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Modern computer or embedded systems make it possible to obtain long (tens of seconds, minutes,
hours, days) realizations of vibration signals, which continuously reflect the vibration state of the
investigated mechanism in different modes of operation. Received large amounts of data are subject
to rapid automated processing, to provide the user with the required information and the formula-
tion of conclusions about changes in the technical state of the controlled object. The decomposition
into periodic and noise-like components, wavelet analysis, Hilbert-Huang transform, as methods of
primary transformation of initial vibration signals and representing it as a composition of compo-
nents. The next step is to determine the values of the parameters of the obtained components of the
expansions and plotting time trends of the calculated parameters. Next, assess the changes in the pa-
rameters of the components and their time trends and make decisions on the technical condition of
the monitored technical object.
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1. Introduction

To obtain information about the vibration state of the monitored equipment and its analysis, it is cur-
rently advisable to use measuring and computing complexes and systems, distributed collection and
centralized processing systems, to continuously monitor the state of the object, record rare and short-
term anomalous situations, store large amounts of received data, implement a variety of processing and
diagnostic algorithms. Building such systems for the purpose of monitoring the overall level of vibra-
tion, its individual spectral components, vibration characteristics of starts and runs, have been worked
out to some extent [1-7].

One of the most advanced are multichannel stationary measuring complexes or systems for continu-
ous vibration control. It is allowed to receive information of various types: (RMS of the general level,
spectral components of vibration, phase vectors, histograms of distributions, etc.) in continuous opera-
tion and save the received data, and also carry out the functions of warning and protection. This mode
of operation makes it possible to comprehensively monitor the state of the object and identify even
rarely occurring anomalous situations, which makes it possible to detect the initiation of defects at the
earliest stages. But such systems are relatively expensive. However, the expediency of their application
is undeniable at economically important and complex technical facilities [6-8].
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2. Analysis of vibration signals in an emergency situation

When operate complex mechanisms and rotary-type units using standard systems and measure and
compute complexes the tasks of current vibration control, monitoring and protection are being solved
[1,3,8]. Let us consider the situation of a change in the vibration state of an expander-generator unit
(EGA) when change its operating modes. EGA consists of a generator (4 points of control, vertical and
horizontal directions of vibration of bearing supports), a gearbox that reduces the shaft speed from
9600 min (160 Hz) to 3000 min* (50 Hz) (3 points of control), a turbo expander - a turbine operating
on the basis of the use of the energy of the differential pressure of natural gas, when it is throttled be-
fore burning (3 points of control). Turbine shaft speed is 9600 min™ (160 Hz) .

During the operation of the EGA in certain modes of its operation standard vibration control system
[7] the facts of an abrupt change in the root mean square value (RMS) of the vibration velocity on the
turboexpander were recorded (figure 1). The data acquisition period of each vibration sensor is 2 sec-
onds.
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Figure 1: Change in RMS vibration velocity when changing the operating mode of the DGA.
The jump in the RMS vibration velocity of the vertical direction of the turbine

To find out the reasons for this situation, analysis the continuous vibration signal that excited on the
turbine housing during the occurrence of abnormal situations[9]. The received signal is processed in
different ways: averaging in the time domain [10], wavelet analysis [11,12], decomposition into period-
ic and noise-like components [13, 14], band spectral analysis [15] and Hilbert-Huang transform [16].

Figures 2-3 show the vibration signal for vertical direction of the turbine in units of vibration accel-
eration and the amplitude spectrum of this signal during normal operation of the EGA. Figure 4 shows
the same vibration signal and amplitude spectrum, but after averaging the vibration signal in the time
domain synchronously with respect to the frequency component of 160 Hz, the turbine shaft speed.
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Figure 2: Temporary implementation of a vibration signal in normal turbine condition.

Figure 3: Amplitude spectrum of the vibration signal in the normal state of the turbine.
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Figure 4: Vibration signal, averaged in the time domain synchronously with the
frequency component of 160 Hz, turbine shaft speed, during normal operation
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Good visibility, after averaging in the time domain, the periodic structure of this signal appears
and random noise and interference are suppressed. The vibration signal for the vertical direction of the
turbine after an emergency is shown in the figures 5-6.

Figure 5: Temporary realization of a vibration signal in an emergency condition of the turbine.

Figure 6: Amplitude spectrum of the vibration signal in an emergency condition of the turbine.

A distinctive feature of this vibration signal is the appearance of predominant amplitude, whose
frequency component is equal to 62 Hz, which is not a multiple of the turbine shaft speed.
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Figure 7: Band spectrum at normal turbine state

Changing the frequency composition of the vibration signal for an emergency condition well ob-
served in the band spectrum, where the frequency bands are in 50 Hz steps (figures 7-8).
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Figure 8: Band spectrum of vibration signal during turbine emergency state.

To determine the interdependencies of the frequency components of the vibration signal, it is aver-
aged in the time domain with respect to the frequency component 160 Hz (figure 9) and a frequency
component of 62 Hz (figure 10). This study shows that the frequency components that are multiples of
160 Hz and frequency components that are multiples of 62 Hz are absolutely not interconnected, since
there is their mutual suppression with synchronous averaging in the time domain. Blurring of frequency
components, multiples of 62 Hz, occurs due to that time interval is not a multiple of the frequency
component period 62 Hz.
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Figure 9: Vibration signal, averaged in the time domain synchronously with the
frequency component of 160 Hz, turbine shaft speed, in emergency operation
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Figure 10: Vibration signal, averaged in the time domain synchronously with the
frequency component of 62 Hz, basic disturbance frequency in emergency operation
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Figure 11: Decomposition of the vibration signal into periodic (frequency 160 Hz)
and noise-like components in the normal state of the turbine.
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Figure 12: Decomposition of the vibration signal into periodic (frequency 160 Hz)
and noise-like components in an emergency condition of the turbine.

The structure of vibration signals can be studied in more detail by decomposing them into periodic
and noise-like components (figures 11-14). Decomposition of vibration signal, obtained during normal
operation of the turbine (figure 11), clearly distinguishes the periodic component, with a period of 160
Hz and noise-like. Decomposition of vibration signal, obtained during emergency operation of the
turbine (figure 12), splits the signal into a periodic component, with a frequency period of 160 Hz, and
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the remainder is noise-like component plus additional component. Figure 13 shows the decomposition
of the hazard signal on a periodic component, with a frequency period of 62 Hz, and the remainder is a
noise-like component plus a periodic component with a period of 160 Hz.

Figurel13: Decomposition of the vibration signal into periodic (frequency 62 Hz)
and noise-like components in an emergency condition of the turbine.

3. Conclusions

Disturbing vibration impact and vibration impact, caused by the rotation of the turboexpander shaft,
are not correlated with each other. To prevent situations accompanied by an increase of the vibration of
the turboexpander, the mode of operation of the EGA is recommended. The considered methods of
analyzing vibration signals show that the values of various informatively significant parameters can be
determined in real time, which will then be used in decision support systems according to technical
condition assessment complex mechanisms and units with rotary motion [17].
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