УДК 004.032.26

# АЛГОРИТМ СЕГМЕНТАЦИИ ОБЪЕКТОВ НА СНИМКАХ ЗЕМНОЙ ПОВЕРХНОСТИ С ПРИМЕНЕНИЕМ СВЕРТОЧНОЙ НЕЙРОННОЙ СЕТИ U-NET



Д.В. Куприянова аспирант, кафедра ЭВМ, БГУИР



**Д.Ю. Перцев** кандидат технических наук, кафедра ЭВМ, БГУИР

Белорусский государственный университет информатики и радиоэлектроники, Республика Беларусь

E-mail: diankupriyanova@gmail.com, pertsev@bsuir.by

## Д.В. Куприянова

Окончила магистратуру Белорусского государственного университета информатики и радиоэлектроники по специальности 1-40 02 81 "Технологии виртуализации и облачных вычислений" (2019). Поступила в аспирантуру Белорусского государственного университета информатики и радиоэлектроники (2020). Работает заместителем декана ФКСиС.

### Д.Ю. Перцев

Окончил аспирантуру Белорусского государственного университета информатики и радиоэлектроники (2016), защитил диссертацию в совете 05.13.01 (2020). Является доцентом кафедры ЭВМ.

**Аннотация.** Представлены результаты эксперимента с применимостью сверточной нейронной сети U-Net для сегментации множества объектов на снимках земной поверхности.

**Ключевые слова:** Сегментация объектов, сверточная нейронная сеть, снимки земной поверхности, U-Net.

## Введение.

Развитие авиакосмической промышленности привело не просто к активному освоению космического пространства, но и появлению множества потоков информации, получаемых от спутников, находящихся на орбите Земли, и, как результат, постоянно возрастающим требованиям к качеству и скорости их автоматизированной обработки. Получаемые снимки имеют большую ценность во многих отраслях: сельское хозяйство, метеорология, георазведка и т.д. Однако существенной проблемой является качественный анализ снимков земной поверхности, поскольку они содержат большой объем информации при относительно невысокой детализации самих объектов.

В рамках данной статьи представлен алгоритм сегментации и классификации объектов на снимках земной поверхности с применением сверточных нейронных сетей. В качестве поддерживаемых классов объектов определены строения, поле, вода, дорога, зеленые насаждения (например, лес).

## Архитектура сети U-Net.

U-Net — это свёрточная нейронная сеть, созданная в 2015 году для сегментации биомедицинских изображений в отделении Computer Science Фрайбургского университета [1]. Архитектура сети представляет собой полносвязную свёрточную сеть, модифицированную так, чтобы она могла работать с меньшим количеством обучающих образов при увеличении точности сегментации.

Архитектура сети показана на рисунке 1, состоит из двух частей (сужающейся и расширяющейся) и соответствует схеме кодер-декодер:

- кодировщик уменьшает пространственное измерение с помощью объединения слоев;
  - декодер восстанавливает детали объекта и пространственное измерение.

Также существуют быстрые соединения от кодера к декодеру, чтобы «помочь» декодеру лучше восстановить детали объекта.

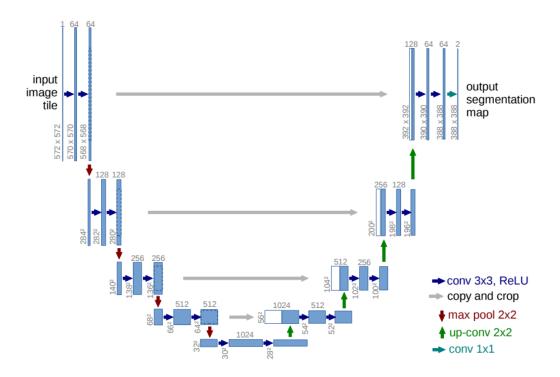



Рисунок 1. Базовая архитектура U-Net

Сужающаяся часть соответствует типичной архитектуре сверточной сети и состоит из следующей последовательности операций:

- многократного применения свертки размером 3х3 без дополнения нулями и с попиксельным применением функции активации ReLU;
- слой субдискретизации с фильтром 2x2 и шагом 2 для уплотнения карты признаков. На каждом шаге понижающей дискретизации количество каналов признаков удваивается.

Расширяющаяся часть состоит из повышающей дискретизации карты объектов, за которой следует:

- свертка, размером 2x2, повышающая свертка, которая вдвое уменьшает количество каналов признаков;
- объединение с соответствующим образом обрезанной картой признаков из сокращающейся части;
  - две свертки размерностью 3x3;
  - за каждой сверткой следует функция активации ReLU.

Выходная карта признаков соответствуют одному из классов сегментируемых объектов.

## Результаты тестирования нейронной сети.

Тестовый набор включает 25 изображений, заранее размеченных вручную. Обучение для каждого поддерживаемого класса выполнялось отдельно. Для оценки качества распознавания всех поддерживаемых классов объектов использовался коэффициент Жаккара:

$$J = \frac{1}{n} \sum_{i=1}^{n} \frac{A_i \cap B_i}{A_i \cup B_i},\tag{(1)}$$

где n – количество классов, которые поддерживаются разработанным алгоритмом;

 $A_i$  и  $B_i$  – координаты областей исходной и предсказанной масок соответственно.

Тестирование проводилось с применением центрального процессора Intel Core i7-9700 и видеокарты NVIDIA RTX 2060 RTX с 8 Гб видеопамяти.

Примеры исходного снимка земной поверхности и результат распознавания представлены на рисунках 2 и 3 соответственно. Полученный усредненный коэффициент Жаккара для всех поддерживаемых классов объектов составляет 0,64, что является довольно низким коэффициентом. Однако авторы считают, что данный результат формируется из-за маленького размер обучающей выборки.

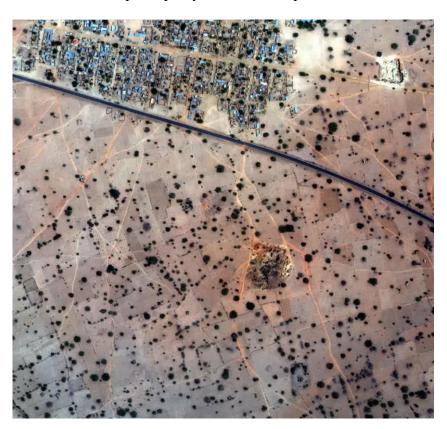



Рисунок 2. Снимок земной поверхности

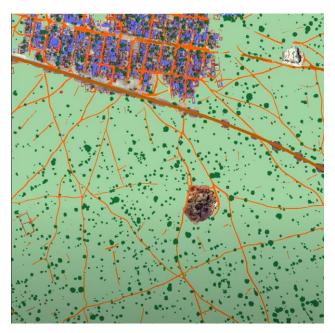



Рисунок 3. Результат распознавания

#### Заключение

Представлен алгоритм сегментации объектов на снимках земной поверхности с помощью 5 заранее построенных моделей на основе сверточной нейронной сети U-Net (соответственно для строений, полей, воды, дороги, зеленых насаждений).

Полученный усредненный коэффициент Жаккара для всех поддерживаемых классов объектов составляет 0,64, что является довольно низким коэффициентом, что связано с низким качеством обучающей выборки и высокими требованиями к необходимому аппаратному обеспечению, проявляющимися в длительном процессе обучения.

В дальнейшем планируется усовершенствовать тестовый набор данных для обучения, исследовать алгоритмы постобработки для выявления явных ошибок (например, разрывы в близко расположенных отрезках дорожного полотна), а также исследовать альтернативные архитектуры нейронных сетей.

### Список использованных источников

[1] U-Net: Convolutional Networks for Biomedical Image Segmentation [Electronic Resource] / ArXiv. -Mode of access: https://arxiv.org/abs/1505.04597.

## ALGORITHM FOR OBJECTS SEGMENTATION ON EARTH'S SURFACE IMAGES USING U-NET CONVOLUTIONAL NEURAL NETWORK

D. KUPRIYANOVA

D. PERTSAU

PhD Student,

PhD,

Department, BSUIR

Department, BSUIR

Belarusian State University of Informatics and Radioelectronics, Republic of Belarus E-mail: diankupriyanova@gmail.com, pertsev@bsuir.by

**Abstract.** The results of an experiment with U-Net convolutional neural network applicability for earth's surface segmentation are presented.

Keywords: Image segmantation, Convolutional Neural Network, Earth's surface images, U-Net.