Bocvmas Mexcoynapoonas nayuno-npaxmuueckas xongepenyusi «BIG DATA and Advanced Analytics.
BIG DATA u ananu3z evicokoeo yposusy, Munck, Pecnyonuxa, 11-12 mas 2022 200

UDC [611.018.51+615.47]:612.086.2

PARALLEL BLOCKED ALL-PAIR SHORTEST PATH ALGORITHM: BLOCK
SIZE EFFECT ON CACHE OPERATION IN MULTI-CORE SYSTEM

'A.A. Prihozhy

Technology Lead at 1Ssoft Professor at the Computer and System Software
Solutions (part of Coherent Department,
Solutions) in Minsk, Belarus, Doctor of Technical Sciences,

PhD in Technical Science Full Professor

Belarusian National Technical University

ISsoft Solutions (part of Coherent Solutions), Belarus
Belarusian National Technical University, Belarus
E-mail: karasik.oleg.nikolaevich@gmail.com, prihozhy@yahoo.com

O.N. Karasik
Technology Lead at I1Ssoft Solutions (part of Coherent Solutions) in Minsk, Belarus; PhD in Technical Science
(2019). Interested in parallel computing on multi-core and multi-processor systems.

A.A. Prihozhy

Full professor at the “Computer and system software”” department of Belarusian national technical university,
Doctor of Science (1999) and full professor (2001). His research interests include programming and hardware
description languages, parallelizing compilers, and computer aided design techniques and tools for software and
hardware at logic, high and system levels, and for incompletely specified logical systems. He has over 300 publications
in Eastern and Western Europe, USA, and Canada. Such worldwide publishers as IEEE, Springer, Kluwer Academic
Publishers, World Scientific, and others have published his works.

Abstract. The problem of finding all-pairs of shortest path in a graph is a classical computer-science problem
which has numerous practical applications in multiple domains. This paper analyzes a parallel version of the blocked
all-pair shortest path algorithm at the aim of evaluating the influence of the hierarchical cache memory on the
parameters of algorithm implementations on multi-processor/multi-core systems. Computational experiments carried
out by means of a profiling tool on various graph sizes have convincingly shown that the behavior and parameters of
the cache memory operation don’t depend on the graph size and are determined only by the distance matrix block size.
Obtained results show, that for every target machine the optimal block size can be found once in the case the graph
size isn’t high, it is divisible by the block size, and it is larger than the size of processor’s last level shared cache. After
that the optimal block size can be reused for efficient solving of the shortest paths problem on all graphs of larger size.
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Problem formulation

The problem of finding a shortest path exists for ages. It has a long history of being deeply
investigated by different researchers to solve different problems, starting from solving mazes and
ending by optimization of networks [1,2]. The shortest path problem has two classes: finding a
shortest path between two vertices in a graph and finding shortest paths between all pairs of
vertices in a graph. The former is called Single Source Shortest Path (SSSP), or Point-to-Point
(P2P), and the latter is called All Pairs Shortest Path (APSP). Both problems are computationally
expensive. The go-to algorithm for solving SSSP problems is Dijkstra’s algorithm. It has a 0(n?)
computational complexity. For APSP problems the go-to algorithm is Floyd-Warshall’s algorithm
which has 0(n3®) computational complexity. On large graphs (over 10000 vertices) these
algorithms will require impractical amount of time, even on modern hardware. That is why,
effective parallelization of such algorithms is an important computational problem.

Parallelization of any algorithm is a complex and time-consuming work. It requires a highly
qualified professionals [3] to adapt algorithm’s mechanics and then implement them in a way to
run effectively on target machines, which presents a separate challenge due number of cores and
theirs architecture differences [4].

However, effective parallelization of any algorithm depends on multiple factors including
(but not limited to): distribution of worker threads between processor’s cores [5,6] and
optimization of hierarchical cache memory usage [7].

In this paper we are focusing on analyzing an existing parallel algorithm for solving APSP
problem to understand usage of hierarchical cache memory and how it is affected by major
algorithm’s parameters — block size and graph size.

Algorithm description

Floyd-Warshall’s algorithm [8], whose pseudocode is presented in

Figure 1, operates on a cost adjacency matrix D of size N, where N is a size of a graph,
initialized with weights of the graph edges in such a way, that element D[i, j] contains a weight of
the edge between vertices i and j (upon completion, element D[i, j] will contain a length of the
shortest path between vertices i and j). The algorithm scans the matrix and checks existence of a
path from vertex i to vertex j through existence of paths from i to k and from k to j.

int M= ...

function algorithm(matrix D)
for k = @ to N do
for i = 0 to N do
for j = @ to N do
D[i,j] = min(D[i,j], D[i,k] + D[k,j])
end
end
end
end function

Figure 1 — Pseudocode of original Floyd-Warshall algorithm

Considering that matrix D is represented linear in memory, and assuming that matrix size is
larger than LLC (Last Level Cache) size, such implementation leads to a significant memory
traffic because on every iteration k, the algorithm reads (and in the worst case, writes) every
element of D. This might cause a complete reload of the matrix from the main memory, which in
turn leads to pure performance. To improve the performance on both small (when D doesn’t’ fit
in L1 processor cache) and large (when D doesn’t fit in LLC) graphs, in [9] authors proposed a
blocked (also known as “tiled”) version of Floyd-Warshall’s algorithm (see

).
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int M= ...
int L = ...

function algorithm_srl(block_matrix B)
for m = @ to M do
proc(B[m,m], B[m,m], B[m,m]);
for i =0 tom - 1 do
proc(B[i,m], B[i,m], B[m,m]);
proc(B[m,i], B[m,m], B[m,i]);
end
for i =m+ 1 toM- 1 do
proc(B[i,m], B[i,m], B[m,m]);
proc(B[m,i], B[m,m], B[m,i]);
end
for i =0 tom - 1 do
for j = @ to m-1 do
proc(B[i,j], B[i,m], B[m,j]);
end
for j =m+ 1 toM -1 do
proc(B[i,j], B[i,m], B[m,j]);
end
end
for i =m+ 1 toM- 1 do
for j =0 tom - 1 do
proc(B[i,j], B[i,m], B[m,j]);
end
for j =m+ 1 toM- 1 do
proc(B[i,j], B[i,m], B[m,j]);

int M= ...
int L = ...

function algorithm_prl(block_matrix B)
#pragma omp parallel
#pragma omp single
for m = @ to M do
proc(B[m,m], B[m,m], B[m,m]);
for i =0 tom - 1 do
#pragma omp task untied
proc(B[i,m], B[i,m], B[m,m]);
#pragma omp task untied
proc(B[m,i], B[m,m], B[m,1i]);
end
for i =m+ 1 toM- 1 do
#pragma omp task untied
proc(B[i,m], B[i,m], B[m,m]);
#pragma omp task untied
proc(B[m,i], B[m,m], B[m,1i]);
end
#pragma omp taskwait
for i = 0 tom -1 do
for j = @ to m-1 do
#pragma omp task untied
proc(B[i,3], B[i,m], B[m,3]);
end
for j =m+ 1 toM- 1 do
#pragma omp task untied

end proc(B[i,j], B[i,m], B[m,3]1);
end end
end end
end function for i =m+ 1 toM-1do

for j =0 tom - 1 do
#pragma omp task untied
proc(B[i,j], B[i,m], B[m,j1);
end
for j =m+1 toM-1do
#pragma omp task untied
proc(B[i,j], B[i,m], B[m,j1);
end
end
#pragma omp taskwait
end
end function

function proc(B1, B2, B3)
for k = 9 to L do
for i =0 to L do
for j = 0 to L do
B1[i,j] = min(B1[i,j], B2[i,k] + B3[k,j])
end
end
end
end function

Figure 2 — Pseudocodes of serial (algorithm_srl) and parallel (algorithm_prl) version of
blocked Floyd-Warshall algorithm. The parallelization is done using OpenMP

This version splits matrix D into blocks of size L, effectively creating a matrix B of blocks
of size M, where M = L = N. Algorithm performs M iterations, each consisting of three phases:
calculation of “diagonal” block, calculation of “cross” blocks and calculation of the “peripheral”
blocks (see Ommoka! UcTOYHHK CCHIIKH He Haii/leH.).
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Figure 3 — Illustration of calculation phases of blocked version of Floyd-Warshall’s algorithm on
example of first two iterations.

The order of block calculation within an iteration doesn’t have to match the above-described
phases. Instead, it can be purely driven by data dependencies between blocks?:

—“diagonal” block depends on itself.

—“cross” block depends on the “diagonal” block and self.

—“peripheral” block depends on the corresponding “cross” blocks (both vertical and
horizonal).

The computation is now done in blocks, with at most three active blocks (when computing
“peripheral” blocks) at a time. This reduces the process-memory traffic by a factor of L [7]. The
blocked version can be parallelized using OpenMP directives. In parallel version, on each phase,
all blocks are calculated in parallel®. The parallel version presented on

is used in all presented experiments.

In [9], the optimal block size (to minimize L1 cache misses) is determined using the
following equation:

3I12+xE<C (1)

where L — is the size of the block
E —is the size of matrix element in bytes
C —is the size of L1 cache

In addition, L should be a multiple of S/E (where S is a size of processor cache line, which
is the smallest unit of data brought into L1 cache). This equation works for serial version of the
algorithm. However, as stated in [7] and also demonstrated in our experiments for parallel version

! Despite differences in data dependencies all blocks are calculated using the same procedure (see

). The exploitation of the facts that “diagonal” and “cross” and “peripheral” blocks depend on itself was covered in
multiple researches [10-12]. However, in this research we aren’t focusing on these improvements for simplicity
reasons.

Z It is obvious that such implementation while being simple has a drawback in form of non-optimal utilization of
data dependencies. The possibilities to optimize computations by the excessive use of data dependencies is covered
in multiple researches [13-16].
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(where the optimal block size is turned to be 120x120 instead of 48x48 defined by the equation)
the best size of the block must be found experimentally. Looking for an optimal block size for
large graphs can be time consuming and in general results in a significant time lose.

In this work we analyze the behavior of hierarchical cache memory and the parallel algorithm
execution time to understand the relationship between experimental graph size, optimal block size
and cache utilization.

Experimental setup and results

All computational experiments on the parallel version of blocked all-pairs shortest path
algorithm (hereinafter algorithm if not mentioned otherwise) were conducted on a rack server
equipped with 2xIntel Xeon E5-2620 v4 processors containing 8 cores (16 hardware threads) each.
Every core is equipped with a private L1 (32KB), L2 (256KB) caches and all processor cores share
inclusive L3 (20MB) cache. The algorithm was implemented in C++ language using GNU GCC
compiler v10.2.0 and OpenMP 4.5. We used Intel VTune Profiler 2021.8 to measure cache
behavior.

We conducted a series of experiments on multiple randomly generated directed acyclic
graphs (4800, 9600 and 19200 vertex) with edge probability of 80%. Every experiment was
repeated multiple times and computation results were verified against the results of original Floyd-
Warshall algorithm obtained on the same graph. To ensure, attached profiler (VTune) doesn’t
introduce significant noise, every experiment was executed 10 times with profiler attached and 10
times without it. The difference in execution time was calculated and will accompany every set of
experimental results.

All experiments were conducted on multiple block sizes: 30x30, 48x48, 50x50, 75x75,
100x100, 120x120, 150x150, 160x160, 192x192, 200x200, 240x240 and 300x300. All block sizes
divide the matrix into blocks of equal size without remainders. However, depending on the size of
the graph the resulting number of blocks might or might not be divisible by total number of
hardware threads — 32.

To understand the usage of hierarchical cache memory by the algorithm we measured the
following PMU (Performance Monitor Unit) events and total execution time:

—MEM_LOAD_UOPS_RETIRED.L1 HIT_PS — indicates L1 hit.

—MEM_LOAD_UOPS_RETIRED.L2_HIT_PS —indicates L2 hit (also means L1 miss)

—MEM_LOAD_UOPS_RETIRED.L3 HIT_PS —indicates L3 hit (also means L2 miss)

—MEM_LOAD_UOPS_RETIRED.L3_MISS_PS — indicates L3 miss and access to RAM.

These events, as well as the execution time, were collected all at once without multiplexing
[17] on every run of the algorithm. Each event value (in tables), ex. L1 HIT_PS, is a sum of all
such events recorded on all cores (on all processors) during sample interval [18]. Tables 1-3 report
an average of 10 runs with the profiler attached.

The data presented in Tables 1-3 might seem overwhelming, so let’s extract important bits
of information from them. The most interesting information in the above data are “break points”
1.e., block sizes where the algorithm no longer efficiently uses current level of cache and starts to
rely on the next one, ex. three blocks don’t fit in L1 cache, so algorithm starts to more extensively
use L2 cache. To relate these “break points”, it is required to see when the cache level can no
longer include three blocks. This information is presented in

Table 5.

Table 1. Experimental results of parallel version of blocked all-pair shortest path algorithm
on a graph of 4800 vertexes; profiler contribution is up to 1.70%; arrows (—) emphasise “break
point”; bold emphasis maximum value of the event; colored cell indicates minimal execution time.
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Table 2 — Experimental results of parallel version of blocked all-pair shortest path algorithm on a
graph of 4800 vertexes; profiler contribution is up to 1.70%; arrows (—) emphasise
“break point”; bold emphasis maximum value of the event; colored cell indicates
minimal execution time.
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Table 3 — Experimental results of parallel version of blocked all-pair shortest path algorithm on
graph of 9600 vertexes; profiler contribution is up to 1.54%
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Table 4 — Experimental results of parallel version of blocked all-pair shortest path algorithm on
graph of 19200 vertexes; profiler contribution is up to 1.74%.

1
W11 999 (329 25756627 157020 219| 2208397 2275142 201 (169160 (154 |151
(@09 359 |939 - 581 419|963 |880 |133 285

L
PAi11307 690 328966167 2118 641 2860502831359 696|492 866|118 |692
(103) [EEINEK - 162 - 093 397|370 (256 |303
L
el 442 |965 6012102 46135 574 278130755925 765|691 562|360 |048
[#003) 295 |40 - 20 - 010|230 |450 810 |290
L
mis‘: 763|870 64597521 4050 133 10000571330 130 |674 |599 541 699
52010 - 65 - 5 5 |5 |0 |5
(10%)
-
Ty581(053| 305305 248988 162| 212737 229031 223 (224|214 (187179
[D)30 |00 79 65 (92 |61 |44 |58

Size
L1

(blocks)
L2

(blocks)
L3
(blocks)

According to
Table 5, the first “break point” (between L1 and L2 caches) should reveal itself on a block size of
75x75. Indeed, in Tables 1-3 you can see that when block size reaches 75x75 the number of L1
cache hits lowers a bit and the number of L2 cache hits increases significantly (around 5 times).
We also see a reduction in L3 hits (around 2 times) and L3 miss (around 3 times), which means
less L2 misses. At the same time, we start to see a stabilization of the number of L1 cache hits on
larger block sizes (100 — 300)*. Now according to

Table 5, the second “break point” (between L2 and L3 caches) should reveal itself on a block
size of 150x150. As we can see in Tables 1-3, when block size reaches 150x150 the number L2
cache hits is reduced (around 1.5 times) and the number of L3 hits is significantly increased
(around 2.5 times). Then we can see the continues growth of L2 hits, temporary growth of L3 hits
(which changes to gradual reduction after block size reaches 192x192) and continues reduction of
L3 miss. The increase of L2 hits is caused by the fact that L1 cache can’t hold even a fraction of

block (ex. when block size is 160x160 the L1 cache includes only 1/3 of a block), so the algorithm

makes extensive use of L2 cache. The behavior of L3 cache is caused by the adaptation of L2
cache to the fact it can’t include three blocks, then two blocks and in the end a single block. The
continues reduction of L3 misses is explained by the fact that almost all requests are satisfied by
L2 or L3 cache.

You can find the shares of the cache hits and misses for all the experimental graphs relative
to the block size in table 6

3 The standard deviation from average for L1 hit on block sizes 100 — 300 are 1.23% for a graph of 4800, 1.55% for
9600 and 1.93% for 19200.
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Table 6 — Shares of the all cache hits and misses from the total number of all cache related events
(L1 + L2 + L3 hits + L3 miss), share of L2 hits from number of L2 cache related
events (L2 + L3 hits + L3 miss) and share of L3 hits from number of L3 cache related

events (L3 hits + L3 miss) for all experimental graphs relative to the block size.
Event /
Block Size

4800 vertexes

L1 hit/ 99 99 99 99 98 98 98 98 97 97 97 97
Total JEI ,76 78 ,18 ,30 27 92 ,50 91 ,99 ,98 ,87

L2 hit/ 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
Total Y 15 15 78 67 70 04 40 83 79 81 96

L3 hit/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
Total YA 05 04 02 02 02 04 09 26 22 20 17

L3 miss / 0, 0, 0, 0, 0, 0, <0 <0 <0 <0 <0 <0
Total S 03 03 01 01 01 ,01 ,01 ,01 ,01 ,01 ,01

L2 hit/ L2 70 64 68 95 98 98 96 93 87 88 89 91
Total Y ,37 ,56 ,96 ,56 ,65 32 ,62 ,95 ,88 ,80 78

L3 hit/L3 67 60 59 66 72 78 92 97 98 99 99 99
Total JREH 77 97 ,89 ,90 ,01 ,07 ,37 ,83 ,22 48 ,53

9600 vertexes

L1 hit/ 99 99 99 99 98 98 99 98 98 97 97 97
Total JEeLe] ,81 ,81 25 61 49 ,07 ,53 ,08 91 ,90 ,80

L2 hit/ 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2,
Total K] 13 14 73 37 49 89 37 66 84 88 02

L3 hit/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
Total YA 04 03 01 01 01 04 09 26 25 22 19

L3 miss / 0, 0, 0, 0, 0, <0 <0 <0 <0 <0 <0 <0
Total Y] 03 03 01 01 ,01 ,01 ,01 ,01 ,01 01 01

L2 hit/ L2 70 67 70 96 98 98 95 93 86 87 89 91
Total L] ,55 ,85 79 ,68 71 ,68 ,52 49 ,98 ,38 51

L3 hit/L3 66 58 53 60 69 75 92 97 99 99 99 99
Total ,49 ,86 31 24 59 67 07 25 17 17 38 52

19200 vertexes

L1 hit/ 99 99 99 99 98 98 99 98 98 97 97 97
Total ] ,83 ,82 ,30 ,81 ,70 A7 71 ,16 ,99 ,88 64

L2 hit/ 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2,
Total 43 12 13 68 18 28 80 21 58 75 87 13

L3 hit/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
Total 11 03 02 01 01 01 03 08 26 25 24 23

L3 miss / 0, 0, 0, 0, 0, <0 <0 <0 <0 <0 <0 <0
Total 06 03 03 01 01 ,01 ,01 ,01 ,01 ,01 ,01 ,01

L2 hit/ L2 71 67 72 97 98 98 95 93 85 87 88 90
Total Y 71 51 32 ,62 ,70 ,68 ,69 ,89 ,33 41 24

L3 hit/L3 66 54 48 53 69 73 91 97 99 99 99 99
Total Y 27 21 49 43 ,55 ,38 ,18 ,19 ,18 34 A7

As you can see in

Table 5, we didn’t experiment on graphs of enormous sizes to exhaust L3 cache and see the
stabilization of L2 hits and then increase of L3 miss when less and less blocks fit in it. However,
the presented data clearly demonstrates that the cache usage by the algorithm doesn’t dependent
on the graph size* but on the block size (see

Figure 2).

4You can also notice that maximum values for L1, L2, L3 hits and L3 miss (in bold) in Tables 1-3 are registered on
the same block factor for all experimental graphs.
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Figure 2 — Normalized (around maximum values — see bold values in Tables 1-3) charts of a) L1
hits b) L2 hits ¢) L3 hits d) L3 misses across all three experimental graphs — 4800 (solid), 9600
(dashed) and 19200 (dashed dotted)

The change in execution time follows the similar pattern as cache usage does
(see

Figure 3) — it gets increased or reduced by the same fraction depending on the block size.
The important conclusion from this observation is that optimal block size can be found
experimentally on smaller graphs and then used to carry out calculations of larger graphs.
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30 48 50 75 100 120 150 160 192 200 240 300

Figure 3 — Normalized (around maimum values — see bold values in Tables 1-3) execution time
across all three experimental graphs — 4800 (solid), 9600 (dashed) and 19200 (dashed dotted)

36



Bocvmas Mexcoynapoonas nayuno-npaxmuueckas xongepenyusi «BIG DATA and Advanced Analytics.
BIG DATA u ananu3z evicokoeo yposusy, Munck, Pecnyonuxa, 11-12 mas 2022 200

Next, it is important to understand why after reaching the block size of 120x120 the
execution time continues to increase while at the same time we can see reduction in L3 miss and
increase in L2 and L3 hits. The answer lays in the difference between latencies of different cache

levels (see
Table 7).
Table 7 — Approximate latencies of L1, L2 and L3 caches for Intel Xeon E5-2620 v4 processor.
L1 (data) 4 cycles
L2 (unified) 12 cycles
L3 (unified, inclusive) 30 cycles

The latency changes significantly between L1 and L2 (3 times) and then again between L2
and L3 (2.5 times). This is still much faster than accessing DRAM, but the best execution time is
dictated by the optimal number of all cache hits on all levels and not one. Hence, it must be possible
to analytically calculate optimal block size knowing enough analytical data. However, such
analysis is out of scope of this paper.

Conclusion

In this paper we have analyzed hierarchical cache memory usage by the parallel version of
blocked all-pair shortest path algorithm and have demonstrated that it doesn’t depend on the graph
size but instead depends on the selected block size.

Next, we have showed that the optimal block size doesn’t depend on the graph size and
therefore can be precalculated for large graphs in advance using small graphs (which still must be
larger than LLC).

We have also experimentally demonstrated that in case of parallel version of the algorithm,
executed on modern hardware (equipped with multiple levels of cache memory and with
simultaneous multi-threading support), the optimal block size is no longer can be found in the
same way as it was for the sequential version, therefore, leaving discovery of optimal block size
to experimental lookup and future research.
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BJIQ‘IHO-HAPAJIJIEJIBHLIﬂ AJITOPUTM MOUCKA KPATUAHUIINUX
IHYTEU: BIUAHUE PASMEPA BJIOKA HA ®YHKIITMOHUPOBAHME KJII-
HAMSATHA MHOT' OSIJIEPHOM CUCTEMBI

O.H. Kapacuk A.A. Hpuxoorcuii
Beoywuii umsicenep-npoepammucm Ipogpeccop rkageopul «llpoepammmuoe
UHOCIMPAHHO20 NPOU3BOOCHIBEHHO20 obecneuenue UHPOPMAYUOHHBIX cUCmeM U
yuumapHoeo npeonpusmusi « ACCODT mexnonoautiy benopycckozo HayuoHanvHo2o
COJIFOLIEH3» (IIBT, 2. Munck), MexHU4ecKo20 yHusepcumemd, 0.1m.H.,
K.M.H. npogeccop

AHHoTanus. 3ajmadya HaXOXKACHUS BCeX KpaTyalmmx IyTedl B rpade sBIsfeTcS KJIaCCHYECKON 3amaueit
MHPOPMATHKH, UMEIOIIEH MHOTOYNCIICHHBIE NTPAKTHYECKHE NPUMEHEHUS B CAaMBIX Pa3IMYHbIX o0yacTsx. B ctatee
BBINIOJHEHBI NPOQUIMPOBaHUE M aHAIU3 OJOYHO-NApPaJUIENIbHON BepcHs alropuTMa IMOMCKa KpaTdaiiiero myTH
MEXy BEepIIMHAMH rpada ¢ 1IeIbi0 OIEHKH BIHMSHUS MapaMeTpoB ajJropuTMa Ha HCIOJIb30BaHNUE MEpPapXUUecKOn
KOII-NaMSTA Ha MHOTOSIEPHBIX CUCTEMax. BbIUHMCIMTENBbHBIE SKCHEPUMEHTHI, MPOBEACHHBIE C UCIOJIB30BaHHEM
npoduIMpoBIIKKa, Ha PA3IUYHBIX pa3Mepax rpadoB, yOeIUTeIbHO OKa3aJI1, YTO HCII0JIb30BAHIE aJITOPUTMOM K3III-
MaMsATH HE 3aBHUCAT OT pa3Mmepa rpada, a OmpelesieTcsl TOJIbKO BBIOpaHHBIM pa3mepoMm Osoka. IlomydeHHble
pe3ysIbTaThl MOKA3bIBAIOT, YTO JUIS KaXKMO0W MHOTOSIEPHOM CHCTEMbl ONTHUMAJBHBINA pasMmep OlOKa MOXET OBITh
HaWJIeH eIMHOXK/IbI (€CIIM KOJIMYECTBO BEPLIMH B rpade NeauTcsl Ha BHIOpaHHbIH pa3Mep Ojoka U pazmep rpada B
MaMsTH TpeBbIIaeT 00bEeM K31 ocieHero ypoHs). [Tocie aToro, HailieHHbIN ONTUMANIBHBIN pa3Mep OJI0Ka MOXKET
OBITH TOBTOPHO MCIOJIB30BaH Uil 3()(EKTHBHOrO pelIeHUs 3aJayd KpaTdaiimmx nyrtei Ha rpadax OoJbliero
pasmepa.

KiroueBble ¢j10Ba: KpaT4alIuil myTh, anroput™m dioiina-Yopienia, OJIOYHBIN alTOPUTM, MHOTOTIOTOYHBIH
JITOPUTM, MHOTOIIPOLIECCOPHAs CUCTEMA, HEpApXUYECKasl KAUI IaMATh, IapalICIU3M.
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