Министерство образования Республики Беларусь Учреждение образования Белорусский государственный университет информатики и радиоэлектроники

УДК 621.391

Сеглюк Игорь Михайлович

Модифицированное вейвлет-преобразование для оценки периодичностей импульсных процессов

АВТОРЕФЕРАТ

диссертации на соискание степени магистра технических наук

по специальности 1–39 80 02 «Радиотехника, в том числе системы и устройства радиолокации, радионавигации и телевидения»

Научный руководитель Давыдов Игорь Геннадьевич к. т. н., доцент

КРАТКОЕ ВВЕДЕНИЕ

При разработке метода диагностики на первое место должны ставиться критерии информативности, помехоустойчивости, чувствительности к зарождающимся дефектам, универсальности. Для обеспечения этих критериев предлагается воспользоваться возможностями сравнительно нового вида анализа сигналов — вейвлетного.

Данная работа ставит целью разработку алгоритма, позволяющего формировать согласованные наборы информативных признаков технического состояния промышленного оборудования. Предварительные исследования показали, что существует принципиальная возможность отображения параметров вейвлет-моделей дефектов промышленного оборудования как согласованных наборов информативных признаков в пространстве "масштаб модели - резонансная частота - отклик". Данный подход позволит свернуть пространство информативных признаков до трёхкоординатного и существенно продвинутся в плане создания алгоритмов автоматической вибрационной диагностики, сводя роль эксперта к контролирующей.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы магистерской диссертации:

Актуальность исследования связана с возможностями вейвлет-анализа по обнаружению и оценке параметров периодических импульсных компонент сигналов, представленных во временной области. Анализ таких компонент сигналов позволяет формировать согласованные наборы информативных признаков, описывающих состояние наблюдаемых объектов. Такой подход позволит в значительной степени продвинутся в плане создания алгоритмов автоматической вибрационной диагностики.

Объект и предмет исследования:

Объектом исследования являются ротационные узлы изделий машиностроения.

Предметом исследования являются согласованные наборы информативных признаков, описывающих состояние наблюдаемых объектов, формируемые на основе анализа параметров периодических импульсных компонентсигналов, представленных во временной области.

Цель работы:

Разработка модификации вейвлет-анализа, направленной на решение задачи выявления и оценки параметров периодически повторяющихся импульсных компонент сигналов, представленных во временной области.

Задачи исследования:

- 1. Разработать математические модели импульсных процессов и их программную реализацию.
- 2. Разработать математическое описание периодического вейвлет-преобразования и его программную реализацию.
- 3. Разработать алгоритм обнаружения и оценки параметров импульсных периодических сигналов на основе периодического вейвлет-преобразования.
- 4. Исследовать корректность и эффективность работы разработанного алгоритма путем его применения к модельным и экспериментальным данным.

Структура и объем диссертации:

Диссертация состоит из общей характеристики работы, четырех глав с краткими выводами по каждой главе, заключения, списка использованных источников, списка публикаций автора и приложения. Общий объем диссертационной работы составляет 79 страниц. Она включает 53 страниц машинописного текста, 55 иллюстраций, список использованных источников из 30 наименований на 2 страницах, список публикаций автора из 3 наименований на 1 странице и 1 приложение на 10 страницах.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении показана актуальность задачи разработки алгоритма диагностики, позволяющего формировать согласованные наборы информативных признаков технического состояния промышленного оборудования.

В первой главе описаны математические модели сигналов вибрации подшипников качения при наличии поверхностных дефектов тел качения, внутреннего и наружного колец и рассмотрены публикации, посвященные методам оценки периодичностей вибрационных сигналов. В ходе анализа литературных источников по вибродиагностической тематике показано, что наличие ударных периодических импульсов характерной формы, сопровождающих возникновение и развитие дефекта, является надежным диагностическим признаком для выявления дефектов подшипников. Период следования ударных импульсов в вибросигнале соответствует частоте, характеризующей дефект определенного элемента подшипника.

В соответствии с [6] математическая модель ударного импульса представляет собой затухающую синусоиду и может быть записана в виде:

$$x(t) = Ae^{-\alpha t} \sin 2\pi f_0 t, \tag{1}$$

где A — начальная амплитуда;

 α –декремент затухания;

 f_0 — резонансная (собственная) частота затухающих колебаний.

Модель ударного импульса представлена на рисунке 1.

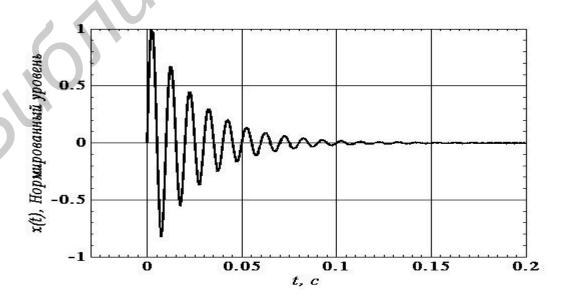


Рисунок 1 – Модель ударного импульса

Частоты, на которых появляются гармонические составляющие, соответствующие определенному дефекту подшипника качения, могут быть заранее рассчитаны с определенной погрешностью исходя из геометрических размеров подшипника качения и скорости его вращения. Эти частоты зависят от частоты вращения вала, то есть скорости вращения подвижного кольца относительно неподвижного f_r . Расчет частот, на которых проявляет себя дефект, проводится исходя из геометрических размеров подшипников и количества движущихся тел, следующим образом [7]:

частота вращения сепаратора относительно наружного кольца

$$f_{FTF} = \frac{f_r}{2} \left(1 - \frac{d}{D} \cos \varphi \right),\tag{2}$$

где d — диаметр тела качения;

D — диаметр сепаратора;

 φ — угол контакта тел и дорожек качения.

частота перекатывания тел качения по наружному кольцу

$$f_{BPFO} = \frac{nf_r}{2} \left(1 - \frac{d}{D} \cos \varphi \right), \tag{3}$$

где n — количество тел качения.

частота перекатывания тел качения по внутреннему кольцу

$$f_{BPFI} = \frac{nf_r}{2} \left(1 + \frac{d}{D} \cos \varphi \right); \tag{4}$$

частота вращения тела качения относительно поверхности колец

$$f_{BSF} = \frac{D}{2d} f_r \left(1 - \left(\frac{d}{D} \cos \varphi \right)^2 \right); \tag{5}$$

$$f_{BFF} = 2 \cdot f_{BSF}. \tag{6}$$

Приведенные выражения определяют частоты основных гармоник в спектрах вибрации и огибающей высокочастотных составляющих при различных видах дефектов.

Математическая модель вибрационного сигнала при наличии дефекта наружного кольца в соответствии с [7] представляет собой периодическую

последовательность ударных импульсов с частотой повторения равной f_{BPFO} и может быть записана в виде формулы:

$$s(t) = \sum_{k=1}^{K} A_k e^{-\alpha_k t} \sin 2\pi f_0(t - 1/f_{BPFO}) + n(t), \tag{7}$$

где A_k — начальная амплитуда k —ой затухающей синусоиды;

 α_k — декремент затухания k —ой затухающей синусоиды;

n(t) — шумовая составляющая вибрационного сигнала (АБГШ);

 $K = T \cdot f_{BPFO}$ — количество ударных импульсов на интервале наблюдения;

T — интервал наблюдения.

Реализация модели сигнала вибрации при наличии дефекта внешнего кольца выполнена в среде MATLAB. Резонансная частота 2 к Γ ц, отношение сигнал/шум 0 дБ. Результаты моделирования представлены на рисунке 2.

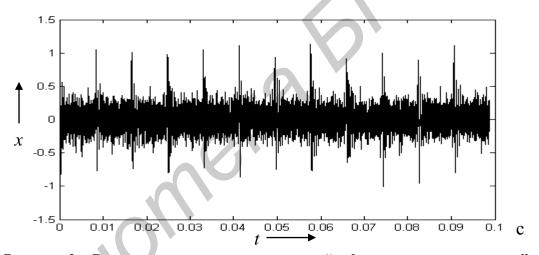


Рисунок 2 – Временная реализация сигнала "дефект наружного кольца"

Во **второй главе** разработано математическое описание периодического вейвлет-преобразования и алгоритм оценки частоты повторения ударных импульсов на его основе. Разработана модификация предлагаемого алгоритма, состоящая в замене свертки сигнала с периодической вейвлет-функцией на свертку их огибающих. Разработаны программные реализации предложенных алгоритмов в среде *МАТLAB*.

Процедура выбора материнской вейвлет-функции не является формализованной. Выбор, как правило, производится исходя из информации, которую требуется извлечь из анализируемого сигнала, то есть материнский вейвлет должен быть максимально подобен виду анализируемых данных [29]. Таким образом для решения задачи оценки частоты следования ударных импульсов целесообразно рассмотреть функцию, представляющую собой периодическое продолжение некоторого одиночного вейвлета $\psi(t)$ на

интервале наблюдения T исследуемого сигнала, которую можно записать в виде

$$\Psi(t;a,F) = \sum_{n=0}^{N-1} \psi\left(t - \frac{n}{F},a\right),\tag{8}$$

где F — частота повторения импульсов в герцах;

 $N=F\cdot T$ — количество вейвлетов $\psi(t)$, укладывающихся на интервале анализа T;

а – масштаб одиночного вейвлета.

Такую периодическую функцию можно рассматривать как вейвлет-модель сигналов из пункта (1.2), сконструированную на основе вейвлета $\psi(t)$. Будем называть такую вейвлет-модель сигнала периодической вейвлет-функцией (ПВФ) или периодическим вейвлетом. Осциллограмма периодической вейвлет-функции представлена на рисунке 3.

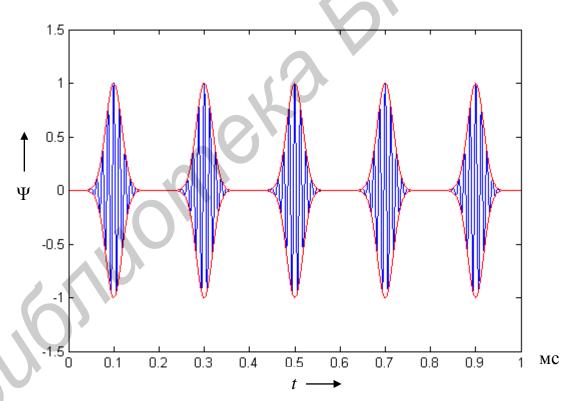


Рисунок 3 – Осциллограмма периодической вейвлет-функции

Запишем свертку исследуемого сигнала x(t) и ПВФ $\Psi(t;a,F)$ в виде

$$W_P(\nu; a, F) = \int_{-\infty}^{\infty} x(t) \, \Psi(t - \nu; a, F) dt, \qquad \nu, F \in \mathbb{R}$$
 (9)

где x(t) – анализируемый сигнал;

 ν – временной сдвиг.

Назовем интеграл (9), зависящий от трех параметров, периодическим вейвлет-преобразованием функции x(t). Известно, что свертка периодических функций также периодична, следовательно, ПВП $W_P(\nu, a, F)$ будет иметь периодический характер вдоль оси временного сдвига ν .

Перепишем формулу (9) в дискретной форме

$$W_P(\nu_i; a_j, F_k) = x(n\Delta t) * \Psi(n\Delta t) = \sum_{n=0}^{N-1} x(n\Delta t) \Psi(n\Delta t - \nu_i; a_j, F_k)$$
 (10)

где v_i — дискретные значения временного сдвига;

 a_i — дискретные значения масштабного коэффициента;

 F_k — дискретные значения частоты повторения;

n — номер отсчета сигнала и вейвлет-модели;

N — количество отсчетов сигнала и вейвлет-модели.

На основе периодического вейвлет-преобразования предлагается следующий алгоритм оценки частоты повторения ударных импульсов.

- 1. На основе базисной функции $\psi(t)$ путем применения дискретизированного вейвлет-преобразования строится скалограмма анализируемого сигнала $E(a_i)$, по локальным максимумам которой определяются масштабные коэффициенты $\{a_i\}$, соответствующие резонансным частотам импульсов в составе сигнала.
- 2. Выбранные масштабные коэффициенты $\{a_i\}$, являясь аргументами периодической вейвлет-функции $\Psi(t;a,F)$, задают масштаб одиночного вейвлета $\psi(t,a)$, который размещается с периодом $T_r=1/F$ на интервале наблюдения сигнала T.
- 3. Сигналу x(t) путем применения ПВП ставится в соответствие функция двух переменных $W_P(\nu, F)$, заданная на плоскости $\nu \times F$ (временной сдвиг, с × частота повторения, Γ ц).
- 4. С целью более компактного представления информативных признаков предлагается рассматривать не плоскость $v \times F$, а плоскость $a \times F$ (масштабный коэффициент \times частота повторения, Γ ц). Для перехода на плоскость $a \times F$ каждой паре параметров a и F ставится в соответствие среднеквадратическое значение функции $W_P(v, F)$ вдоль оси v. Полученная в координатах (a, F) двумерная функция обозначается как G(a, F).

При анализе следует учесть, что функция G(a,F) при фиксированном значении параметра a будет периодической. В случае единственной

периодичности ударных импульсов частота повторения G(a,F) равна частоте повторения импульсов в исследуемом сигнале. Это обусловлено корреляцией исследуемого сигнала x(t) с периодической базисной функцией $\Psi(t,F)$ не только на частоте повторения ударных импульсов, но и на частотах кратных ей в целое и полуцелое число раз.

Блок-схема алгоритма выделения информативных признаков на основе периодического вейвлет-преобразования представлена на рисунке 4.

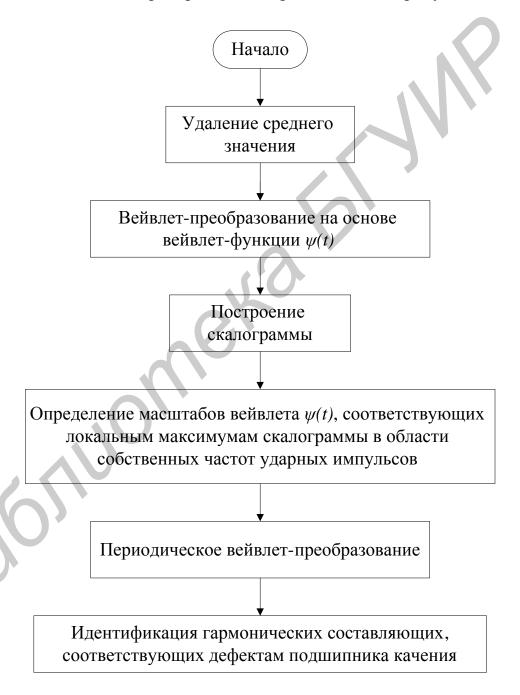


Рисунок 4 – Алгоритм выделения информативных признаков на основе периодического вейвлет-преобразования

Сигналы вибрации, рассмотренные в первой главе можно представить как гармонические сигналы с некоторой частотой f_0 , модулированные периодической последовательностью импульсов экспоненциальной формы. Для определения частоты повторения этих импульсов предлагается выполнять фильтрацию огибающей сигнала набором фильтров, импульсные характеристики которых являются огибающими масштабированных вейвлет-Выделение медленно меняющейся огибающей сигнала. с помощью преобразования Гильберта. предлагается выполнять масштабированная огибающая вейвлет-модели сигнала $\Psi_{Env}(t;a,F)$ запишется в виде

$$\Psi_{Env}(t; a, F) = \sqrt{\Psi^{2}(t; a, F) + \Psi_{H}^{2}(t; a, F)},$$
(11)

где $\Psi_H(t; a, F) = \text{HT}[\Psi(t; a, F)]$ — преобразование Гильберта $\Psi(t; a, F)$; $\text{HT}[\cdot]$ — оператор преобразования Гильберта.

Свертка огибающей сигнала $x_{Env}(t)$ и вейвлет-модели $\Psi_{Env}(t;a,F)$ имеет вид

$$Z(\nu; a, F) = \int_{-\infty}^{\infty} x_{Env}(t) \Psi_{Env}(t - \nu; a, F) dt, \qquad \nu, a, F \in \mathbb{R}$$
 (12)

где ν — временной сдвиг;

a — масштабный коэффициент;

F — частота повторения одиночного вейвлета.

Перепишем формулу (12) в дискретной форме

$$Z(\nu_i; a_j, F_k) = \sum_{n=0}^{N-1} x_{Env}(t_n) \Psi_{Env}(t_n - \nu_i; a_j, F_k),$$
(13)

где $t_n = n\Delta t$ — дискретные отсчеты времени;

 Δt — период дискретизации;

N — количество отсчетов огибающей сигнала и вейвлет-модели.

Эта функция вычисляется на дискретном множестве значений аргументов v_i, a_j и b_j , $i=0\dots 2N-1$; $j=0\dots N_a-1$; $k=0\dots N_k$.

Функцию $Z(\nu_i; a_j, F_k)$ можно рассматривать как N_k дискретных сверток огибающей сигнала с огибающей масштабированной вейвлет-модели сигнала, то есть как набор из N_k фильтров, импульсными характеристиками которых являются масштабированные по периоду повторения вейвлет-модели сигнала.

На основе вейвлет-модельного разложения огибающей сигнала предлагается следующий алгоритм оценки частоты повторения ударных импульсов.

- 1. На основе базисной функции $\psi(t)$ путем применения дискретизированного вейвлет-преобразования строится скалограмма $E(a_i)$ сигнала, по локальным максимумам которой определяются масштабные коэффициенты $\{a_i\}$, соответствующие резонансным частотам импульсов в составе сигнала.
- 2. Выбранные масштабные коэффициенты $\{a_i\}$, являясь аргументами периодической вейвлет-функции $\Psi(t;a,F)$, задают масштаб одиночного вейвлета $\psi(t,a)$, который размещается с периодом $T_r=1/F$ на интервале наблюдения сигнала T.
- 3. Выделяется огибающая сигнала $x_{Env}(t_n)$ и его вейвлет-модели $\Psi_{Env}(t;a,F)$ с помощью преобразования Гильберта.
- 4. Удаление постоянной составляющей огибающих сигнала и его вейвлет-модели.
- 5. Фильтрация огибающей сигнала набором из N_k фильтров с импульсными характеристиками $\Psi_{Env}(t;a,F_k)$ путем вычисления набора дискретных сверток.
- 6. Вычисление среднеквадратического значения выходного сигнала каждого фильтра. В результате выполнения этой операции устраняется зависимость от параметра временного сдвига и осуществляется переход к двумерной функции $Z(a_i, F_k)$.

Поскольку частоты, на которых появляются гармонические составляющие, соответствующие определенному дефекту подшипника качения, могут быть заранее рассчитаны с определенной погрешностью исходя из геометрических размеров подшипника качения и скорости его вращения, то задача оценки качества подшипника качения решается путем обнаружения импульсов на заданных частотных интервалах, соответствующих разным дефектам подшипника.

Блок-схема алгоритма выделения информативных признаков на основе вейвлет-модельного разложения огибающей сигнала представлена на рисунке 5.

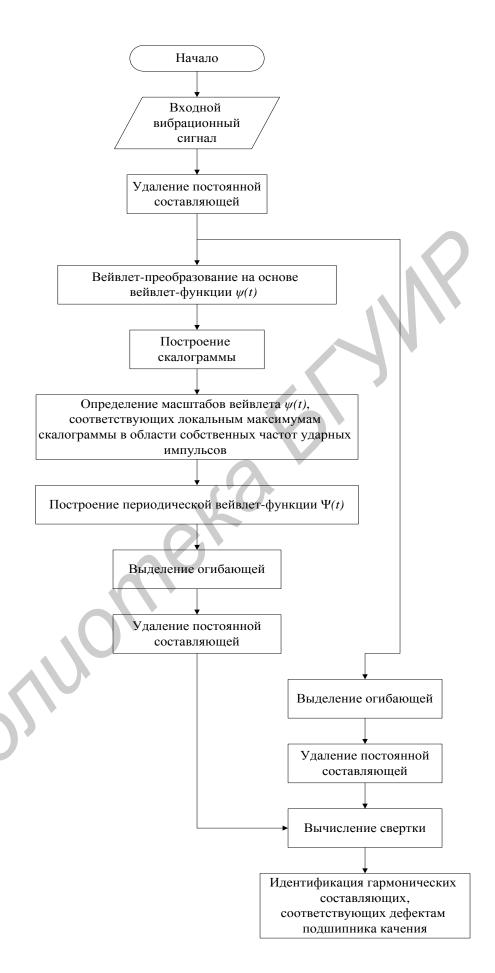


Рисунок 5 — Алгоритм выделения информативных признаков на основе вейвлет-модельного разложения огибающей сигнала

В третьей главе выполнена проверка работоспособности алгоритма оценки частоты повторения ударных импульсов на основе периодического вейвлет-преобразования путем его применения к разработанным моделям импульсных периодических сигналов. Показано, что результат выполнения преобразования имеет хорошо различимый отклик в области оцениваемой частоты при исследовании сигналов с дефектом внутреннего кольца и тела качения, и позволяет оценить соответствующие частоты дефектов с относительной погрешностью менее 1 % при отношении сигнал/шум -10 дБ. При применении предложенного алгоритма к сигналу с дефектом наружного кольца выраженный отклик в области оцениваемой частоты не определяется.

Выполнена проверка работоспособности алгоритма оценки частоты повторения ударных импульсов на основе вейвлет-модельного разложения огибающей сигнала путем его применения к разработанным моделям импульсных периодических сигналов. Показано, что результат выполнения преобразования имеет хорошо различимый отклик в области оцениваемой частоты при исследовании сигналов со всеми указанными типами дефектов и позволяет оценить соответствующие им частоты с относительной погрешностью менее 1 % при отношении сигнал/шум -10 дБ.

В четвертой главе в целях сравнения предложенного алгоритма и его модификации (вейвлет-модельного разложения огибающей сигнала) с существующими методиками оценки периодичностей было проведено экспериментальное исследование. В качестве экспериментальных данных были использованы сигналы вибрации из базы данных Case Western Reserve University Bearing Data Center. В ходе эксперимента были получены следующие результаты:

- 1. При анализе сигнала с дефектом наружного кольца результат выполнения периодического вейвлет-преобразования не имел выраженного отклика в области оцениваемой частоты. Все остальные методы (метод спектра огибающей сигнала, метод спектра огибающей вейвлет-коэффициентов, метод вейвлет-модельного разложения огибающей сигнала) содержали выраженный отклик в области оцениваемой частоты и показали схожие результаты.
- 2. При анализе сигнала с дефектом внутреннего кольца все методы позволили получить хорошо различимый отклик в области оцениваемой частоты и выполнить ее оценку с относительной погрешностью менее 1 %. При использовании периодического вейвлет-преобразования и спектра огибающей вейвлет-коэффициентов наблюдается большее количество побочных максимумов по сравнению с методом спектра огибающей и методом вейвлет-модельного разложения огибающей сигнала.

3. При анализе сигнала с дефектом тела качения диаметром 0,1778 мм метод на основе периодического вейвлет-преобразования позволил обнаружить дефект тела качения на ранней стадии развития, в то время как другие методы не позволили получить выраженный отклик в области оцениваемой частоты дефекта. Ниже приводится полученный результат.

Реализация сигнала с дефектом тела качения представлена на рисунке 6. Дефект представляет собой искусственно нанесенную выемку на одном из тел качения подшипника диаметром $\delta = 0,1778$ мм. Длительность анализируемого фрагмента сигнала 2 секунды.

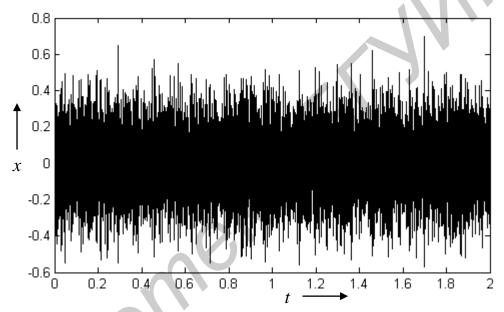


Рисунок 6 – Реализация сигнала "дефект тела качения" при $\delta = 0,1778$ мм

Строилась нормированная скалограмма сигнала "дефект тела качения" в диапазоне масштабных коэффициентов $a \in [0,1;2]$ с шагом $\Delta a = 0,01$, которая представлена на рисунке 7.

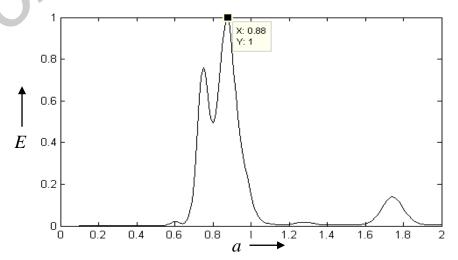


Рисунок 7 – Скалограмма сигнала "дефект тела качения"

Из скалограммы определен глобальный максимум при масштабном коэффициенте a=0.88.

На рисунке 8 представлен нормированный ПВП-спектр сигнала "дефект тела качения" G(F|a=0.88) для значения масштабного коэффициента a=0.88 и диапазона частот повторения $F\in[0;400]$ Гц, шаг по частоте повторения $\Delta F=0.5$ Гц.

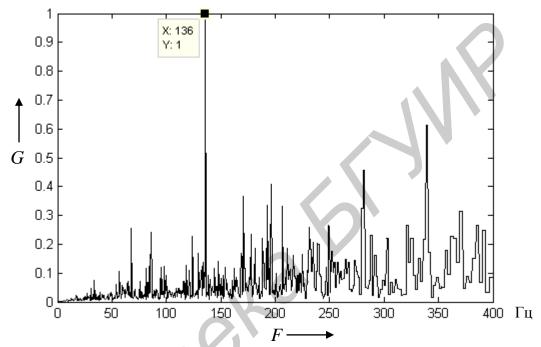


Рисунок 8 – ПВП-спектр сигнала "дефект тела качения"

На графике функции G(F|a=0.88) отчетливо определяется глобальный максимум на частоте 136 Γ ц, что приближенно соответствует расчетной частоте дефекта тела качения $f_{BFF}=135.5$ Γ ц.

На рисунке 9 представлено вейвлет-модельное разложение огибающей сигнала Z(F|a=0.88) при значении масштабного коэффициента a=0.88 и диапазона частот повторения $F\in[0;400]$ Гц, шаг по частоте повторения $\Delta F=0.5$ Гц.

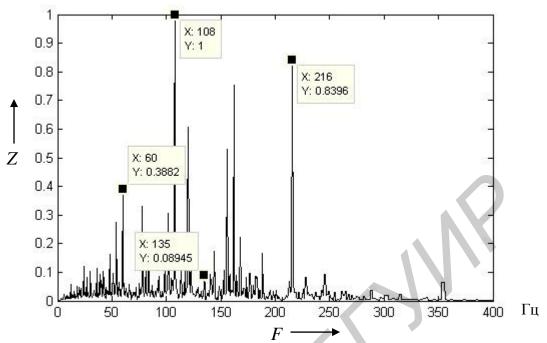


Рисунок 9 – Вейвлет-модельное разложение огибающей сигнала "дефект тела качения"

На рисунке 10 представлен Фурье-спектр мощности огибающей вейвлеткоэффициентов для масштабного коэффициента a=0.88.

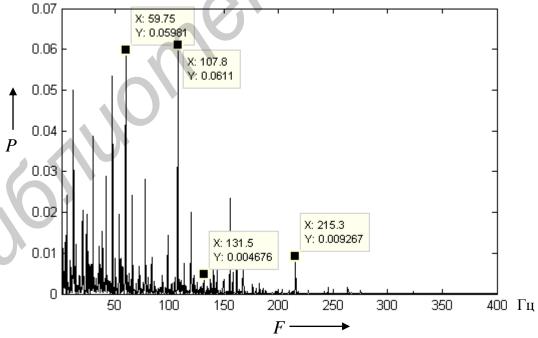


Рисунок 10 — Фурье-спектр мощности огибающей вейвлет-коэффициентов сигнала "дефект тела качения"

На рисунке 11 представлен спектр мощности огибающей сигнала "дефект тела качения".

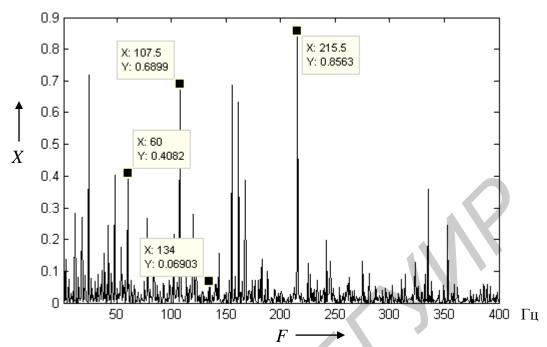


Рисунок 11 – Фурье-спектр мощности огибающей сигнала

Как видно из графиков 9, 10 и 11, компоненты характеризующие частоту дефекта $f_{BFF}=135,5$ Γ ц выражены слабо.

4. При анализе сигнала с дефектом тела качения диаметром 0,3556 мм все исследуемые методы позволили получить выраженный отклик в области частоты дефекта и выполнить ее оценку с относительной погрешностью менее 1 %.

ЗАКЛЮЧЕНИЕ

Предложен алгоритм оценки частоты повторения импульсных компонент сигналов на основе периодического вейвлет-преобразования с базисом Морле.

Эффективность алгоритма проверена путём обработки модельных сигналов вибрации подшипников качения при наличии поверхностных дефектов, а также вибрационных сигналов из открытой базы данных Case Western Reserve University Bearing Data Center.

В сгенерированных модельных сигналах с дефектом внутреннего кольца и тела качения однозначно выделена частота повторения ударных импульсов. В модельном сигнале с дефектом наружного кольца выявление периодичности сильно затруднено вследствие отсутствия в результате преобразования хорошо различимого выраженного отклика в области частоты дефекта. Добавление к сигналам с дефектом внутреннего кольца и тела качения БГШ до отношения

сигнал/шум -10 дБ не повлияло на точность определения частоты моделируемого дефекта.

Эксперимент на реальных данных показал результаты схожие с теми, которые были получены путем моделирования: алгоритм на основе периодического вейвлет-преобразования позволил произвести правильное обнаружение периодических импульсных компонент в сигналах с дефектами внутреннего кольца и тела качения, и оказался непригодным при анализе сигнала с дефектом наружного кольца. Таким образом, определен класс сигналов вибрации в котором предложенный алгоритм позволяет получить достоверные результаты.

Модификация предлагаемого алгоритма, состоящая в замене свертки сигнала с периодической вейвлет-функцией на свертку их огибающих, позволяет получить удовлетворительные результаты при оценке периодичностей сигналов содержащих любые виды дефектов.

Выполнен сравнительный анализ предложенного алгоритма и его модификации с существующими методиками оценки периодичностей (метод спектра огибающей сигнала, метод спектра огибающей вейвлет-коэффициентов). В ходе сравнительного анализа показано, что применение периодической вейвлет-функции позволило обнаружить дефект тела качения на ранней стадии развития, в то время как другие методы не позволили получить выраженный отклик в области оцениваемой частоты дефекта. При анализе сигналов с другими видами дефектов все методы показали схожие результаты.

Предметом дальнейших исследование предлагается сделать эффективность автоматического выявления дефектов описанных большим числом различных моделей.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

Статьи

1. Сеглюк, И. М. Алгоритм оценки частоты повторения ударных импульсов на основе периодического вейвлет-преобразования / И.М. Сеглюк, И.Г. Давыдов, С.Ю. Васюкевич, А.В. Цурко // Доклады БГУИР: июль – сентябрь. – 2014. -№6 (84).

Материалы конференций

- 2. Сеглюк, И. М. Оценка частоты повторения ударных импульсов на основе периодического вейвлет-преобразования // Современные проблемы радиотехники и телекоммуникаций «РТ-2014», Севастополь, 12–17 мая 2014.
- 3. Сеглюк, И.М. Модели сигналов вибрации подшипников качения при наличии поверхностных дефектов / И.М. Сеглюк, А.В. Цурко // Материалы 51-ой научно-технической конференции аспирантов, магистрантов и студентов БГУИР, секция «Радиотехнические системы», 7–8 мая 2015 Минск, Беларусь, 2015.