УДК 66.088

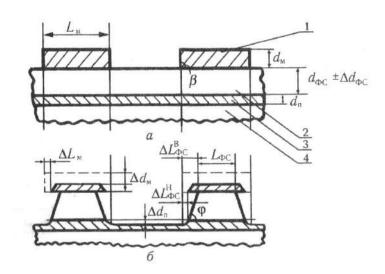
ФОРМИРОВАНИЕ ФУНКЦИОНАЛЬНОГО СЛОЯ ИНТЕГРАЛЬНОЙ МИКРОСХЕМЫ РЕАКТИВНО-ИОННЫМ ТРАВЛЕНИЕМ

Емельянов В.В.

Белорусский государственный университет информатики и радиоэлектроники, г. Минск, Республика Беларусь

Научный руководитель: Бордусов С.В. – д-р техн. наук, профессор, профессор кафедры ЭТТ

Аннотация. Путем экспериментальных исследований получен процесс селективного реактивно-ионного травления нитрида кремния к поликристаллическому кремнию, позволяющий достичь наилучшего профиля и скорости травления нитрида кремния при формировании слоя разделения. Исследована зависимость скорости травления от внешних характеристик разряда (мощности, давления и состава рабочих газов).


Ключевые слова: реактивно-ионное травление, микроэлектроника, нитрид кремния, поликристаллический кремний, интегральная схема.

Введение. В настоящее время с развитием нанотехнологий реактивно-ионное травление остается практически единственным инструментом для переноса рисунка интегральной схемы (ИС) в маскирующем слое в материал подложки благодаря тому, что точность переноса рисунка соизмерима с размером ионов травящих газов [1]. Однако требования к плазменной технологии: допустимые дефекты, селективность (избирательность к материалу), управление шириной линии, однородность травления — становятся все более жесткими и, как следствие, более сложными в реализации.

Основная часть. Для формирования наилучшего профиля травления нитрида кремния, необходимо решить следующие две задачи:

- исследовать особенности плазмохимического травления пленок нитрида кремния и поликристаллического кремния;
- исследовать влияние внешних характеристик разряда на процесс плазмохимического травления пленочных материалов.

На структуре, получаемой в результате реактивно-ионного травления функционального слоя, необходимо обеспечить получение следующих параметров (рисунок 1 а, б) [2]:

1 – маска; 2 – функциональный слой; 3 – подслой; 4 – подложка

Рисунок 1 – Вид структуры до (а) и после (б) операции ПТ функционального слоя

- средний размер элемента в функциональном слое $L_{\Phi C}$;

- разброс размера элемента в функциональном слое по пластине $r(L_{\Phi C})$. Средний размер элемента в ΦC и его разброс может быть записан в виде $L_{\Phi C}(1 \pm r(L_{\Phi C}))$;
 - допустимый уход толщины подслоя $\Delta d_{\rm II}$ (допустимый подтрав подслоя).

Основные частицы, активные в травлении кремния - атомы фтора и радикалы SF_5 (вклад последних в скорость травления составляет около 30%). Скорость травления при всех условиях и составах плазмы прямо пропорциональна концентрациям атомов фтора при прочих равных условиях и увеличивается с ростом потока ионов и разности потенциалов поверхности и плазмы при одинаковых концентрациях атомов.

Нитрид кремния так же, как и диоксид кремния, травятся во фторсодержащей плазме атомами, фторсодержащими радикалами с выделением SiF_4 и N_2 в газовую фазу. Отличие нитрида кремния от двуокиси кремния в том, что энергия связи в молекуле нитрида слабее, чем в двуокиси кремния, следовательно, нитрид травится быстрее, чем двуокись кремния. Схематично процесс травления представлен на рисунке 2.

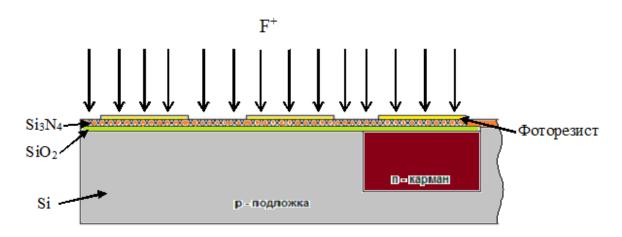


Рисунок 2 – Плазмохимическое травление нитрида кремния

При проведении исследований за прототип был взят режим реактивно-ионного травления, представленный в таблице 1.

Таблица 1 – Режим травления прототипа

Мощность верхнего и нижнего	Давление,	Pасход Ar ,	Pасход CHF_3 ,	Pасход O_2 ,
электрода, Вт	mtorr	см ³ /мин	см ³ /мин	см ³ /мин
200/400	50	200	40	6

Результаты, при использовании прототипа представлены в таблице 2.

Таблица 2 – Результаты травления нитрида кремния и поликремния по прототипу

Материал	Средняя скорость, нм/с	Макс. Скорость, нм/с	Мин.Скорость, нм/с	Неравномерность, %	Селективность, усл.ед.
Si_3N_4	2,01	2,21	1,86	8,6	<i>5</i> 2
Si	0,37	0,42	0,34	10,4	5,3

Как видно из таблицы 2 скорость травления нитрида кремния обладает примерно 2 нм/с при селективности к поликристаллическому кремнию (ПКК) в 5,3 единицы. При проведении работ будет повышена скорость травления нитрида кремния и увеличение селективности к ПКК, без ущерба в равномерности и качестве травления пленки.

Для повышения качества травления, но сохранения большой селективности были проведены эксперименты с давлением и смесью газов ($Ar + CHF_3 + O_2$). Исследования проводились только по давлению и расходу смеси газов, т.к. изменение подаваемой мощности может привнести дополнительные дефекты обрабатываемой поверхности.

Давление в диапазоне от 0,04 до 0,07 torr данной смеси газов в рабочей камере не оказывает сильного влияния на скорость плазмохимического травления нитрида кремния и поликремния, но с повышением давления с 0,04 до 0,07 Topp увеличивается равномерность с 90% до 94-95% по пластине диаметром 200мм.

Таблица 3 – Исследование влияния расхода аргона на скорости травления нитрида кремния и поликремния

Подача <i>Ar</i> , см ³ /мин	Средняя скорость, нм/с	Макс. Скорость, нм/с	Мин. Скорость, нм/с	Неравномерность, %	Селективность, усл.ед.
150	1,95	2,08	1,73	9,2	5,7
200	2,01	2,21	1,86	8,6	5,3
250	2,08	2,33	1,98	8,2	5,0
300	2,15	2,47	2,1	8,1	4,8

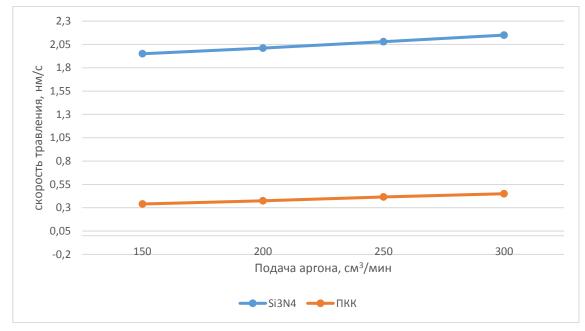


Рисунок 3 – Влияние расхода аргона на скорости травления

Из рисунка 3 и таблицы 3 видно, что увеличение расхода аргона в рабочую камеру не оказывает сильного влияния на скорость и равномерность, т.к. аргон в данном процессе используется как газ-носитель для хладона $23(CHF_3)$. При повышении расхода аргона от 150 до $300 \, \text{см}^3$ /мин наблюдается повышение скорости плазмохимического травления нитрида кремния с 1,95 до 2,15 нм/с и поликремния с 0,32 до 0,5 нм/с.

Повышение расхода хладона 23 от 20 до 45 см³/мин значительно увеличивая скорость травления нитрида кремния 1,3 до 2,3 нм/с и незначительно увеличивает скорость травления поликремния с 0,2 до 0,42 нм/с, за счет повышенной полимеризации поверхности поликремния, предположительно оказывающей влияние на селективность травления.

Изменение расхода кислорода влечет за собой изменение таких качественных показателей как: селективность, угол наклона и анизотропность. При увеличении расхода кислорода от 2 до 8 см³/мин наблюдается снижение селективности нитрида кремния к поликремнию с 9 до 4 ед. за счет уменьшения образования полимера при травлении, а также происходит уменьшение угла наклона боковой стенки профиля с 90 до 65 градусов из-за подтрава маски фоторезиста.

Получив и обработав экспериментальные данные можно сделать вывод, что для достижения наилучших показаний необходимо повысить давление до 70 mtorr, повысить подачу хладона-23 до 43 см 3 /мин, повысить подачу аргона до 250 см 3 /мин и понизить подачу кислорода до 3 см 3 /мин, получившиеся результаты приведены в таблице 4.

Таблица 4 – Режим травления по итогам исследований

Мощность верхнего и нижнего	Давление,	Pасход Ar ,	Расход <i>СНГ</i> ₃ ,	$Pacxoд O_2$,
электрода, Вт	mtorr	см ³ /мин	см ³ /мин	см ³ /мин
200/400	70	250	43	3

Результаты, полученные при использовании экспериментального режима представлены в таблице 5.

Таблица 5 – Полученные результаты травления нитрида кремния и поликремния по оптимальным параметрам

	Материал	Средняя скорость, нм/с	Макс. Скорость, нм/с	Мин.Скорость, нм/с	Неравномерность, %	Селективность, усл.ед.
Г	Si_3N_4	2,7	2,86	2,57	5	0.7
	Si	0,31	0,32	0,29	4,8	8.7

Заключение. По итогам проведенных исследований были подобраны оптимальные режимы селективного реактивно-ионного травления нитрида кремния к поликристаллическому кремнию: расход аргона 250 см³/мин, расход хладона 23 43 см³/мин, расход кислорода 3 см³/мин и давление данной смеси газов 0,07 torr. При этом были получены следующие результаты: средняя скорость травления нитрида кремния 2,7 нм/с, а поликремния 0,31 нм/с, также равномерность травления нитрида кремния по пластине 94-95%, селективность нитрида кремния к поликремнию 8.7 усл.ед..

Полученные оптимальные режимы селективного реактивно-ионного травления нитрида кремния к поликристаллическому кремнию позволяют без изменения подаваемой мощности повысить качество операции травления нитрида кремния и выход годных кристаллов на 5%.

Список литературы

- 1. Инновационные технологии и оборудование субмикронной электроники / А.П. Достанко [и др.]; под общ. ред. акад. А.П. Достанко.—Минск: Беларуская навука, 2020. 162-199 с.
- 2. Бордусов С. В. Плазменные СВЧ технологии в производстве изделий электронной техники: Монография / Под. Ред. А.П. Достанко. Мн.: Бестпринт, 2002. 452c.

UDC 66.088

FORMATION OF THE FUNCTIONAL LAYER OF THE INTEGRATED MICROCIRCUIT BY REACTIVE-ION ETCHING

Emelyanov V.V.

Belarusian State University of Informatics and Radioelectronics, Minsk, Republic of Belarus Bordusov S.V. – Dr. Tech. Sc., full professor, professor of the department of ETT

Annotation. Through experimental studies, a process of selective reactive-ion etching of silicon nitride to polycrystalline silicon was obtained, which makes it possible to achieve the best profile and rate of etching of silicon nitride during the formation of a separation layer. The dependence of the etching rate on the external characteristics of the discharge (power, pressure, and composition of the working gases) has been studied.

Keywords: reactive-ion etch, microelectronics, silicon nitride, polycrystalline silicon, integrated circuit.