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Annotation. This paper aims to introduce one of the methods of learning a manifold, called the diffusion map. This method
allows us to understand the underlying geometric structure of multidimensional data, as well as reduce dimensions if
necessary, by carefully capturing the non-linear relationships between the original dimensions.
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The "Curse of dimensionality”" is a well-known problem in the modern scientific world. This term
describes the reduction of high-dimensional data to low-dimensional data in order to optimize work with
them: increase productivity, get more accurate results, and simplify their analysis.

The new representation must correctly describe the data, for example, by preserving some
interesting quantities, such as local mutual distances. One of the problems of dimensionality reduction is
the problem of finding meaningful structures in data sets, because it is quite difficult to extract the functions
that led to obtaining this data [5].

To solve this task, structures such as graphs (combined with Markov chains), "kernel eigenmap
methods”, Laplacian eigenmaps, Hessian eigenmaps and local tangent space alignment are used.
However, in this paper we describe Diffusion maps as a general structure of the above-mentioned particular
methods [1-4].

Diffusion maps are a non-linear technique. It transforms data to a lower-dimensional space, so that
the Euclidean distance between points approximates the diffusion distance in the original feature space.
The dimension of the diffusion space is determined by the geometric structure underlying the data, and the
accuracy by which the diffusion distance is approximated [2-3].

Diffusion maps represent the relationship between heat diffusion and random Markov chain walk.
The basic observation is that if we take a random walk on the data, walking to a nearby data-point is more
likely than walking to another that is far away.

The connectivity between two data points, X, and y, is defined as the probability of jumping from x to
y in one step of the random walk and is

connectivity(x,y) = p(x.y), 1)

Usually, this probability is specified in terms of a kernel function of the two points. For example, the
popular Gaussian kernel:

k(x,y) = exp(-(/|x-yl[*/ o)), @)

Now we define a row-normalized diffusion matrix, P. Mathematically, this is equivalent to the
transition matrix in the Markov chain. While P denotes the probability (or connectivity in this case) of single
hopping from point x to point y, P? denotes the probability of reaching y from x in two hops and so on. As
we increase the number of hops or Pt for increasing values of t, we observe that the diffusion process runs
forward. Or in other words, the probability of following the geometric structure increases.

The diffusion maps allow to achieve dimensionality reduction, and the dimension of the embedding
depends on both the geometry and the topology of the data set. In particular, if X is a discretized
submanifold, the dimension of the embedding can be different from that of the submanifold.
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