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This paper is devoted to the key issues associated with handling of the content of very large 
databases of natively digital medical images. A particular attention is drawn to the problem of ex-
amining image content in order to generate new knowledge, which is lately referred to as the image 
mining problem. Other important questions discussed in the paper are the content-based medical 
image retrieval and image analytics that are aimed at automation of recent patient diagnosis and 
treatment technologies. It is also argued that in many occasions such tasks of big medical image 
data analysis can be solved using co-occurrence image descriptors of different sorts.  
 

Introduction: Medical Imaging coming into the Big Data camp 

Image data are substantially different from the conventional data and docu-

ments. The main difference is that images consist of a large number of data elements 

(pixels, voxels) which typically play no role being considered separately. Instead, 

they collectively shape up certain spatial configurations in 2D or 3D what in turn rep-

resent some meaningful patterns or image objects. Consequently, images are typically 

stored as solid, unstructured arrays. Suitable quantitative features describing the im-

age content should be derived from these data arrays prior to any comparison, statis-

tical analysis, categorization, and other kinds of high-level manipulations [1]. 

In the last decade, medical imaging domain has demonstrated very strong and 

outrunning growth. It is observed in both the huge amount of medical images accu-

mulated in the leading healthcare centers worldwide and advances on their acquisi-

tion, store, content-based retrieval, and utilization of machine learning algorithms [2]. 

All these achievements have promoted modern medical imaging research and prac-

tice onto the front line of Big Data problem.  

Medical image databases. The image data involved in present studies were sub 

sampled from 3 different databases. Their content is briefly described below and il-

lustrated in Fig. 1. 
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Fig. 1. Medical image databases used in presented studies 

 

DB-1. An image archive containing about 1.5 million of natively-digital x-ray 

chest images taken from 700 000 people resulted from screening of lung diseases. 

Tens of thousands of these images are accompanied by descriptions given by profes-

sional radiologists. Preliminary diagnosis is often available as well. By our best 

knowledge, this is a world-largest image collection of its sort. 

DB-2. A sample of 9000 3D computer tomography (CT) images consisting of 

about 1 400 000 axial image slices, i.e. 2D images of 512x512 pixels in size acquired 

from 5 000 of patients suffering from lung tuberculosis. 

DB-3. A collection of about 100 000 color histology images obtained with the 

help of recent digital optical microscopes and optical microscopy scanners of Leica 

family using different antibodies and colorizing techniques. These images represent 

tissue samples of 120 cancer patients.  

Lung shape mining 

The purpose of this study was to introduce and examine an approach for mining 

2D projective shape of human lungs from very large x-ray image archives and to dis-

cover some new and interesting gender- and age-related regularities in the lung shape 

and size. 

Lung image segmentation. In order to extract lungs’ shape, we have developed 

and implemented a novel multi-step lung segmentation procedure. The procedure has 

been mostly capitalized on the following three basic steps: detecting a bounding box 

covering the lungs area, fitting scalable mask of lungs and employing two bunches of 

rays drawn from the lung centers for detecting lung borders. In addition, a registra-

tion-based lung segmentation procedure was also developed which capitalized on se-

lection of most similar image pre-segmented by an expert and applying non-rigid 

body deformation to the study image for fitting it to the target one in order to get the 
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lung region segmented. Results of lung segmentation are illustrated in Fig. 2 using a 

small sample of male and female subjects. 

 

 
Fig. 2. Examples of original chest x-ray images (left panels) and their lung components extracted by the 

segmentation procedure (binary lung masks on the right) for male and female subjects 

 

Creating study groups. The first study group of images called G1 was formed 

out for mining lung shape distinctions associated with age in different age categories 

or age "classes". It consisted of three sub-groups conditionally named as young (20-

30 years), mid-aged (40-50 years) and aged (60-70 years) healthy subjects. Each sub-

group included images of 6930 subjects (3465 pairs of male-female subjects with 

same age, 315 males and 315 females per age year), total 20790 images in the group 

G1. The second sub-group G2 has been created for mining both age- and gender-

related lung shape regularities. It was covering the wide life span between the 20 and 

80 years for both genders. This age range corresponds to 60 age intervals from 20 to 

79 complete years each. A total of 9000 male-female pairs were collected from the 

image repository, 150 pairs for each age year. Thus, the group G2 consisted of 18000 

x-ray images of the chest of 18000 different subjects aged 20 to 79 years, 300 images 

per age year (150 males plus 150 females), 9000 males and 9000 females in total. Fi-

nally, an auxiliary group G3 was created explicitly from female subjects aged 20 to 

57 years, 1016 persons per age year, 38608 females in total. 

Integral shape features. A number of commonly recognized shape features were 

calculated for the left and right lungs of every subject. They include lung area, di-
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mensions of boxing rectangle, boundary length, compactness defined in its usual way 

i.e., as a squared boundary length divided by the area as well as the size of major 

axis, minor axis and the eccentricity of the ellipse with equivalent area. The ellipses 

were fitted to the lung contours using general linear model and the statistical confi-

dence ellipse tools. The ellipse eccentricity feature was computed based on major and 

minor half-axes. In addition, the lung contour itself being represented by the vector of 

lengths of 500 rays ordered counter-clockwise naturally served as a polar signature of 

lung shape allowing computing such standard features as statistical moments. 

Shape analysis methods. Statistical shape analysis is a geometrical analysis from 

a set of shapes in which statistics are measured to describe geometrical properties 

from similar shapes or different groups, for instance, the difference between normal 

and pathological bone shapes, etc. The statistical shape analysis involves methods for 

the geometrical study of objects where location, rotation and scale information can be 

removed. The key tasks of shape analysis are to obtain a measure of distance between 

two shapes, to estimate average shapes from a sample and to estimate shape variabil-

ity in a sample [3]. In this work we have used 2D version of procrustes shape analysis 

and implemented in form of the shapes software package in framework of R, a lan-

guage and environment for statistical computing.  

The procrustes analysis consider objects made up from a finite number of points 

in N dimensions which are called landmark points. The shape of an object is consid-

ered as a member of an equivalence class formed by removing the translational, rota-

tional and scaling components. Specifically, the following basic algorithms of pro-

crustes analysis were used: calculating Riemannian distance between two shapes, 

Bookstein's baseline shape registration, testing for mean shape differences of groups 

of lung shapes with the help of Hotelling's T2 and Goodall's F tests. These tests were 

developed for examining differences in mean shape between the two independent 

populations and involve complex eigenanalysis and iterative generalized procrustes 

analysis for two dimensions. In addition, when studying the age-related lung shape 

changes, a regression model with broken-line relationships suggested by Muggeo was 

used. The method is aimed to estimate linear and generalized linear models having 

one or more segmented relationships in the linear predictor. 

Results: Shape of lung ellipses in different periods of life. Statistical assessment 

of differences between ellipses fitted to the lungs of subjects belonging to different 

age groups has revealed a bit more complicated pattern of age-related changes com-

pared to the lung areas. Although the size of major and minor ellipse axes generally 

behave in a way similar to the lung area, i.e., decreases with age, the reduction rate 

varied significantly reflecting corresponding variations in global shape of lungs. 
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Since the eccentricity feature captures mutual relationships between the two 

axes and describes the global elongated shape of lungs in relative units, it is worth to 

consider here the eccentricity instead of raw axes values. As it can be easily seen 

from Fig. 3, the eccentricity exhibits the non-linear character of age-related changes 

even more sharply than the lung area. It is especially true for the left lung, the eccen-

tricity of which drops down dramatically from young (20-30) to mid-aged (40-50) pe-

riods of life and remains nearly unchanged over the second gap from 40-50 to 60-70 

years.  

 
Fig. 3. The significance of general lung shape differences with respect to age groups as measured by features 
of fitted ellipses (top two panels) and the magnitude of shape changes measured using Riemannian distance 
between shapes (bottom two panels). It can be seen that most changes happened between 20-30 and 40-50 

years and these changes are more significant in female subjects comparing to males 

 

Similar trend can be observed for the right lung too but with a considerably 

lower confidence. In fact, the mean eccentricity values even slightly growing up after 

40-50 years but the growth rate is close to the border of statistical significance (at this 

point it is good to remember that degree of freedom here is as high as df=6928 and 

the commonly-accepted minimal threshold for statistical significance is p<0.05 what 

approximately corresponds to abs(t) > 2.0. The significance rates supplied with the 

table depicted on the top-right quarter of Fig. 3 as well as pictures of mean group 

shapes accompanied by their dissimilarity values (see bottom two panels of Fig. 3) 
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provide further quantitative evidences for the discovered regularity. In everyday 

words, all these numbers testify for a conclusion that during the ageing the lung shape 

tends to "round up" and this process is mostly accomplished by the age of about 50 

years. Such a behavior is more prominent in the shape of left lung. 

It should be noted that due to the simplicity of the analysis of changes in lung 

size associated with both normal ageing and gender-related differences, correspond-

ing part of the research is omitted. However, the results of such analysis are included 

in the concluding section given below. 

Conclusions. As a result of this study, the following conclusion regarding the 

age-related lung changes and differences associated with gender can be drawn. 

(a) The suggested image mining approach allows managing large collections of 

x-ray data, reliably extracting projective lung shape, and running 2D shape mining 

procedures for discovering new regularities from large image databases. 

(b) It was found that the lung projective area declines with age in a non-linear 

way. The significance scores of lung reduction from moderate 40-50 to elderly 60-70 

years were nearly twice as low as from young 20-30 to mature 40-50 periods of life. 

The temporal pattern of lung size reduction in females can be roughly described as 

"plateau--slope--plateau". The accelerated decline starts around 33-35 years and 

lasted till 48-50 where the process begins to slow down. 

(c) The procrustes analysis suggest that similar to the size, the largest portion of 

lung shape changes occurs from young (20-30) to mid-aged (40-50) period and the 

magnitude of these changes in female subjects is always greater than in males. Dur-

ing the ageing, the lung shape tends to "round up". This process is mostly accom-

plished by the age of 50 years. Such a behavior is more prominent in shape of the left 

lung. 

Content-based retrieval of CT images 

Content-based image retrieval that is searching images similar to given query 

example is known as a promising technology for retrieving images from large non-

annotated image archives for about fifteen years. However, despite certain achieve-

ments in general domains such as retrieving holiday photographs, the problem of 

computer-assisted searching for similar images and cases in medical image archives 

remains largely unsolved. The purpose of this section is to present current research 

results on application of content-based image retrieval techniques for assisting in 

managing large collections of CT images of tuberculosis patients. Fig. 4 explains the 

image hierarchy of the CT archive employed in the content-based similarity retrieval. 
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Fig. 4. Computed tomography (CT) image hierarchy of the image archive containing 1 400 000 2D images 

which is used in content-based image retrieval task. See the web site [6] for examining the quality of similar-
ity retrieval 

 

Regardless of a great diversity of diagnosis assistance tasks and image modali-

ties used for medical diagnosis and treatment purposes, we have employed a uniform 

approach for representing the image content. The approach is based on the idea of ex-

tended multi-dimensional multi-sort co-occurrence matrices suggested in [4] for 2D 

images and for describing volumetric structure of 3D (CT, MRI, SPECT, PET and 

other kinds of computer tomography) volumetric images, which are introduced in [5] 

later on. Both image pixel pairs and pixel triplets, i.e., equilateral triangles with cer-

tain gray levels/colors located at their vertices are considered as elementary image 

structures. Geometrically, these structures are covering the entire image and being 

summarized in form of corresponding co-occurrence matrix (multi-dimensional his-

togram) they describe in statistical manner the spatial pixel relationships.  

Thus, the image retrieval task was accomplished by way of comparing image 

descriptor that is a vector of selected elements of conventional histograms or co-

occurrence matrices of given query example with descriptors of every image stored in 

the database. Such a comparison is typically done by calculation of Manhattan (L1) 

or Euclidean (L2) distance metric and selecting from database the top-N most similar 

cases, which are treated as image searching results. 

The retrieval performance of various image descriptors was examined on the 

large database containing 1 400 000 images described above. The current image re-

trieval version is available for experimentation and testing on-line from an experi-

mental web-site [6]. Introductory explanations on how to use the CT image retrieval 

engine are provided in Fig. 5. 
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Fig. 5. A schematic representation of help-screen of the on-line CT image retrieval engine 

 

The readers are kindly asked to test the image searching engine and to provide 

corresponding feedback both on the visual quality of retrieving similar CT slices and 

the searching time which is necessary to compare descriptor of selected query exam-

ple with the rest 1 400 000 items using L1 metric. 

Image analytics in ovarian cancer research 

The problem of angiogenesis in malignant tumors. Over the last several years 

numerous factors involved in the development and progression of solid cancers have 

been identified. Among these, tumor angiogenesis is certainly one the most important 

owing to the fact that, in order to grow and to develop, a tumor needs to be supplied 

with a vascular system following its growth. It is anticipated that angiogenesis re-

search will probably change the face of medicine in the next decades [7], with more 

than 500 million people worldwide predicted to benefit from pro- or anti-

angiogenesis treatments. Towards this end, a method is suggested for identification 

and visualization of histology image structures relevant to the key characteristics of 

the state of cancer patients. The method is based on a multi-step procedure which in-
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cludes calculating image descriptors, extracting their principal components, correlat-

ing them to known object properties and mapping disclosed regularities all the way 

back up to the corresponding image structures they found to be linked with.  

The technical problem of searching links between pathological image structure 

and variables, characterizing the state of patient. In a typical setup there is a patient 

database available which contains both image data of different modalities as well as 

non-visual patient characteristics such as general social data, clinical observations, 

results of laboratory tests, history of personal and family diseases, etc. Then techni-

cally the problem is posed as finding statistically significant associations between the 

morphological image structures presented in form of suitable quantitative features 

and database variables containing the patient records. Such correlations can be found 

in a straightforward manner using, for example, conventional approach of feature ex-

traction followed by a multivariate statistical analysis for identifying significant links 

between these two. However, this is only possible with a priori research hypothesis 

in hands which presumes certain connections between the specific, pre-defined image 

structures and some patient characteristics. Being developed, implemented, and suc-

cessfully applied to the input data, this approach leaves researcher with only particu-

lar results and image structures that have been extracted and examined. For instance, 

our preliminary study exploiting this approach was attempting to attribute tumor ves-

sel development visualized with the help of D2-40 marker to patients' conditions. To 

this end, the vessel network was segmented, characterized by five quantitative fea-

tures, and correlated to the patient state. However, despite certain time and other re-

sources were spent, it gave very particular and rather modest results. 

Thus, in this context it is worth to consider an alternative, exploratory approach 

which is aimed at detecting the whole bunch of objectively existing correlations be-

tween the histology image structures and patient state first and separate investigating 

their novelty together with the underlying biomedical substrate afterwards. Such an 

approach may conditionally be categorized into the image mining research area. In 

much the same way as data mining, the image mining can be understood as the proc-

ess of extracting hidden patterns from images. More specifically, image mining deals 

with extraction of implicit knowledge, image data relationship or other patterns not 

explicitly stored in the image. Given that the histological image analysis is the task 

that difficult to automate due to its structural sophistication, it appears promising to 

examine the wide-cut image mining techniques for discovering the links we are inter-

ested in. 

Materials and Methods. The image descriptors employed are extended 4D color 

co-occurrence matrices counting the occurrence of all possible pixel triplets located at 

the vertices of equilateral triangles of different size. The method is demonstrated on a 
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sub-sample of 952 color histology images of 2048x1536 pixels in size which were 

acquired using digital Leica DMD108 microscope. They included 272 routine hema-

toxylin-eosin stained diagnostic images (4 images for each patient) and 680 images of 

tissue probes (10 per patient) immuno-histochemically processed with D2-40 marker 

highlighting lymphogenesis. In addition, an auxiliary test database containing 4000 

color images (35 Gigabytes) was created which equally represents the following 4 

classes: ovary tumor, ovary non-tumor, thyroid tumor, thyroid non-tumor (Fig. 6).  

Once the co-occurrence matrices are calculated, the very common strategy is to 

calculate Haralick's features next and to use them for image characterization, cluster-

ing, etc. However, this traditional procedure may not be followed here at least be-

cause Haralick's features cannot be mapped back to the original images as the second 

introductory condition requires. On the contrary, the matrix elements themselves may 

be mapped back [8] but there are too many of them to satisfy the well known statisti-

cal condition of limited number of variables which avoids pseudo-correlations. The 

solution is to apply the Principal Component Analysis (PCA) method for extracting a 

limited number of uncorrelated features from matrices. Thus, the method supposes 

calculating 4D co-occurrence matrices, extracting principal components, correlating 

them to patients' state, selecting significant ones, projecting selected components 

back to co-occurrence matrix elements, and finally using them for visualizing the im-

age structures we are looking for. 

 

 
Fig. 6. Examples of histological images representing the four classes used for analytic algorithms of discov-

ering links between the pathological image morphology and clinical data describing the state of cancer  
patients. 
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Note that since principal components are uncorrelated, there is no need to apply 

complicated and somewhat risky multivariate statistical analysis methods. Searching 

for significant links can be done by straightforward univariate correlations or with the 

help of Student's t-test according to the feature type. 

Along with the statistical data analysis methods described above, the classifica-

tion accuracy of recognition of 4 classes of textural pathological images was assessed 

analytically using the Support Vector Machines (SVM) and Random Forests classifi-

ers. 

Results. Original RGB images were converted into the Lab space with Euclidean 

color dissimilarity metrics and the number of colors was reduced down to 24 bins us-

ing the median cut algorithm preserving most important colors. Thus, the 3D color 

co-occurrence sub-matrices CCC with a fixed inter-pixel distance d contain 

243=13824 cells. Given that elements above leading diagonal are zeros, the number 

of effective matrix elements was NE=2600. Equilateral triangles with side lengths 

D={1,3,5} were considered so that the total number of elements of completed CCCD 

matrices was 7800. Cumulative CCCD matrices computed over all the images of each 

patient were vectorized constituting an input PCA data table with 68 rows and 7800 

columns. PCA resulted in extracting 27 principal components (PCs) in case of matri-

ces of routine images and 38 PCs in case of D2-40 images under condition of cover-

ing 95.0% of variance. The first components cover 55.7% and 26.5% of variances re-

spectively. These results suggest that structural variability of D2-40 images is sub-

stantially higher compared to routine ones. Being correlated with patients' data, 27 

PCs of routine images have produced a total of 43 events of correlation significant at 

p<0.01. Same procedure being applied to 38 PCs derived from descriptors of D2-40 

images with highlighted lymphatic vessels resulted in detecting 47 significant links 

between these features and patient state records. 

Detailed investigation of significant correlation has revealed that some of them 

were easily deductible from existing knowledge whereas other are suggestive for 

novelty and certainly interesting from both scientific and practical points of view. For 

instance, in case of routine images the significant links between PCs and the follow-

ing patient data appears to be very promising: development of distant metastases 

(p<0.001), the degree of cancer tissue differentiation (p<0.007), the number of mis-

carriages (p<0.0001), and the number of chemotherapy trials (p<0.000002, r=-0.543). 

The negative correlation of the length of borders highlighted in the figure with the 

number of trials may be explained by the fact that more spacious tumor structure is 

typical for relatively "young" tumors which are chemically treated first compared to 

"old" ones which removed immediately. Images of tissue processed by D2-40 endo-
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thelial marker have demonstrated similar behavior disclosing a number of interesting 

links.  

Besides the results obtained with the mutual analysis of image features and vari-

ables of clinical database characterizing the patients, there was developed an elec-

tronic atlas of histological images of normal and cancerous tissue (Fig. 7).  

 

 
Fig. 7. The main screen of the histology atlas with imbedded content-based image retrieval functionality 

 

The atlas includes tissue images stained using different techniques which present 

conventional pathological features as well as processes of angiogenesis and lympho-

genesis in tumors. On the top, the atlas also incorporates certain content-based image 

retrieval functionality which allows for a quick image database search for the most 

similar cases. This option is implemented using color co-occurrence image descrip-

tors that characterize color textures quantitatively. 

Finally, the abilities of IIID co-occurrence matrices computed using grayscale 

version of the images were also assessed. Despite some promising correlations were 

found, an ambiguity was revealed. In particular, when certain IIID matrix element 

was mapped back to the grayscale images, it highlights structures of biologically dif-

ferent sorts. This is because two or more substantially different image colors were 

converted down to one single gray level. 

Assessing the general inter–class differences. A preliminary statistical assess-

ment of inter-class differences was performed by way of applying unpaired Student’s 

t−test separately to every variable (matrix element). In case of color descriptors, N = 

456 out of 500 variables were found to be significantly different at p<0.05 when 
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comparing OvaryNorm–ThyroidNorm classes and N=447 variables for the pair of 

tumor classes OvaryTumor–ThyroidTumor. It was revealed that normal tissue of the 

two organs is more dissimilar (mean t=13.4, STD =6.8) than their respective cancer-

ous regions (mean t=9.94,STD=7.3). The use of grayscale descriptors leads to the es-

sentially same but notably more distinct results: N=559, mean t=30.5, STD = 19.2 for 

the pair of normal tissue classes OvaryNorm–ThyroidNorm and again much lower 

mean t = 11.3, STD = 7.7 for tumor regions. Some more sophisticated multivariate 

statistical methods were also tried but they provide results well compared with the 

above straightforward t−tests. 

Classification quality. A number of experiments on pair-wise classification of 

normal and pathological tissue images were performed using different kinds of input 

features and different classifiers (SVM with 10-fold cross-validation and Random 

Forests) in order to get a clear picture of general inter-class differences. The image 

recognition results are summarized in the Tab. 1 below.  

 

Tab. 1. Recognition accuracy of histology image classes, % 
Classifier 

Input image features Image classes 
SVM 

Random For-
ests 

Ovary Norm vs. Thyroid Norm 97.6 96.4 Original co-occurrence 
features (~500 variables) Ovary Tumor vs. Thyroid Tumor 93.9 93.3 

Ovary Norm vs. Thyroid Norm 96.2 94.0 Principal Components  
(26 variables) Ovary Tumor vs. Thyroid Tumor 94.2 94.2 

 

As it can be easily seen from the table, all the classification results are reasona-

bly uniform with non-tumor tissue classes (conditionally called here as “Norm”) 

separated better than pathological ones. This is in agreement with the above statistical 

tests.  

Conclusions. As a result of computational experiments, a number of associations 

between the patients’ conditions and morphological image structures were discovered 

including both easily explainable and the ones whose biological substrate remains ob-

scured. It was also found that non-tumor tissue regions of the ovary and thyroid gland 

are more dissimilar than respective tumor regions. This is in line with a more general 

biomedical regularity suggesting that being affected by a strong pathology, tissues 

and organs tend to become more similar to each other.  

Thus, the suggested method may be considered as a promising tool capable of an 

automatic identification and visualization of histological image structures relevant to 

the cancer patient conditions. However, since there is no intrinsic mechanism for se-

mantic assessing the resultant links detected by the method, an expert-based evalua-

tion of the novelty and biological substrate of the result is necessary. 

Би
бл
ио
те
ка

 БГ
УИ
Р



 

 

46 

Acknowledgements. This work was partly funded by the National Institute of Al-

lergy and Infectious Diseases, National Institutes of Health, U.S. Department of 

Health and Human Services, USA through the CRDF project OISE-14-60497-1. 
 

References 
1. Nixon M.S., Aguado A.S. Feature Extraction and Image Processing for Computer Vision, 

Third Edition, Academic Press, ISBN-13 978-0123965493, 2012. – 632 p. 
2. Gao X., Müller H., Deserno T.M. Integration of Medical Images into the Digital Hospital, 

The Open Medical Informatics J, vol. 2011, No 5, pp. 17–18. 
3. Dryden I.L. and Mardia K.V. Statistical Shape Analysis. John Wiley & Sons, New York, 

Sep 1998, ISBN 0-471-95816-6, 376 p. 
4. Kovalev V. and Petrou M. Multidimensional Co-occurrence Matrices for Object Recogni-

tion and Matching, Graphical Models and Image Processing, vol. 58, No. 3, May, pp. 187-197, 
1996. 

5. Kovalev V.A., Kruggel F., Gertz H.-J., and von Cramon D.Y. Three-dimensional Texture 
Analysis of MRI Brain Datasets, IEEE Transactions on Medical Imaging, vol. 20, No. 5, May, pp. 
424-433, 2001. 

6. http://imlab.grid.by/  last visited 20 April 2015. 
7. Carmeliet P. Angiogenesis in life, disease and medicine, Nature, vol. 438, 2005, pp. 932-

936. 
8. Kovalev V.A., Petrou M., and Suckling J. Detection of structural differences between the 

brains of schizophrenic patients and controls, Psychiatry Research: Neuroimaging, vol. 124, pp. 
177-189, 2003. 

 

Би
бл
ио
те
ка

 БГ
УИ
Р




