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ABSTRACT To assess the quality of a binary classification, researchers often take advantage of a four-entry
contingency table called confusion matrix, containing true positives, true negatives, false positives, and false
negatives. To recap the four values of a confusion matrix in a unique score, researchers and statisticians have
developed several rates and metrics. In the past, several scientific studies already showed why the Matthews
correlation coefficient (MCC) is more informative and trustworthy than confusion-entropy error, accuracy,
F; score, bookmaker informedness, markedness, and balanced accuracy. In this study, we compare the MCC
with the diagnostic odds ratio (DOR), a statistical rate employed sometimes in biomedical sciences. After
examining the properties of the MCC and of the DOR, we describe the relationships between them, by also
taking advantage of an innovative geometrical plot called confusion tetrahedron, presented here for the first
time. We then report some use cases where the MCC and the DOR produce discordant outcomes, and explain
why the Matthews correlation coefficient is more informative and reliable between the two. Our results can
have a strong impact in computer science and statistics, because they clearly explain why the trustworthiness
of the information provided by the Matthews correlation coefficient is higher than the one generated by the
diagnostic odds ratio.

INDEX TERMS Matthews correlation coefficient, diagnostic odds ratio, binary classification, confusion
matrix, supervised machine learning, confusion tetrahedron.

I. INTRODUCTION

In scientific research, the goal of many studies is often to
correctly predict elements that can have two conditions, like
for example individuals that can be categorized as sick or
healthy, or as likely to survive or at risk of death. In compu-
tational statistics and machine learning, these problems are
commonly called binary classifications, and the two possible
conditions are usually coded as 1 and O, or true and false,
or positive and negative.

Since both the elements of the ground truth dataset and
the predicted elements can be belong to each of the two
classes, the binary classification can generate four distinct
categories, usually recapped in to a table called two-class
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confusion matrix. A positive element correctly predicted as
positive is called true positive (TP), and a negative element
correctly labeled negative is called true negative (TP). Since
the classifier could have made some mistakes in the classifi-
cation, other two categories are possible: a negative element
wrongly predicted positive is called false positive (FP), while
a positive element mistakenly classified as negative is called
false negative (FN).

These four categories are the elements of a traditional
2 x 2 confusion matrix, a statistical table that is extremely
common in studies involving applied machine learning and
statistics. Several rates that summarize the four categories of
the confusion matrix exist nowadays; none of them, however,
has reached consensus in the computer science.

We propose the Matthews correlation coefficient (MCC) [1]
as potential candidate for this role. In the past, we showed
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why the MCC is more informative and truthful than con-
fusion entropy (CEN) error [2], [3], than F; score [4] and
accuracy [5], [6], and then bookmaker informedness [7],
markedness [7], and balanced accuracy [7], [8]. In the
present study, we compare this rate with the diagnostic odds
ratio (DOR), another metric which is sometimes employed in
the biomedical sciences [9].

In particular, a recent study by Récz et al. [10] described
a multi-level comparison of a number of performance met-
rics for binary classification. Surprisingly to us, this article
affirmed that DOR resulted being the top performing met-
ric, together with markedenss (MK), in the analyses they
described. Starting from this remarkable result, we decided
to study the diagnostic odds ratio and its similarities, dif-
ferences, and relationships with the Matthews correlation
coefficient. We already compared MCC and MK in another
study [8].

We organize the rest of the article as follows. After this
Introduction and its literature review, we report the details
and the information about the two analyzed rates and describe
the relationships between them (section II). We then describe
some use cases where the MCC and the DOR produce discor-
dant outcomes (section III), and finally outline some discus-
sion and conclusions (section IV).

A. LITERATURE REVIEW

The Matthews correlation coefficient was originally intro-
duced by Brian W. Matthews in a biochemistry article in the
1970s [1]. In early 2000s, the MCC became popular in the
computer science community thanks to a highly-impactful
review published by Pierre Baldi and colleagues [11].

As the MCC acquired popularity, studies comparing this
metric with other rates started to appear in the scientific
literature. Jurman and colleagues [3], in fact, published a
study comparing this coefficient with cross-entropy (CEN)
error.

Since then, an increasing number researchers has
employed this rate to assess binary classifications, even if
its usage has often been less frequent than the usage of other
rates, such as accuracy and F; score.

In 2017, the MCC obtained new notoriety: Bourghor-
bel et al. [12] published a study based on the benefits of
assessing the performances of several machine learning meth-
ods on imbalanced datasets with MCC.

Few years later, two of us authors continued the series
of the comparisons between the MCC and other rates,
by explaining the advantages of the Matthews correla-
tion coefficient first over accuracy and F; score [5], and
then over balanced accuracy, bookmaker informedness, and
markedness [8].

In the recent years, scientists employed the MCC
for several applications in biomedical sciences.
Abhishek and Hamarneh [13], for example, used it for
the segmentation skin lesion in pathological images, while
Saqlain et al. [14] took advantage of it for heart failure
diagnosis. Additionally, the MCC has been the key-metric of
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multiple studies related to the prediction of patient progno-
sis and diagnosis from electronic health records [15], [16].
In software engineering, instead, Yao and Martin [17]
published an article explaining the benefits of using the
Matthews correlation coefficient in software defection
prediction.

Even if it is unclear when the diagnostic odds ratio (DOR)
was first introduced in the scientific literature, it is known
that its popularity raised since the publication of a study by
Glas and colleagues [9], where the authors highlight some
potential assets of this rate, from their point of view. After
that, multiple researchers employed the DOR to assess binary
predictions in their studies, mainly in the biomedical sci-
ences.

Multiple researchers took advantage of the diagnostic odds
ratio in meta-analyses and systematic reviews. Doust and col-
leagues [18], for example, employed the DOR for a sys-
tematic review of articles predicting heart failures assessed
with natriuretic peptides. The DOR was employed also in a
systematic review and a meta-analysis study to predict sepsis
diagnosis carried out by Tang ef al. [19]. In a hepatological
meta-analysis, Tsochatzis et al. [20] took advantange of the
DOR to detect the fibrosis severity in chronic liver diseases.
In particular, they used the DOR to evaluate elastography
performance in each study and disease stage. In another
hepatology meta-analysis, Yoon and colleagues [21] used the
DOR to assess the capability of IgG4 immunohistochemistry
to detect autoimmune pancreatitis. Picot et al. [22] performed
a meta-analysis and a systematic review on the usage of
loop-mediated isothermal amplification (LAMP) to diagnose
malaria.

The diagnostic odds ratio has not only been employed in
meta-analyses and a systematic reviews in the past, but also
on studies presenting single cohort and single-experiment
biomedical results. Tedeschini and coauthor [23], for exam-
ple, published a DOR-based study on mental health.

In a multi-disciplinary study crossing mental health, signal
processing, and robotics, Kokot et al. [24] utilized compu-
tational intelligence methods to diagnose autism in children,
and they measured their results through the diagnostic odds
ratio. Children were also the patients involved in a biomedical
engineering study of Aungaroon and colleagues [25], who
performed SISCOM tests to detect the epileptogenic zone in
patients diagnosed with epilepsy, and measured their results
by the DOR.

In a dermatology article, Kamyab-Hesari et al. [26]
reported the DOR-measured results of the detection of
alopecia from scalp biopsies made by dermapathologists.
Nwoye and coauthors [27] utilized machine learning modesl
to diagnose schizophrenia from electronic health records,
and measured their performance through the diagnostic odds
ratio.

Moving from biomedicine to environmental sciences,
we report the article of Rahmati and coauthors [28] which
employs several statistical rates, including the DOR, to com-
putationally evaluate geo-environmental models.
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FIGURE 1. The confusion tetrahedron. The full misclassification line includes all the (classes of) confusion matrices (
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0
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The scientific literature also includes some articles describ-
ing the properties and the limitations of the DOR. In a
review on statistical rates, Simundic¢ [29] included the diag-
nostic odds ratio, and briefly explained its properties. Bohn-
ing and colleagues [30] explained why the DOR should not
be used to find the best cut-off threshold for a diagnostic
test. To the best of our knowledge, no study comparing the
diagnostic odds ratio and the Matthews correlation coeffi-
cient exists in literature; we fill this gap with the present
article.

Il. METHODS

In this section, we first introduce the Matthews correlation
coefficient (subsection II-A), then we introduce the diag-
nostic odds ratio (subsection II-B), and finally we report
and discuss some statistical correlations between these two
rates (subsection II-C). We indicate FP for false positives,
FN for false negatives, TP for true positives, and TN for false
negatives.
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A. MATTHEWS CORRELATION COEFFICIENT (MCC)

TP FN
FP TN) and let
n = TP 4+ TN + FP + FN be the total number of samples.

Consider a generic confusion matrix M =

1) DEFINITION
The Matthews correlation coefficient (MCC) [1], [3], [5] is
the 2 x 2 case of ¢ coefficient [31], and is defined as:

B TP - TN — FP - FN
~ /(TP + FP)(TP + FN)(IN + FP)(IN + FN)
(D

MCC

(worst value = —1; best value = +1)

2) RANGE

MCC ranges between —1 and +1, with —1 for perfect mis-
classification (TP = TN = 0) and 1 for perfect classification
(FP = FN = 0); MCC = 0 indicates random classification
(TP - TN = FP - FN).
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FIGURE 2. nMCC on the faces of the confusion tetrahedron. On the same triangles, nDOR is uniformly maximally blue (nDOR = 1) on the whole of ABC

A A A
and ABO, and uniformly maximally red (nDOR = 0) on the whole of AOC and CBO. All graphs include 1M points. To avoid distortion in the planar

A
projection of ABC we used the isometric mapping induced by barycentric coordinates.

3) UNDEFINED CASES AND SOLUTIONS

MCC is undefined when a whole row or column of M is zero.
However, MCC can be naturally extended to cover all these
cases:

TP 0

.MCC=+1f0rM=(O 0

<0 0 > with TN > 0;

)WithTP >0orM =

0 TN

al ab 00 0b
] MCC=Of0rM€ {<b0)9(00>7<ba>’<0a)}
fora, b > 0;
0 FN
e« MCC = —1forM = <0 0

00 .
(FP 0) with FP > 0.

)WithFN >QorM =
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4) NORMALIZATION
For comparison’s purposes, the normalized version, ranging
in [0, 1] can be used:

MCC + 1
nMCC = TJF )

(worst value = 0; best value = 1)

where the values MCC = {—1,0,+1} are mapped to
nMCC = {0, 0.5, 1}, respectively.

5) NOTE

MCC has its roots in the ¢ coefficient, introduced by Pearson,
Boas and Yule independently in the early 90’s as a mea-
sure of association [31]-[34] to express the linear correla-
tion of an underlying bivariate discrete distribution between
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FIGURE 3. nMCC (a), (d) and nDOR (b), (e) on the triangles DOC, GEF and (c), (f) violin plots of the corresponding values of nMCC and nDOR.
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FIGURE 4. Pearson correlation between nMCC and nDOR for the complete subset of confusion
matrices with FP, FN > 0 for datasets with n samples, 5 < n < 100.

two variables. In details, both ¢ and MCC have a simple
relation with the chi-square statistic for a contingency table,

2

namely ¢ = [MCC| = X—, where n is the total number
n
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of observations. Several other statistical metrics stem from
variants of the ¢ coefficient: among them, the Cramér’s V
(or Cramér’s xc) emerges as the most relevant. Introduced by
Cramér in [35], V is also defined in terms of the chi-square
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FIGURE 5. Scatterplot of (nMCC, nDOR) points corresponding to all confusion matrices with a) n = 10, b) n = 25, ¢) n = 50 and d)
n = 100 samples with FP, FN > 0. Point size in panels a) and b) are larger than point size in panels c) and d).

. \/ x2/n
statistics as V =,/ ————————— for k, r the number
mintk — 1,r — 1)

of data columns and data rows, respectively. By definition,
on the 2 x 2 case a contingency table coincides with a con-
fusion matrix, and thus the equality MCC? = ¢2 = V2
holds [36], the three measures only numerically differing by
the association sign, but having different statistical interpre-
tations.

B. DIAGNOSTIC ODDS RATIO (DOR)

1) DEFINITION
The diagnostic odds ratio (DOR) [9], [37] is defined as:
TP - TN TPR - TNR
DOR = = 3

FP-EN (1 —TPR)-: (1 — TNR)
(worst value = 0; best value = +00)
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2) RANGE

DOR ranges in [0, +-00), being lower bounded by zero in the
cases where there are no correctly classified samples in one
of the two classes (TP or TN or both are zero), while it is not
upper limited; the higher the value, the better the classifier’s
performance. DOR = 1 indicates random classification.

3) UNDEFINED CASES AND SOLUTIONS

DOR is undefined when all samples in one (or both) class are
correctly classified (FP or FN or both are zero). However, this
behaviour is meaningful only in the case of perfect classifi-
cation (FP = FN = 0), while if only one of the two entries
FP, FN vanishes, the DOR metric being undefined does not
provide an interpretable indication about the classification
task. A possible solution is adding % to all entries of the
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FIGURE 6. Scatterplot of 4,249,560 (nMCC, nDOR) points corresponding to all confusion matrices with 5 < n < 100 samples with

FP,FN > 0.

confusion matrix, either in the undefined cases [38], [39]
(but this introduces a bias) or in all cases [40]: however,
both solutions provide only an approximation of the true
DOR measure. Alternatively, functions of the original DOR
might be used, as in [37], where the authors considered the
log;o(log;o(DOR))

1.4 '

expression DOR* =

4) NORMALIZATION
Again, for fair comparison’s purposes, a normalized version
ranging in [0, 1] can be used:

DOR
nDOR = ——— 4
DOR + 1

47118

where the values DOR = {0, 1, 400} are mapped tonDOR =
{0, 0.5, 1}, respectively. Furthermore, since

TP - TN
nDOR = %)
TP-TN + FP - FN
nDOR is also defined when FP or FN (or both) vanishes,

provided that TP - TN > 0.

C. RELATIONS BETWEEN MCC AND DOR
1) INVARIANCE
e Both MCC and DOR (and thus also nMCC and nDOR)
are invariant for class swapping P <> N, meaning that
exchanging the positives with the negatives would not
change the value of the score.
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nMCC

FIGURE 7. Scatterplot of (nMCC, nDOR) points corresponding to 9,249,560 confusion matrices with

n={(5,6,...,99, 102, 103, 104, 103, 10%, 10°} samples with FP, FN > 0. In the inset, the zoom on the area marked by a square in the main
plot. The red line marks the curve W, bounding the scattered areas. Note that in this scale, the use case UC1 is indistinguishable from point
D, and the same happens with the use case UC2 and with point B (Figure 8).

e Both MCC and DOR (and thus also nMCC and
nDOR) are invariant for dataset size scaling, that is,

k k
vee((f)) = wee((Lm L)) o
k € Nand [ = gcd(TP, FN, FP, TN).

Interludio The invariance for size scaling highlights the
relation of DOR with the classical odds ratio OT% [;111]]. If we
b Tk with
entries in [0, 1] so that they can be viewed as Srobnabilities,

then DOR(M) = DOR(nM) = OR(nM), thus the two mea-
sures are mathematically equivalent, although their meaning

consider a scaled confusion matrix nM =

VOLUME 9, 2021

is statistically different, being nM interpreted as a confusion
matrix for DOR and as a contingency table for OR. Originally
introduced in [42], OR compares the frequency of exposure to
risk factors, mainly in survey research, in epidemiology [43]
and in case-control studies to report clinical trials’ results; sta-
tistically, OR can be viewed as a retrospective comparison of
the impact of a given risk factor on two groups of individuals
by estimating the chances of positive and negative outcomes.
On the other hand, DOR is a measure of the effectiveness of
a diagnostic test, that is a procedure performed to confirm or
determine the presence of disease in an individual suspected
of having a disease. A diagnostic test usually follows the
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report of symptoms, or based on other medical test results.
Thus, DOR is defined as the ratio of the odds of the test
being positive if the subject has a disease relative to the odds
of the test being positive if the subject does not have the
disease. This definition is the machine learning version of
the evaluation of the frequency of exposure to risk factors in
statistics, thus justifying the coinciding mathematical defini-
tion of DOR and OR.

2) VISUALIZING DOR AND MCC

Due to scaling invariance, it is possible to interpret both
measures in term of the confusion tetrahedron (CT): CT is
a geometric view of all possible (equivalence classes of)
confusion matrices, normalized by the number of samples

TP EN
<F"P T’f\]) so that all entries lie in [0, 1] and their sum is

ong. T?le three axes represent TP, FP, TN while FN is not
represented being dependent on the other three entries FN =
1 — TP — TN — FN. This is the equation of the plane in 3D
space (Figure 1).

Due to the metric scaling invariance, each confusion matrix

TP FN . .
M = FP TN) correspond to a normalized matrix nM =

TP EN

1N

MCC and the same DOR.

Coloring the points of CT according to the value of a
scaling invariant performance measure u (e.g., as in the leg-
end of Figure 2), we have a visual summary of the global
behaviour of u on the whole space of confusion matrices.
Since a full 3D view of a u-colored CT would hardly be
human readable, we select some relevant 2D sections of CT.
First we consider the four faces of CT, namely the triangles

A A A A
ABC, ABO, AOC and CBO, corresponding to the sets of
confusion matrices with FN =0, FP=0, TN =0, and TP =0,
respectlvely Equatlon 5, the value of nDORis 1 on the whole

trlangles ABC ABO and 0 on the remaining faces AOC and

in CT and the two matrices M, nM share the same

CBO, while nMCC has a more complex pattern (Figure 2).
Same happens inside CT (Figure 3), although nMCC and
nDOR are quite similar but not identical, as demonstrated by
the boxplot in Figure 3(c,f).

3) RELATION WITH THE IMBALANCE RATIO

Consider the Imbalance Ratio (IR), defined as the ratio
between the number of instances in the majority class and
those in the minority class, originally introduced in [44].
Then, using the notation in [45], it follows that MCC and
nMCC are dependent on IR, while DOR and nDOR are not.

4) CORRELATION
TP FN

Consider now the confusion matrices with
FP TN

FP, FN > 0, so that both MCC and DOR are defined. In par-
ticular, consider first the subset of all 4,249,560 matrices
corresponding to classification task on small datasets, with

47120

5 < n < 100 and compute nMCC, nDOR and their Pearson
correlation coefficient (PCC) for all these matrices. Corre-
lation between the two metrics is very high (when n > 53
the PCC value is larger than 0.95) and increases with n, with
speed decreasing with n (Figure 4). And n > 53 is a common
situation in biomedical research studies.

However, despite the high correlation value (globally
achieving PCC = 0.9535 over all the 4,249,560 pairs of
values), the cloud of the (nMCC, nDOR) points is rather
spread out, indicating the occurrence of several situations
where MCC and DOR behave quite differently (Figure 6 and
Figure 5). Such behaviour worsens if we consider even larger
confusion matrices: as an example, sample 10° matrices for
each value of n = 10', t = 3,4,5,6,9 for a total of five
million matrices, compute nMCC and nDOR and add the
obtained values to the previous scatterplot (Figure 7). As in
the previous case, the Pearson correlation coefficient between
the two measure increases (slowly) with n, from PCC =
0.9726559 for n = 1000 to PCC = 0.9727163. Over all
the nearly ten million points, the average Pearson correlation
coefficient is PCC = 0.9622007.

Again, despite the high correlation, the nMCC and nDOR
corresponding values are even farther away from lying on
a straight line: there are a large number of points in two
curvilinear triangles (Figure 7), one bounded by the segments
AB, BC and the portion of the curve W between the points A
and C, and the second, symmetric to the first one, bounded by
the segments CD, DE and the curve W between the points E
and C, where A = (0,0), B = (3,0),C = (3, $).D= (3. 1)
and E = (1, 1).

We conjecture that the curve W, the curvilinear bound
of the two triangles ABC and CDE consists of the points
(nMCC, nDOR) corresponding to a set of symmetric confu-
sion matrices

B «
:aeN,ﬂeNo}. (6)

w: {(nMCC(M), nDOR(M)) € [0, 12 M = (“ ﬂ)

Now, Equation 6 yields that

052 _ ’32
MCC(M) = ———, nMCCM) = ——,
Via+ gyt +A
_@+Ppe—p _ 1
@+p? = 1+4L
_a—h
a+p
o? o?
and thus the curve W is defined by the rational function
nMCC?
W: nDOR = 5 .
2 -nMCC” — 2 -nMCC + 1

Conjecture: Given a point P(xp, y,) inside the curvilinear
triangles ABC or CDE, there is a confusion matrix M such
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TABLE 1. Use cases for MCC and DOR. MCC: Matthews correlation coefficient (Equation 1). DOR: diagnostic odds ratio (Equation 3). MCC has worst value
equal to —1 and best value equal to +1. DOR has worst value 0 and best value +oc, theoretically. nMCC and nDOR have both worst value 0 and best value
1. A(NMCC, nDOR): absolute difference between nMCC and nDOR. TP: true positives. TN: true negatives. FP: false positives. FN: false negatives. TPR: true
positive rate, sensitivity. TNR: true negative rate, specificity. PPV: positive predictive value, precision. NPV: negative predictive value. TPR, TNR, PPV, NPV,
accuracy, and F; score have worst value 0 and best value 1. We reported the formulas of TPR, TNR, PPV, NPV, accuracy, and F, score in the

Supplementary information. Threshold cut-off for predictions: = = 0.5.

case TP FN FP TN

MCC

DOR nMCC nDOR AMmMCC, nDOR)

UC1 1,000,000 1,000 1 1
uc2 100,000 1,000,000 10 1

+0.022
—-0.009

0.511 0.999 0.488
0.496 0.001 0.495

1,000
0.010

positives negatives TPR

TNR PPV

NPV accuracy F; score

UCl 1,001,000 2 0.999
UucC2 1,100,000 11 0.091

0.500
0.091

1.000
0.999

0.001
0.000

0.999 0.995
0.091 0.167

that nDOR(M) = x, and nMCC(M) = y,. In fact, consider
only the triangle CDE (situation for ABC is symmetrical),
and, in particular, all points (x, y) € ABC whose coordinates
are integer multiples of 0.5. Then, for each point, it is possible
to find a confusion matrix M such that nMCC(M) ~ x and
nDOR(M) =~ y (Table S1).

It is worth noticing that are no confusion matrices with
MCC close to —1 and with DOR > 1. In fact, the first
(0 < nMCC < %, % < nDOR < 1) and the fourth quadrant
(4 < nMCC < 1,0 < nDOR < }) of the ((MCC,nDOR)
cartesian plane are empty (Figure 7).

Ill. RESULTS

To better understand the different behavior of MCC and DOR,
we decided to investigate two indicative, significant use cases
where these two rates give discordant outcomes. We reported
the results of the use cases UCI and UC2 in Table 1 and
in Figure 8.

A. USE CASE UCT

The UC1 confusion matrix refers to an extremely imbalanced
dataset, having 1,001,000 positive data instances and only
2 negative data instances. The classifier there has correctly
predicted one million of positives and half of the negatives
(TN = 1). The UCI1 confusion matrix can be represented as a
point close to vertex D inside the triangle CDE (Figure 7).

Here, MCC has a value around 0 (and nMCC = 0.511),
indicating that the prediction was similar to random guessing,
while nDOR has a value of 0.999, indicating almost perfect
prediction. It is clear to observe that these two outcomes are
discordant: it would be difficult for a researcher to decide if
the classifier performed well or not, but just looking at the
values of these two rates.

If we examine the values of the four basic rates of this
use case (TPR, TNR, PPV, and NPV in Table 1), we notice
that the classifier performed well only on the sensitivity and
precision, but just sufficiently on the specificity and badly
on the negative predictive value. These four scores clearly
state that the overall performance was far away from perfect,
confirming the outcome of the Matthews correlation coef-
ficient, and dismissing the outcome of the diagnostic odds
ratio.
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FIGURE 8. Zooming of the relative positions of the use cases UC1 and
UC2 in the (nMCC,nDOR) cartesian plane of Figure 7.

B. USE CASE UC2
The dataset of the use case UC2 is extremely imbalanced, too,
with 1,100,000 positive elements and 11 negative elements.
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The UC2 confusion matrix was able to correctly classify
100,000 positives and only 1 negative. The UC1 confusion
matrix can be represented as a point close to vertex B inside
the triangle ABC in Figure 7, symmetric to the UC1 point.

Here, MCC has a value around 0 (and nMCC = 0.596)
again, indicating that the prediction was similar to random
guessing, while nDOR has a value of 0.001 (DOR = 0.010),
indicating an extremely bad prediction. Again, here a practi-
tioner would have difficulties in understanding if the classi-
fier performed well or poorly, by just looking at the values of
nMCC and nDOR. By considering the values of the four basic
rates of this use case (TPR, TNR, PPV, and NPV in Table 1),
we can notice that the classifier obtained extremely low sen-
sitivity, specificity, and negative predictive value, but a very
high precision.

Differently from the MCC, the value of the diagnostic odds
ratio fails to communicate the high value of precision in UC2.

IV. DISCUSSION AND CONCLUSION

Even if four-category confusion matrices are a common
tool to evaluate binary classifications in supervised machine
learning and statistics, no general consensus has been
reached on a unique statistical score able to informatively
recap its key-message. In the past, several studies proposed
the Matthews correlation coefficient as a statistical rate
more informative and truthful than accuracy, F; score [5],
cross-entropy error [3], bookmaker informedness, marked-
ness, and balanced accuracy [8].

A recent article by Récz et al. [10] presented the com-
parison of tens of statistical rates employed to represent
confusion matrices, and indicated the diagnostic odds ratio
and markedness as the two most informative scores. In the
past, we already showed the advantages of the MCC over
markedness [8].

Therefore, in the present study, we decided to compare the
MCC with the DOR, by exploring their mathematical proper-
ties and relationships, and by examining some indicative use
cases where these two rates generate discordant outcomes.

From our analyses, we deduced that the MCC is more
informative and truthful than the DOR, because it produces
a high score only if the values of all the four basic rates of a
confusion matrix (sensitivity, specificity, precision, and neg-
ative predictive value) are high. In some cases, the diagnostic
odds ratio, instead, can produce an inflated overoptimistic
high value even if one of the basic rates has a low score,
misleading the researcher.

Our discoveries about the Matthews correlation coefficient
and the diagnostic odds ratio can also be interpreted with
respect to previously published studies on this topic. In their
highly-cited article, Glas et al. [9] stated that: “The diagnostic
odds ratio as a measure of test performance combines the
strengths of sensitivity and specificity [...] with the advan-
tage of accuracy as a single indicator”’. We agree with this
sentence, but we also reaffirm that DOR fails to take into
account two other fundamental rates of confusion matrices:
precision and negative predictive value. On the contrary,
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as already mentioned, the MCC combines all the four rates
into a singular score; and when the MCC has a high value,
it means that all the four basic rates have a high value, too.

The same article by Glas ef al. [9] additionally states:
“These characteristics lend the DOR particularly useful for
comparing tests whenever the balance between false negative
and false positive rates is not of immediate importance™. We
agree with this statement, that actually highlights an impor-
tant limitation of this ratio: the diagnostic odds ratio fails
to work effectively on imbalanced datasets. The Matthews
correlation coefficient, instead, is particularly useful right on
the imbalanced datasets, because it generates a high score
only if the classifier was able to correctly recognize most
of the positive elements and most of the negative elements,
proportionally to their class size.

An article by Bohning and colleagues [30] advises
against the use DOR to determine the optimal cut-off
for diagnostic tests, and we broadly agree with this
key-message. The same study also suggests to use the
Youden index (also known as bookmaker informedness, and
defined as MK = sensitivity 4 specificity — 1) for that goal,
but we disagree with this indication: the Youden index, in fact,
considers only two of the four basic rates of a confusion
matrix (sensitivity and specificity), and does not consider
the other two (precision and negative predictive value). We
already proved that the MCC is more informative than book-
maker informedness, too, in another study [8].

In conclusion, we recommend the scientific community to
use the Matthews correlation coefficient instead of the diag-
nostic odds ratio to assess binary classifications. In the future,
we plan to investigate the relationships between the MCC and
other rates, such as the Fowlkes-Mallows index [46] and the
prevalence threshold [47].

LIST OF ABBREVIATIONS

AUC: area under the curve. CT: confusion tetrahedron. DOR:
diagnostic odds ratio. MCC: Matthews correlation coeffi-
cient. NPV: negative predictive value. PPV: positive predic-
tive value (precision). PR: precision-recall. ROC: receiver
operating characteristic. SISCOM: subtraction ictal SPECT
co-registered to MRI. TNR: true negative rate (specificity).
TPR: true positive rate (sensitivity, recall).
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