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ON THE MATRIX EQUATION FOR A SPIN 2 PARTICLE
IN PSEUDO-RIEMANNIAN SPACE-TIME

After the study by Pauli and Fierz [1, 2], the theory of massive and
massless fields with spin 2 has always attracted much attention [3—13].
Most of the studies were performed in the framework of 2-nd order differ-
ential equations. It is known that many specific difficulties may be avoided
if from the very beginning we start with 1-st order systems. Apparently, the
first systematic study of the theory of spin 2 fields within the first order
formalism was done by F. I. Fedorov [4]. It turns out that this description
requires a field function with 3 independent components. This theory was
re-discovered and improved by Regee [5]. In the present paper we develop
the theory of the spin 2 field, in both massive and massless variants, start-
ing from the matrix equation in Minkowski space-time and extending it to
the generally covariant theory within the Tetrode-Weyl-Fock-Ivanenko tet-
rad method.

We start with the known system of the first order equations for a mas-
sive spin 2 particle:

‘D, =md, lﬁaCD —1abq>(ab) = m®
2 3

a’

1 1 y 1
E akq)[ka]b + akq)[kb]a _Egabakq)[kn] +/0,0,+0,D, _Egabakq)kJ = mq)(ab)’
1
aaq)(bc) - abq)(ac) + g(gbcﬁkq)(ak) - gacakq)(bk)] = mq)[ab]c7 (1)

where the field variables are scalar, vector, symmetric 2-rank tensor, and
3-rank skew-symmetric in two first indices tensor, m =iM . By excluding

the vector and the 3-rank tensor, we obtain the 2-nd order equations with
respect to the scalar and symmetric tensor:
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In massless case, the first order system reads
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From (3) we derive the 2-nd order equations for the massless field:
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Massless equations have a class of gauge solutions:
_ _ 1
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where L,(x) stands for an arbitrary 4-vector. These special states do not

contribute to physically observable quantities, like the energy-momentum
tensor. The concomitant gauge components are as follows:
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The system (1) can be re-written in equivalent block form
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The corresponding matrix equation
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157



is extended to the Riemannian space-time in accordance with the tetrad
method. In a space-time with given metric, we fix a tetrad:

dS* = g,,()dx"dx",  g,,(X) = €4, (X), 8,5 (X) =1, (X)) 5 (), (9)

and then the generalized form gets written as follows
o 0
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x

where the local matrices I'“(x) are determined with the use of the tetrad
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and connection 2 _(x) is defined by relations
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where 3,(x)=J{" €/, (x) €5, (x), i=1,2,3; and J{*,J5",J3" stand for
the generators for the tensors ®,,® . P .. The equation (10) can be

presented by using the Ricci rotation coefficients

{FC[eé)(x)é%Jr%J“byabc}—m}\P(x):0. (13)

In block form, eq. (13) reads
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In the massless case, the system slightly changes:
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but its physical content is completely different. In particular, let us detail
tetrad representation for the gauge solutions:
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The concomitant gauge components are determined by the formulas
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The covariant equation is symmetric under the local Lorentz group, in ac-
cordance with the following relations

P'(x)=S)P(x), ST (S (x)=T “(x),

16
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where the prime indicates that quantities are determined with the use of the
primed tetrad related to initial one by the local Lorentz transformation

e, (x) = L, (x) e;, (x). With respect to the coordinate transformation, the

field function ¥ behaves as a scalar, x* >x *, ¥(x)=¥'(x").
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