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The model-based procedure for determining of the extremum of the regression object is proposed. The numerical
comparative analysis of this procedure and Kiefer—Wolfowitz stochastic approzimation procedure is performed.

INTRODUCTION

Stochastic approximation and random search
are most known optimization method at present
for extreme objects. They are so called search
methods. These approaches do not use the
mathematical model of the object. In opposite
to the search methods, the model-based approach
suppose designing the mathematical model of the
controlled object. This allows us to obtain then the
mathematical model of the optimality criterion and
to find the optimal control action.

I. STOCHASTIC APPROXIMATION

The stochastic approximation is a method for
solving a wide range of estimation problems based
on recurrent refinement of the estimate with an
increase in the number of observations [1 2, 3].
The first procedure of stochastic approximation
was Robbins-Monro stochastic approximation
procedure, designed to find the zero of an
unknown regression function. The Kiefer—Wolfowitz
procedure of stochastic approximation was designed
to find the extremum point of an unknown
regression function. The stochastic approximation
procedures are based on the sequentially estimating,
from one observation to next. We consider the
Kiefer—Wolfowitz procedure more detail.

Let ¢ be measurable scalar function on R".
We suppose, that we can measure the realization of
the random variable

y(X) = 6(X) + e(X)
in any point X € R", where the random errors
€(X) are centered (F(e(X)) = 0 ) and mutually
independent for any Xg,Xi,... € R" is the
regression function. The problem consist of the
finding the sequence of the points Xy, X1,... € R™
converging to the point X*:

X* =arg max d(X).

The symmetric Kiefer—Wolfowitz algorithm
has the following form [2]:

1
X1 = Xi + Ve+1051 X

X > (Y( Xk + apgres) — y(Xp — apgred)) e, (1)
=1

where k =
coordinate vectors e; = (01, ...

n

0,1,2,..., K and e; are orts, i.e.
1iy0,)T € R

The sequences 7, = 1/k, ap = 1/Vk provide the
convergence of the Kiefer—Wolfowitz algorithm.

II. RANDOM SEARCH

The random search is an optimization method
that was proposed for finding of the extremum
point of an unknown deterministic inertialess object
(function). The term “random search” is attributed
to Rastrigin [4]. The distinctive feature of this
method is that the points are selected in the search
space as random numbers from a certain probability
distribution. It is considered that the random search
is the most effective method for finding the global
extremum. The simplest random search (so named
blind scan) for minimization is as follows. The
values of the function are calculated in random
points and the minimum value is chosen.

The random search can be used in regression
experiment for the mathematical model object
building. However, the data processing is performed
in such an application in package form, i.e. not in
the real observation time. That is the irresistible
disadvantage of the random search.

III. MODEL-BASED METHOD

The model-based approach suppose designing
the mathematical model of the controlled object.
This allows then to obtain the mathematical model
of the optimality criterion and to find the optimal
control action. This approach is put into dual
control theory [5, 6, 7]. The Box-Wilson method
in the framework of the extreme experiment design
[8, 9] includes the model-based approach too, but it
is rather methodology than a method or algorithm,
so it is difficult to implement.

It is most simple to approximate the controlled
object by quadratic polynomial.

Let X = (xj(q))7 Jg) = (J1, 725 - Jq); be a g-
dimensional matrix, that is the argument of a scalar
function ¢(X), and this function has the form

y=¢(X)=Co+ PUC1X) + V2(CrX?), (2)

where Cy, k = 0,1,2,..., are the kg-dimensional-
matrix parameters of the function ¢(X) and Cy is
symmetric relative its last g-multi-indexes [10]. Let
it be required to find the extremum of this function.
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Optimal value of X can be found from the
equation d¢(X)/dX = 0. Differentiating of (2) gives
the equation C; + 2%9(C2X) = 0, from which we
get

X+ =090y 0)/2, (3)
where %9C; ' is the matrix (0,¢)-inverse to the
matrix Cs.

Let us to find the minimum value y* = ¢(X™)
of the function ¢(X). Because of the fact that
020(CyX?%) = 99(%9(CyX)X) and %9(CX*) =
—C1/2 , we have %29(Cy(X*)?) = —99(C1X*)/2
and

y* = ¢(X*) = Co+29 (C1X7). (4)

Substituting X* (3) into (4), we obtain
y* = Co =" (C, (101 Ch)) /4.

We can now perform K experiments in K
given points X1, Xs,...,Xg € R™ and find the
estimations C’O, C’l, Cs of the parameters Cy, Cq, Cs.
Then we get the following point of the extremum:

194
X*=—-=
2

(> ).

The points of experiments X1, X5, ..., X may
be regular or random as in the random search
approach.

IV. COMPUTER SIMULATION

We have performed computer check of
the symmetric Kiefer-Wolfowitz algorithm. We
simulated the regression object with the regression
function of the form

H(X) =1+ x1 + 2w9 + 227 + 423

and with normal distributed inner noise e(X)
with zero mean value and variance equal to 0.2.
The parameters of this regression function in
multidimensional-matrix form (2) are as follows:
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Puc. 1 — The points of experiments in the symmetric
Kiefer—Wolfowitz algorithm

Figure 1 shows the search process when
iterations number equal to 25 (K = 25 in (1).
The real minimum point of the regression function
equal to (—0.25, —0.25) , the found point equal to
(—0.03, —0.26) . We can see that Kiefer—Wolfowitz
algorithm searches the minimum point quite well.
However, the Kiefer—Wolfowitz algorithm requires
very big number of experiments (125 provided K =
25 ). This makes serious difficulties for utilization
it in a real production control process, since each
experiment is accompanied by a product release. It
can be very expensive.

Figure 2 shows the points of measurements
in model-based approach with the number of the
measurements equal to 25. The measurements were
processed by classical least square method. The
accuracy is very high.

Model-based approach
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Puc. 2 — The points of experiments in the model-based
approach
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