

Белорусского национального технического
университета, д.т.н., профессор

О.Н. КАРАСИК
Ведущий инженер иностранного

производственного унитарного предприятия

«ИССОФТ СОЛЮШЕНЗ» (ПВТ, г. Минск),
 к.т.н.

Беларуский национальный технический университет, Беларусь

ИСсофт Солюшенс (часть Кохерент Солюшенс), Беларусь
E-mail: prihozhy@yahoo.com, karasik.oleg.nikolaevich@gmail.com

Аннотация. Проблема поиска кратчайших путей между всеми парами вершин графа имеет много

разнообразных областей практического применения. В статье дан анализ известных алгоритмов ее решения и

рассмотрена проблема распараллеливания и масштабирования к размеру графа и архитектуре многопроцессорной

системы. Исследован класс блочно-параллельных алгоритмов поиска кратчайших путей, изучены их достоинства и

недостатки. Путем имитационного моделирования показано, что при определенных соотношениях размера графа и

размера кэш памяти, блочный алгоритм дает многократное сокращение обмена данными между уровнями

иерархической памяти, однако при слишком большом увеличении размера графа его характеристики приближаются
к характеристикам алгоритма Флойда-Уоршелла. С целью повышения производительности, однородный блочный

алгоритм трансформирован в разнородный, сокращающий время расчета одного блока. Дальнейшее улучшение

характеристик достигнуто за счет разработки кооперативного потокового планировщика и блочно-параллельного

алгоритма, ориентированного на графы большого размера и отличающегося изменением порядка расчета блоков,

локализацией обработки данных, сокращением критического пути, уменьшением времени работы на многоядерной

системе, улучшением работы иерархической памяти. Исследования показали, что параллельный потоковый алгоритм

хорошо сочетается с неоднородным алгоритмом, при этом время решения задач сокращается. Выполненный анализ и

проведенные вычислительные эксперименты позволили наметить направления дальнейшего развития моделей и

алгоритмов решения проблемы поиска кратчайших путей и масштабирования этой проблемы.

Ключевые слова: кратчайший путь, алгоритм Флойда-Уоршелла, масштабирование, блочный алгоритм,

разнородный блочный алгоритм, многопоточный алгоритм, кооперативное выполнение, многопроцессорная система,

иерархическая память.

