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x
I  – longitudinal moment of inertia of the mass, 

y
I  – transverse moment of inertia of the mass, m  – body 

weight, 
1

a  – distance from the center of gravity of the car to the front axle, 
2

a – distance from the center of 

gravity of the car to the rear axle, 
1

b  – the distance from the center of gravity of the car to the left side, 
2

b  – 

the distance from the center of gravity of the car to the starboard side. 

The stiffness of the front and rear tires is indicated by 
t f

k  and 
t r

k  respectively. The suspension of the car has 

rigidity 
f

k  and damping 
f

c  in the front and rigidity 
r

k  and damping 
r

c  in the back [3].  

The complete vibration model of the sprung part of the platform with a four-point suspension has seven 
degrees of freedom and can be described by the following equations obtained on the basis of Newton's laws: 
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III. CONCLUSIONS 

A mathematical vibration model of a vehicle platform with a four-point passive suspension is constructed. A 
computer numerical model of the vehicle platform with a four-point passive suspension is constructed. The 
conducted computer simulation using real numerical parameters of a specific vehicle - the KAMAZ-5490 
heavy-duty vehicle showed the full operability and adequacy of the developed models. 
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I. INTRODUCTION 

Problems related to the COVID-19 epidemic are of great interest around the world. The present work 
examines the processes of COVID-19 epidemic waves in Russia. There are assumptions that the main 
source of new infection carriers is Moscow and that the process of the virus’ spread can be modeled by a 
kinetic equation. We develop our first results in [1]. The model under consideration makes it possible to 
judge the nature of the spread of a modern pandemic for some countries. For the first wave of the pandemic, 
the processes in Italy, Chile and Russia have been studied. Now the attention is paid on the epidemic events 
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in Russia for the second and third waves. The model has certain predictive capabilities, so the fourth wave is 
also studied.  

II. THE SPATIAL SPREAD OF THE WAVES OF THE COVID-19 PANDEMIC IN RUSSIA BASED ON THE 
KINETIC MODELS FOR A ONE- and TWO-DIMENSIONAL CASES  

This work consists of two main parts. In the first part, the previously obtained one-dimensional kinetic model 
is used to predict and clarify the nature of the spread of the waves of the pandemic over the territory of 
Russia. In the second part, the model is generalized to a more complex and realistic two-dimensional case. 

Since it is assumed that in the mentioned countries there were the main centers from where the spread of 
infection throughout the country took place, it is possible to determine the delay in the development of the 
disease in individual regions and in the country as a whole. This makes it possible to make certain 
predictions for the nature of the subsequent waves of the pandemic.  

This work is a continuation of our previous one, in which the developed model is tested for the different 
waves of the pandemic in Russia. The present paper in particular examines the development of the third 
wave in Russia. The center of the spread of infection is, as in previous cases, Moscow. This seems to 
correspond to the real picture. This wave is associated with a new strain of the virus, penetrating mainly from 
India through Moscow airports. For the third wave, a prediction was made in early July that the number of 
infections per day for Russia as a whole would decline by mid-July of this year. This forecast was confirmed. 
Based on the values of the parameters found in the study of previous waves, predictions are made about the 
rate of spread of the pandemic, as well as about the speed of the "recovery wave". An important conclusion 
is that the maximums of infection in Moscow and Russia are separated by approximately 3 weeks. 
Comparisons are made with the actual data.  

For a more detailed and accurate description of the spatial distribution of the epidemic, a problem with a two-
dimensional geometry corresponding to the maps of the countries under study, and primarily the map of 
Russia. To do this, we write down the kinetic equation in two-dimensional form and use a numerical method 
to solve it, and thus acquire the first results for this model. The beginning of the fourth wave is also 
considered.  
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I. INTRODUCTION 

The analysis of energy relations in layered dielectric systems (LDS) with losses is important for many 
applications, mainly because it enables comparison of the obtained formulas with their counterparts for 
lossless systems. 

II. RESULTS 

It turned out that for effective study of energy relations and their implications, it is necessary to refine 
significantly the conceptual and mathematical apparatus for solving the direct problem of the propagation of 
plane waves in lossy LDS. Under minimal assumptions, universal analytical expressions are derived for the 
elements of the transfer matrix T. This matrix describes all possible in such systems relations between plane 
electromagnetic fields to the left and to the right of the LDS in the form of functionals on the physical 
characteristics of the LDS and the field frequency, which allow understanding the spectral laws. A description 
of the spectral characteristics of an arbitrary LDS with losses is proposed and substantiated based on 
significantly expanded interpretation of the formulas found by P.G. Kard [1], refined in [2] and widely used for 
lossless LDS in [3] and [4]. 

This rises the theory of the direct problem to the level that provides the necessary data for the further 
development of the mathematical apparatus for the formulation and solution of optimization and inverse 
problems. 


