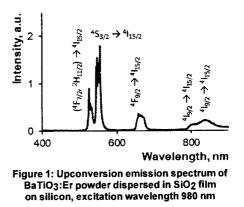
Upconversion emission from erbium doped sol-gel derived BaTiO3 powders and coatings

N.V.Gaponenko¹, R.Subasri², D.S.Reddy², K.R.C.Soma Raju², K.S.Rao², L.S.Khoroshko¹, Yu.D.Karnilava¹, A.V.Mudryi³, V.D.Zhivulko³

 ¹Belarusian State University of Informatics and Radioelectronics, Minsk, Belarus
²Centre for Sol-Gel Coatings, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad - 500 005, Telangana State, India
³Scientific-Practical Materials Research Centre of the National Academy of Sciences of

Belarus, Minsk, Belarus

1. Introduction


Upconversion is a process where light can be emitted with photon energies higher than those of light generating the excitation (www.rpthe photonics.com/upconversion). Diverse inorganic matrices doped with trivalent lanthanides - erbium and holmium exhibit upconversion, transferring infrared light into visible. Thus the effect attracts attention for detection and visualization of infrared radiation. Recently we reported that sol-gel derived barium titanate possessing refractive index about 1.9 in amorphous state can be used as component of optical interference filter in combination with low refractive index films as silica [1] or magnesium fluoride. At the same time room-temperature luminescence of lanthanides in sol-gel derived barium titanate makes the material and method promising for light conversion [2, 3]. In this work we investigate erbium upconversion emission from solgel derived BaTiO3 films and powders.

2. Experimental

Three types of Er-doped BaTiO₃ sol-gel derived samples were fabricated and annealed for 1 hour: (i) powder annealed at 1000 °C,(ii) Er-doped BaTiO₃ film on glass annealed at 450 °C and (iii) Er-doped BaTiO₃ powder annealed at 1000 °C and dispersed in SiO₂ film on silicon or glass substrates.

3. Results and Discussion

Erbium upconversion emission was observed from Er doped BaTiO₃ powder annealed at 1000 °C and Er doped BaTiO₃ powder annealed at 1000 °C and dispersed in SiO₂ film on silicon or glass. Typical room-temperature spectrum of upconversion PL is given in Figure 1. Intensive bands at 524, 554, 657, 799 and 840 nm, corresponding to (${}^{4}F_{7/2}$, ${}^{2}H_{11/2}$) \rightarrow ${}^{4}I_{15/2}$, ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$, ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$ and ${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$ transitions of trivalent erbium respectively are well resolved. The results might be interesting for solar cells on transparent substrates and silicon with convertors of infrared irradiation into visible [4] as well as for design of infrared detectors.

4. Acknowledgements

Funding from State Committee on Science and Technology of the Republic of Belarus and Department of Science and Technology, India under the India-Belarus bilateral joint cooperation through grant number 17-001 (Belarus) and INT/BLR/P-18/2016 (India) grant number is gratefully acknowledged.

5. References

- [1] N.V. Gaponenko, P.A. Kholov, K.S.Sukalin, T.F. Raichenok, S.A.Tikhomirov, R. Subasri, K.R.C. Soma Raju, A.V. Mudryi, "Optical Properties of Multilayer BaTiO₃/SiO₂ Film Structures Formed by the Sol–Gel Method" Physics of the Solid State, Vol. 61. pp. 397-401, 2019.
- [2] W. Strek, D. Hreniak, G. Boulon, Y. Guyot, R. Pazik, "Optical Behavior of Eu³⁺-doped BaTiO₃ Nano-crystallites Prepared by Sol–gel Method" Optical Materials, Vol. 24. pp. 15-22, 2003.
- [3] J. Li, M. Kuwabara, "Preparation and Luminescent Properties of Eu-doped BaTiO3 Thin Films by Sol–gel Process" Science and Technology of Advanced Materials, Vol. 4. pp. 143-148, 2003.
- [4] Shalav, A., Richards, B.S., Green, M.A., "Luminescent Layers for Enhanced Silicon Solar Cell Performance: Up-conversion" Solar Energy Materials and Solar Cells, Vol. 91. pp. 829-842, 2007.