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I. INTRODUCTION 

The problems of constitutive relations in Maxwell electrodynamics, their possible form, its behavior under the 
motion of the reference frame, its connection with Special Relativity theory, interplay between constitutive 
relations and gravity are reviewed. The main accent in our treatment is the known possibility to simulate 
material media by geometrical methods. 

These problems have a long history. We can track interest to the problem in the huge literature that has 
been produced on this issue. Note that Gordon [2] was first seemed largely interested in trying to describe 
dielectric media by an effective metrics; Gordon tried to use a gravitational field to mimic a dielectric medium. 
The idea was taken up and developed by Tamm and Mandel’stam [3, 4]; also see [5-20]. 

II. GEOMETRICAL MODELING OF THE CONSTITUTIVE RELATIONS IN ELECTRODYNAMICS 

The basic relations are as follows. Effective constitutive equation generated by the Riemannian geometry 
with metric        have the form  

       
              

                      
           

                   

Four dimensionless      -matrices           are not independent because they are bilinear functions of 

only 10 components of the symmetrical tensor       :  
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These tensors obey the following symmetry constraints:                                       so the 
     -matrix defining constitutive equations is symmetrical. Metrical tensors which are the most interesting 

in the General relativity have a quasi-diagonal structure         , and the corresponding constitutive 
relations simplify  
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where        stand for (algebraic) co-factors to the elements       . According to this, two tensor      and 
       obey the following constraint  

              

Thus, the metric tensors with quasi-diagonal structure effectively describe media with following constitutive 
relations  
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III. CONCLUSIONS 

Application of the Riemannian geometry permits to simulate effective media which constitutive equations are 
determined by the metrical structure of the Riemann spaces. Because there are known numerous 
Riemannian geometries, the number of such effective media is enormous as well.  
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I. INTRODUCTION 

The motion of an electron in an inner layer of a double semiconductor heterostructure is usually treated as 
two-dimensional. In addition, the planar motion is also restricted if an electron is placed in quantum dot 
localized in a middle layer of heterostructure. The Rashba [1] and Dresselhaus [2] spin-orbit interactions are 

presented by the formulas ( ) /
R R x y y x

V p p     and ( ) /
D D x x y y

V p p    , where 
x

  and 
y

  are the 

standard Pauli spin-matrices. The Rashba interaction strength can be controlled by an external electric field, 
and the Dresselhaus interaction strength can be varied by changing the width of quantum well along the z  

axis. In the general case the whole spin-orbit interaction has the form 
R D

V V . At the same time, the 


