LAMBDA + REACTIVE = CREATIVE

Roman Novik
Big Data Competency Center Expert

Big Data Competency Center Expert, EPAM, raman_novik@epam.com

AGENDA

Motivation

How to beat the CAP thearem

Lambda Approach

Reactive Approach

Architecture (Lambda, real-world, setvices, roles, cluster)

CAP THEOREM

by Eric Brewer (Berkley)

A database cannot guarantee
consistency, availability, and
partition-tolerance at the same time!

CONSISTENCY?

hmm... There are a lot of awkward issues in case when a database isn’t available:

Buffering writes on some middle machine?
= Thereis a risk to lose buffer if middle machine will fail
= Some inconsistency because of client thinks that data was already committed to database

Return errors back to client?
= It's really unsatisfied user experience!

57

AVAILABILITY OR CONSISTENCY?

We can't sacrifice partition-tolerance as we are talking about distributed and Big Data systems

* Sowe must make a tradeoff between availability and consistency

Managing this tradeoff is a central focus of the NoSQL movement

+ Consistency = after a successful write, future reads will always take that write into account

Availability = ability to always read and write to the system

* During a partition, you can only have one of these properties!

AVAILABILITY?

Eventual consistency - is really “painful” thing to deal with
*Sometimes it's possible to read different result than was written
*Sometimes multiple readers can get different result by the same key
*Updates may not prepagate to all replicas of a value

+Difficult strategies like “read repair”, “vector clocks” are hard to implement, maintain, and are
extremely susceptible to developer’s errors.

YOU'RE DAMNED IF YOU DO AND DAMNED IF YOU DON'T

IS THERE NO WAY OUT?

Sacrificing consistency = poor user experience and problems with database unavailability
Sacrificing availability = problems with eventual consistency

The CAP theorem is a fact of nature!

ELIMINATION OF THE RESTRICTIONS

We will try to design new type of distributed data system:
= it will eliminate the restrictions of the CAP theorem
= it will be fault-tolerant to machine failures

* But we won’t stop there:

= let’s make this data system human fault-tolerant!

WHAT IS A DATA SYSTEM?

There is another way!
Twao problems stand out in particular:
= the use of mutable state in databases

® the use of incremental algorithms to update that state

We can't avoid the CAP theorem, but we can isolate its complexityl

Epam

How to beat

“DATA”

* The problem we're trying to solve:

= what is the purpose of a data system?
= what is data?

However, there is such a simple definition:

Query = Function(All Data)

WHAT ABOUT CRUD?

A piece of data is an indivisible unit that you hold to be true

* IUs like an axiem in mathematics

There are two crucial properties of data
= data is inherently time based

Nick / @timestampi / lives in Minsk
Nick | @timestamp2 / lives in Moscow

= data is inherently immutable

“QUERY™

Do we really need CRUD?

There only two main operations we can do with data:
= read existing data

= add more data

50, let’s turn CRUD to CR!

= updates don't make sense with immutable data
Nick / @timestamp1 / lives in Minsk
Nick / @timestamp2 / lives in Moscow

= deletes don’t make sense with immutable data
Nick / @timestamp1 / follows Mary
Nick / @timestamp2 / unfollowsd Mary

still, purging (oF compaction, or “garbage collection”) is not a problem in this scenario!

HOW TO BEAT THE CAP THEOREM

It’s is a derivation from a set of data
+ It’s like a theorem in mathematics

- For example:

= data

Nick / @timestamp1 / lives in Minsk

Nick / @timestamp2 / (ives in Moscow

* query
What is Nick's current location? => Moscow

SUMMARY

If we could query the complete dataset within our latency constraints
= then there would be nothing else to invent

If not, the CAP theorem still applies

But the complexity it normally causes is avoided
= by using immutable data

= and computing queries from scratch

If we choose consistency over availability - then not much changes from before
= periodical inaccessibility of system is still possible

= but it is option where rigid consistency is a necessity

If we choose availability over consistency - then the system is eventually consistent without any of
the complexities of eventual consistency

= we always write new data

= qgueries always work with fresh data

= there are no divergent values, “repair reads”, “vector clocks”

Problem was around the interaction between incremental updates and the CAP theorem
We can avoid that complexity

» by rejecting incremental updates
* by embracing immutable data
* and computing queries from scratch each time

« Of course, it was just our assumption
» it's infeasible to compute queries from scratch each time
but we found some key properties of what a real solution will look like

These properties are

the system makes it easy to sore and scale an immutable, constantly-growing dataset
the primary operation of the system is to add new immutable facts of data
the system recomputes queries from raw data

the system can use incremental algorithms if latency of such queries is on acceptable level

BATCH COMPUTATIONS

It’s daunting problem to make a seme function on whole
dataset

Let’s work with outdated (for a few hours) data
* Let’s precompute data

For example, to have latest state of immutable dat4 Precompute

Nick / @timestamp1 / lives in Minsk Precompute

Nick / @timestamp? / lives in Moscow
- becomes
Nick / @timestamp2 / lives in Moscow
= To build such system we need system that
- can easily store a large and constantly growing datasel
= can compute functions on that whole dataset in a Precomputation workflow
scalable way

Lambda Amip“r

|

HADOOP & MAPREDUCE REAL-TIME COMPUTATIONS

« Hadoop is exactly what we need!

= Its components:
= HDFS - distributed fault-tolerance file system
= Yarn - yet another resource manager

We need a real-time system to be launched in parallel
with batch system

This real-time system will precompute each query Balie view
= Hive - 5QL-like farade function for the last few hours of data
= Parquet, ORC, Avro - data-formats with schema -
: : Merge

= HBase - NoSQL key-value versioned database To resolve result query batch and real-time views and

= eco-system (data-governance, security, ETLs etc) merge all results

= MapReduce - default batch processing framework Realtime view

« MapReduce:
= programming interface so that the system can do more Computing a query
automatically
= express jobs as graphs of high-level operators
BATCHING VS STREAMING SPARK VS STORM
Spark Streaming Core Storm
Hadoop distribution Hortenworks, Cloudera, MapR. Hortonworks
Implemented in Scala Clojure (Lisp like on JVM)
APl tanguage Java, Scala, Python Java, Scala, Clojure, Pythan, Ruby
stack Spark SQL & Hive integration, Spark MLLib, N/A
Batchin Streamin e
: g g Processing model Micro-batching Record-at-a-time
Coardinator Zagkeeper Zockeeper
Resource manager Standalone, Yarn, Mesos Standalone, Yarn
Latency Few seconds Sub-seconds
Delivery semantics Exactly once At most once, at least once:
Message passing fayer Herty + Akka Nerey
Batch framework integration Spark NZA
Fauit tolerance Recovery of lost wark. Restart of workers and supervisors
Restart of workers via RM. like nothing happened.
M] Cro Bat (G h] n g Performance 400000 records / second / node 10000 records / second / node
PUTTING ALL TOGETHER HUMAN FAULT-TOLERANCE & OTHER BENEFITS
So, at last...

Human fault-tolerance
= Aswe have master dataset with raw data

. batch | ing |

Lambda architecture: en layes N » all views can be recalculated

+ originally praposed by Nathan Marz : = new views can be crated any time
* “How to beat The CAP theorem” article

« www.lambda-architecture. net Other benefits

/ = Algorithmic flexibility
7 ®» Schema migrations are easy
nawdata - ... = Easy ad-hoc analysis
\ sl tayer o e B = Self-auditing & keeping whole history (versioning of data rows) by design

mastor datasel

It’s real “Data Agility” way!

COMPACTION

- Compaction / “Garbage Collection”
= It’s batch processing task

= Can be scheduled

IS IT ENOUGH? BE REACTIVE! (IN RESPONSE TO DEMAND)

What about valuable events publishing at real-time?
What about CEP (Complex Event Processing)?

* fraud detection

* compliance violations

Customers demand more and more

Business wants systemns that are

. responsive
1 security breaches = resilient
» network outage = elastic
= machine failures = message driven
* application failures = able to process huge volumes of data
* operational issues
« What about real-time analytics: So, be reactive! &
= online machine learning and predictions

What about real-time optimization:

pricing, customer service, supply chain, offers, bandwidth allocation

REACTIVE MANIFESTO REACTIVE STREAMS

var mouseDown = from evt in.FromEvent(image, "MouseDown")
www.reactivemanifesto.org

select GetPosition(image);

var mousellp = FromEvent(image, "Mouselp");
Rxlova var mouseMove = from evt in FromEvent(image, "MouseMove™)
responsive \ RxScala

www.reactive-streams.org

select GetPasition(this);
RxClojure
R NET var q = from imageOffsed in mouseDown
Rodls from pos in mouseMove.uUntil (mouseUp)
scalable and others colact ol

Xo= pos.X - imageQffset.X,
\ / Y = pos.Y - imageOffset.Y };

Condlotoic 6 q.Subscribe(value =5 {
Canvas.SetLeft(image, value.X);
Canvas.SetTop(image, value.Y); });
KAFKA
- <epam> S
Kafka is really reactive Message Queue Hadeop distribution Hortorworke: £
fast, scalable, durable Implemented in Seala
AP1 language Java, seala
Stack A
Processing modsl Record:st-a-time
Kafka Architecture Georasuar sesker
Resource manager Standalans, Varn
Latency Low millisecands
Detivery semantics

At mast once, at least once, exactly

Message passing layer Faiely straight-forward HI0 server

Batch framework Integration MapReducs, Spark and athers haya

conneciors for Kafka
Fault tolorance Sequential, write-shesd, partitioned
message log.

ed scrose &

P.
confizurable numbar of rervare,

Performance 2 million writes par second fon 3 cheap
machines)

ARCHITECTURE - LAMBDA ARCHITECTURE - REALITY

spark streaming

R

Dot Dtgaier | e s Hakoup Nodes. Vel propegaiun Vsl

[Lamaniarioas |

ARCHITECTURE - SERVICES ARCHITECTURE - ROLES

Snark streaming Solr

EE s
& s

Hodoop Cluster Cascandra Cluster

Cassundra %

o i s
[omptena]] o roragatin, ey

Dat Proagati
. DamPropagation

60

ARCHITECTURE - CLUSTER SOLR ON YARN

www. lucidworks.com/blog/solr-yarn
www.github.com/LucidWorks/yarn-proto
issues.apache.org/jira/browse /SOLR-6743

Cassandm Chuter

Fewie | _omreasr,

RECOMMENDED RESOURCES

O’Reilly, 2015, Hadoop - The Definitive Guide, 4ed
Q'Reilly, 2015, Learning Spark - Lightning Fast Data Analysis
Packt, 2015, Learning Apache Kafka, 2ed

Packt, 2015, Learning Apache Cassandra

Packt, 2015, Real-time Analysis with Storm and Cassandra
Nathan Marz's blog: http://nathanmarz.com

Databricks & DataStax & Hortonworks blogs

61

