Перестановка обслуживания требований с неопределенными длительностями, многогранник оптимальности которой имеет наибольший квази-периметр

Н.Г. Егорова,

кандидат технических наук,

Ю.Н. Сотсков,

доктор физико-математических наук, профессор, Объединенный институт проблем информатики НАН Беларуси, г. Минск

 $1 \mid p_i^L \leq p_i \leq p_i^U \mid \sum C_i$ Рассматривается неопределенная задача оптимального расписания обслуживания требований $J = \{J_1, J_2, ..., J_n\}$ на одном приборе. При построении расписания для каждого требования J_i известен отрезок $[p_i^L, p_i^U]$, содержащий фактическую длительность p_i обслуживания требования J_i (длительность p_i становится известной в момент C_i завершения обслуживания требования J_i). Необходимо построить перестановку обслуживания требований J, для которой суммарное время $\sum_{i=1}^{n} C_i$ завершения обслуживания требований принимает наименьшее значение. Поскольку длительности p_i обслуживания требований $J_i \in J$ не определены на момент построения расписания, то для задачи $1|\ p_i^L \le p_i \le p_i^U \ |\ \sum C_i$ в общем случае нельзя построить одну перестановку обслуживания требований множества J, которая оставалась бы оптимальной при всех возможных сценариях $p = (p_1, p_2, ..., p_n)$ из заданного множества $T = \{ p = (p_1, p_2, ..., p_n) : p \in \mathbb{R}^n_+ : p_i^L \le p_i \le p_i^U, i \in \{1, 2, ..., n\} \}$. Детерминированную задачу $1\|\sum C_i$ с фиксированным сценарием $p\in T$ обозначим $1\|p\|\sum C_i$. Пусть $S = \{\pi_1, \pi_2, ..., \pi_{n!}\}$ обозначает перестановки $\pi_k = (J_{k_1}, J_{k_2}, ..., J_{k_n})$, определяющие порядок обслуживания требований множества J. В качестве приближенного решения задачи $1|p_i^L \le p_i \le p_i^U |\sum C_i$ используется эффективная перестановка область π_k , оптимальности $OR(\pi_k, T)$ которой имеет максимальный **квази-периметр** $Per(\pi_k, T)$.

Определение. Максимальная замкнутая область $OR(\pi_k,T)\subseteq T$ называется **областью оптимальности** перестановки $\pi_k=(J_{k_1},J_{k_2},...,J_{k_n})\in S$ относительно T, если перестановка π_k является оптимальной для задачи $1\mid p\mid \sum C_i$ при любом сценарии $p=(p_1,p_2,...,p_n)\in OR(\pi_k,T)$. Если не существует сценария $p\in T$, для которого перестановка π_k является оптимальной для задачи $1\mid p\mid \sum C_i$, то $OR(\pi_k,T)=\varnothing$.

Отрезок $[p_{k_r}^L, p_{k_r}^U]$ длительностей обслуживания требования $J_{k_r} \in J$, $r \in \{1, 2, ..., n\}$, в перестановке π_k является объединением следующих отрезков: 1) **отрезка оптимальности** $[l_{k_r}^{opt}, u_{k_r}^{opt}] \subseteq [p_{k_r}^L, p_{k_r}^U]$ (для которого перестановка π_k , оптимальная для задачи $1 \mid p \mid \sum C_i$ $p = (p_1, p_2, ..., p_n) \in T$, остается оптимальной и для задачи $1 \mid p' \mid \sum C_i$ со сценарием $p' \in [p_1, p_1] \times [p_2, p_2] \times ... \times [p_{i_g-1}, p_{i_g-1}] \times [l_{i_g}^{opt}, u_{i_g}^{opt}] \times [p_{i_g+1}, p_{i_g+1}] \times ... \times [p_n, p_n]);$ 2) **отрезков неоптимальности** $[l_{k_r}^{non}, u_{k_r}^{non}] \subseteq [p_{k_r}^L, p_{k_r}^U]$ (для точки $p_{k_r}^* \in [l_{k_r}^{non}, u_{k_r}^{non}]$ перестановка π_k не является оптимальной для задачи $1 \mid p \mid \sum C_i$ с любым сценарием $p = (..., p_{k_r}^*, ...) \in T$); и 3) **отрезков условной оптимальности** $[l_{k_r}^{copt}, u_{k_r}^{copt}] \subseteq [p_{k_r}^L, p_{k_r}^U]$ (для точки $p_{k_r}^* \in [l_{k_r}^{copt}, u_{k_r}^{copt}]$, $p_{k_r}^* \notin [l_{k_r}^{non}, u_{k_r}^{non}]$, существует требование $J_{k_d} \in J$, $d \neq r$, для которого $p_{k_r}^* \in [p_{k_d}^L, p_{k_d}^U]$). Отрезок $[\hat{p}_{k_r}^L, \hat{p}_{k_r}^U]$ **редуцированных** длительностей обслуживания требования $J_{k_r} \in J$, $r \in \{1, 2, ..., n\}$ [1] является объединением указанных отрезков оптимальности и условной оптимальности.

Максимальная перестановка $s_v^{\pi_k} = (J_{k_v}, J_{k_{v+1}}, ..., J_{k_{m_v}})$, $1 \le v \le m_v$, $|s_v^{\pi_k}| = m_v$, называется **секцией** перестановки $\pi_k \in S$, если для любого действительного числа $d \in (\hat{p}_{k_v}^L, \hat{p}_{k_{m_v}}^U)$ существует требование J_{k_i} , $i \in \{v, v+1, ..., m_v\}$, для которого $d \in (\hat{p}_{k_i}^L, \hat{p}_{k_i}^U)$. Отрезок $[\hat{p}_{k_v}^L, \hat{p}_{k_{m_v}}^U]$ определяет границы секции $s_v^{\pi_k}$. Секцию $s_v^{\pi_k}$ можно разбить на n(v) максимальных интервалов оптимальности и условной оптимальности:

$$[\hat{p}_{k_v}^L, \hat{p}_{k_{m_v}}^U] = \bigcup_{i=1}^{n(v)} [l_i^v(s_v^{\pi_k}), u_i^v(s_v^{\pi_k})]$$
. J_i^v обозначает множество требований i -го интервала.

Квази-периметр $Per(s_v^{\pi_k}, T)$ области оптимальности секции $s_v^{\pi_k}$ вычисляется по формуле

$$Per(s_{v}^{\pi_{k}},T) = \sum_{J_{k_{r}} \in s_{v}^{\pi_{k}}} \left((u_{k_{r}}^{opt} - l_{k_{r}}^{opt}) + OS_{k_{r}}^{copt} \right) = \sum_{[l_{i}^{v}(s_{v}^{\pi_{k}}), u_{i}^{v}(s_{v}^{\pi_{k}})] \subseteq [\hat{p}_{k_{v}}^{L}, \hat{p}_{k_{m_{v}}}^{U}]} \frac{u_{i}^{v}(s_{v}^{\pi_{k}}) - l_{i}^{v}(s_{v}^{\pi_{k}})}{\mid J_{i}^{v} \mid}.$$

Квази-периметр области оптимальности секции $s_{v}^{\pi_{k}}$ равен длине отрезка $[\hat{p}_{k_v}^L,\hat{p}_{k_{m_v}}^U]$, а квази-периметр $Per(\pi_k,T)$ области оптимальности перестановки π_k можно определить как сумму квази-периметров $Per(s_i^{\pi_k}, T)$ областей оптимальности всех секций $s_j^{\pi_k}$: $Per(\pi_k,T) = \sum\limits_{s_j^{\pi_k} \in S(\pi_k)} Per(s_j^{\pi_k},T) = \sum\limits_{s_j^{\pi_k} \in S(\pi_k)} (\hat{p}_{k_{m_j}}^U - \hat{p}_{k_j}^L)$. Разработаны алгоритмы построения эффективной перестановки. В проведенных вычислительных экспериментах показано, что разработанные алгоритмы решения задачи $1 \mid p_i^L \leq p_i \leq p_i^U \mid \sum C_i$ являются более эффективным по сравнению с алгоритмами построения перестановки с максимальным взвешенным периметром многогранника оптимальности и максимальным относительным периметром многогранника оптимальности, а также по сравнению с построении алгоритмами, основанными на оптимальных перестановок ДЛЯ соответствующих детерминированных задач $1 \| \sum C_i$ со средними значениями $(p_i^U + p_i^L)/2$ длительностей обслуживания требований. Минимальное, среднее и максимальное значение относительной погрешности эффективной перестановки по сравнению с фактически оптимальной перестановкой равны в эксперименте 0,045986%, 0,313658% и 1,086983%, соответственно, для 480 случайно сгенерированных задач.

Литература

1. Sotskov, Yu.N. The optimality region for a single-machine scheduling problem with bounded durations of the jobs and the total completion time objective / Yu.N. Sotskov, N.G. Egorova // Mathematics. -2019. - Vol. 7, Issue 382. - P. 3–21.