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Statistical arbitrage was created in Morgan Stanley in the early 1990s. The definition of statistical
arbitrage brings together similar investment strategies that are based on finding mispricing between two or
more assets and creating mean reverting portfolios. In the simplest form statistical arbitrage refers to trading
only two assets but it can be extended to n-dimensional mean reverting portfolio. If two assets share the
same characteristics and risk exposures, then we can assume that their behavior in the future would be
similar as well [4]. In this case we don’t have to estimate the intristic value of an asset but rather just if it is
undervalued or overvalued relative to peer(s). If spread between securities diverges from its mean, we take
advantage on mispricing and enter a short position on “winner” and long position on “loser”.

The graph below shows the relationship between INDB and PFS. The spread bellow shows the
mispricing between assets. The greater the price differens from 0 and ,hence, the spread, the greater the
profit potential.
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Picture 1 — Prices of INDB and PFS
Usually, statistical arbitrage answer the following questions:
Firstly, given the asset universe, what are the long-short portfolios of similar assets?

Secondly, given those portfolios, what are the position entry points?

And finally, what weights should we assign for the trade? This paper focuses on answering the first
guestion. Given the S&P asset universe e.g. 500 stocks, the simplest procedure [6] is applied to generate
potential candidate pairs by considering the combination from every security to every other security in the
dataset. It leads us to 124750 possible co-integration, meaning reverting tests, which can be time-
consuming.

Proposed modified Sarment and Horta [2] Pipeline:
Step 1: Data collection

Daily closing prices were collected from 500 publicly traded U.S. securities and sampled for this
paper. Data ranges from 2010-01-01 through 2022-01-27.
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UVSP CBSH MMLP LOGN MTSL CRDF THYCY CUB CZNC OPNT .. TITN CHMG JLL PARF GPN GURE BCE ROCK NM

date
20100104 1775 26586 31990 124 426 328319 2828 3915 965 1200 .. 1230 214 6153 180 26335 6850 2786 16.80 638
2010-01-05 1686 26539 32370 124 474 323999 2828 4158 955 1200 .. 1272 214 6304 180 26280 6825 2765 17.76 670
2010-01-06 1678 26437 32720 124 480 319679 2828 4102 927 1200 .. 1283 204 6344 180 26185 6925 2768 17.42 671
0100107 1712 27060 32950 124 480 323999 2828 4026 903 1200 .. 1288 204 6367 180 26020 67.75 2689 1742 673
2010-01-08 17.17 26722 32839 124 510 323999 2828 4076 923 1200 .. 1302 204 6383 180 24485 7245 27.02 1817 690

Picture 2 — Dalily closing prices of 500 U.S. companies

Here is the formula for the daily return:
P
= -1
t+1
Py : @
Where 7, is (i + 1)t"daily return; and ¥ is i*close price of the stock.

uvsp CBSH MMLP LOGN MTSL CRDF THYCY CuB CZNC OPNT .. TN  CHMG JLL PARF GPN GURE
date

2010-01-05 -0.050141 -0.001768 0.011879 0.0 0.112676 -0.013158 0.0 0062089 -0.010363 0.0 .. 0.034146 0.000000 0.024541 0.0 -0.002088 -0.003650
2010-01-06 -0.004745 -0.003843 0.010812 0.0 0.012658 -0.013333 0.0 -0.013468 -0.029319 0.0 .. 0.008648 -0.046729 0.006345 0.0 -0.003615 0.014652
2010-01-07  0.020262 0.023565 0.007028 0.0 0.000000 0.013514 0.0 -0.018528 -0.025890 0.0 .. 0.003897 0.000000 0.003625 0.0 -0.006301 -0.021661
2010-01-08  0.002921 -0.012491 -0.003369 0.0 0.062500 0.000000 0.0 0012419 0022148 0.0 .. 0.010870 0.000000 0.002513 0.0 -0.058993 0.069373
2010-01-11 -0.019220 0.006324 0.009775 0.0 -0.011765 0.000000 0.0 0030667 -0.028169 0.0 .. 0.004608 0.000000 -0.015353 0.0 -0.023484 0.017253
Picture 3 — Daily returns of 500 securities

Step 2: Apply PCA

Principal component analysis is applied to the scaled return series. The below graphs plot the
loadings on of each security on the first five principal components. It is unsurprising that nearly every
security has a similar loading on the first principal component. This component is generally interpreted as
the “market” component of financial instruments which explains much of the variation in price movements
across securities. Because our sample data consist of publicly traded U.S. equity listings, we expect to see
the presence of this first principal component.

First, normalize data

= 2)

g
where y=mean; o-standard deviation.

Then compute Covariance Matrix:
1 N
D (X —2)(Yi- )
Nt 3)
Compute Eigenvectors and Eigenvalues:
Av® = w~v”(Ad — 1) = 0, 4)
where A is the covariance matrix; I is the identity matrix; v~ are eigenvectors; and 1 are eigenvalues.

cov(X,Y) =
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Picture 4 — Principal Component analysis Loadings
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Implementing PCA reduced the dimension of the data from 3650x500 to 10x500

Step 3: Apply Clustering Algorithm (OPTICS)

Unlike other clustering algorithms, OPTICS computes an augmented cluster-ordering of the data
rather than clustering the data explicitly. This frees the algorithm from relying on global parameters that
might be heavily influenced by one cluster, but not accurately describe other clusters. Ankerst et. al state,
“It is a versatile basis for both automatic and interactive cluster analysis” [1].

A point p is considered a core point if at least MinPts are found with its e — neighborhood . Each
point is given a core-dist which denotes the distance to the nearest MinPts closest point.
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Picture 5 Clustering Algorithm

Step 4: Select trading pairs

Sarment and Horta [6] suggest four criteria to filter the potential pair to increase the probability of
selecting pairs of securities whose prices will continue to mean revert in the future.

Statistically significant t-stat for the Engle-Granger test p-value < 0.05 (5%).

Hurst exponent < 0.5.

Half-life between [1, 252].

Spread must cross the mean on average 12x time per year.

The Engle-Granger tests the pair for cointegration. A hurst exponent below 0.5 indicates that the pair
of prices regress strongly to the mean. Pairs with extreme half-life values, below 1 or above 252, are
excluded from selected pairs. Extreme half-life values indicate a price series that eitgher reverts too quickly
of too slowly to be traded. Finally, the price series must cross the long-term spread mean on average 12
times a year. This enforces on average one trade per month.
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Engle-Granger Test:

If x; and y, are non-stationary and order of integration d = 1 , then a linear combination of them must
be stationary for some value of g and y; . [2]

Xe — Bxe = U, (5)

where u . is stationary.

Cointegration:

Lety, = (ylt, Yar, Vae, .. Vit )T is a set of time series, and each is y;; ~ I(1). Those time-series called
cointegrated if exists vector a = (ay, a, . a;)T, such thate, = a”y, = Y{_;)a; y; is stationary process.
a

is called cointegrated vector.

Hurst Exponent Calculation

The Hurst exponent, H, is used to measure the long-term memory of time-series. A value in the range
of [0-0.5] indicates that a time series reverts strongly to the mean while a value of [0.5-1] indicates a time
series with long-term positive autocorrelation and is likely to diverge. The Hurst exponent is calculates as:

E[S] = cnm > w0 R ©

Where R(n) is the range of the first n cumulative deviations from the mean; S(n) is the series of the
first n standart deviations; E Is the expected value; n Is the number of observations in the time series; C Is
a constant. [5]

Half-Life Calculation

The half-life of a series is the amount of time it takes for a series to return to a half of its initial value
and is defined as:

N(t) = Nye N, (7)

Where NO is the initial quantity of the spread that will decay; N(t) is the quantity that remains and
has not yet decayed after a time t; A is a positive number called the decay constant. [3] The half-life, t1 is

2

defined as: t1 = @
2
Spreads with short half-lives indicate portfolios that revert to the mean and create many trading
opportunities.

Results:

This paper demostrates an empirical example of the modified pairs selection process in [6] to
efficiently reduce the search space and select quality trading pairs. Roughly 9 years of stock market price
data for 500 securities were reduced to 10 dimensions through PCA algorithm. Next, over 300 potential
trading pairs were identified using OPTICS clustering [1]. Seven pairs from the clusters met selection
criteria.
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Picture 6 - Example of filtered pair

We constructed long-short portfolio for backtesting purposes. The graph below shows comparison
of its returns with the Benchmark.
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Cumulative Returns
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Picture 7 — Cumulative returns of constructed portfolio
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Picture 8 — Asset allocation

Returns Per Trade

200

o
-40.00% -20.00% L00% 20.00% 40.00% 60.00% BOL.O0%

Picture 9 — Returns per trade
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Key Statistics

Days Live - Drawdown 27.0%
Turnover 49% Probabilistic SR 8%
CAGR 14.3% Sharpe Ratio 0.6
Markets Equity Information Ratio 0.1
Trades per Day 4.7 Strategy Capacity (USD) 4.3M

Picture 10 — Key statistics
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