LAMBDA + REACTIVE = CREATIVE

Roman Novik Big Data Competency Center Expert

Big Data Competency Center Expert, EPAM, raman novik@epam.com

AGENDA

- Motivation
- How to beat the CAP theorem Lambda Approach
- Reactive Approach
- Architecture (Lambda, real-world, services, roles, cluster)

CAP THEOREM

by Eric Brewer (Berkley)

consistency, availability, and partition-tolerance at the same time!

AVAILABILITY OR CONSISTENCY?

- We can't sacrifice partition-tolerance as we are talking about distributed and Big Data systems
- So we must make a tradeoff between availability and consistency
- Managing this tradeoff is a central focus of the NoSQL movement
- Consistency = after a successful write, future reads will always take that write into account
- · Availability = ability to always read and write to the system
- During a partition, you can only have one of these properties!

CONSISTENCY?

- vard issues in case when a database isn't available:
- Buffering writes on some middle machine?

 There is a risk to lose buffer if middle machine will fail

 Some inconsistency because of client thinks that data was already committed to database
- It's really unsatisfied user experience!

AVAILABILITY?

- Eventual consistency is really "painful" thing to deal with
- •Sometimes it's possible to read different result than was written
- •Sometimes multiple readers can get different result by the same key
- *Updates may not propagate to all replicas of a value
- -Difficult strategies like "read repair", "vector clocks" are hard to implement, maintain, and are extremely susceptible to developer's errors

YOU'RE DAMNED IF YOU DO AND DAMNED IF YOU DON'T

Sacrificing consistency = poor user experience and problems with database unavailability

Sacrificing availability = problems with eventual consistency

The CAP theorem is a fact of nature!

IS THERE NO WAY OUT?

There is another way!

Two problems stand out in particular:

- the use of mutable state in databa
- the use of incremental algorithms to update that state

We can't avoid the CAP theorem, but we can isolate its complexity!

ELIMINATION OF THE RESTRICTIONS

- We will try to design new type of distributed data system:
 it will eliminate the restrictions of the CAP theorem
- it will be fault-tolerant to machine failures
- But we won't stop there:
 - let's make this data system human fault-tolerant!

WHAT IS A DATA SYSTEM?

- · The problem we're trying to solve:
 - what is the purpose of a data system?
 - what is data?
- · However, there is such a simple definition:

Query = Function(All Data)

"DATA"

- A piece of data is an indivisible unit that you hold to be true
- like an axiom in mathematics
- There are two crucial properties of data
 - data is inherently time based

Nick / @timestamp1 / lives in Minsk Nick / @timestamp2 / lives in Moscow

data is inherently immutable

WHAT ABOUT CRUD?

- Do we really need CRUD
- There only two main operations we can do with data:

 read existing data
- add more data
- · So, let's turn CRUD to CR!
 - updates don't make sense with immutable data Nick / @timestamp1 / lives in Minsk Nick / @timestamp2 / lives in Moscow
 - deletes don't make sense with immutable data Nick / @timestamp1 / follows Mary Nick / @timestamp2 / unfollowed Mary
- Still, purging (or compaction, or "garbage collection") is not a problem in this scenario!

HOW TO BEAT THE CAP THEOREM

- If we could query the complete dataset within our latency constraints
 - then there would be nothing else to invent
- If not, the CAP theorem still applies
- But the complexity it normally causes is avoided
 by using immutable data

 - and computing queries from scratch
- · If we choose consistency over availability then not much changes from before

 - periodical inaccessibility of system is still possible but it is option where rigid consistency is a necessity
- · If we choose availability over consistency then the system is eventually consistent without any of the complexities of eventual consistency
 - we always write new data

 - queries always work with fresh data
 there are no divergent values, "repair reads", "vector clocks"

"QUERY"

- · It's is a derivation from a set of data
- · It's like a theorem in mathematics
- · For example:
 - data

Nick / @timestamp1 / lives in Minsk Nick / @timestamp2 / lives in Moscow

query

What is Nick's current location? => Moscow

SUMMARY

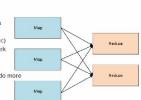
- Problem was around the interaction between incremental updates and the CAP theorem
- We can avoid that complexity
 by rejecting incremental updates
 - by embracing immutable data
 - and computing queries from scratch each time
- Of course, it was just our assumption
 - it's infeasible to compute queries from scratch each time
 - but we found some key properties of what a real solution will look like
- · These properties are
 - the system makes it easy to sore and scale an immutable, constantly-growing dataset
 the primary operation of the system is to add new immutable facts of data

 - the system recomputes queries from raw data
 - the system can use incremental algorithms if latency of such queries is on acceptable level

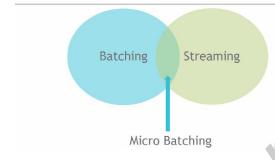
HADOOP & MAPREDUCE

- · Hadoop is exactly what we need!
- HDFS distributed fault-tolerance file system
- Yarn yet another resource manager Hive SQL-like façade

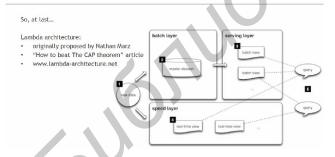
- Hive SQL-Like: a againe
 Parquet, ORC, Avro data-formats with schema
 HBase NoSQL key-value versioned database
 eco-system (data-governance, security, ETLs etc)
 MapReduce default batch processing framework
- MapReduce:
 - programming interface so that the system can do more automatically
 express jobs as graphs of high-level operators



BATCHING VS STREAMING



PUTTING ALL TOGETHER



COMPACTION

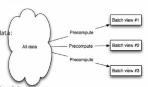
- Compaction / "Garbage Collection"
- It's batch processing task
- · Can be scheduled

BATCH COMPUTATIONS

- It's daunting problem to make a some function on whole dataset
- Let's work with outdated (for a few hours) data
- Let's precompute data
- For example, to have latest state of immutable data:

 Nick / @timestamp1 / lives in Minsk Nick / @timestamp2 / lives in Moscow • becomes
- Nick / @timestamp2 / lives in Moscow
 To build such system we need system that
- can easily store a large and constantly growing dat
 can compute functions on that whole dataset in a

scalable way



Precomputation workflow

REAL-TIME COMPUTATIONS

We need a real-time system to be launched in parallel with batch system

This real-time system will precompute each query function for the last few hours of data

To resolve result query batch and real-time views and merge all results

Computing a query

SPARK VS STORM

	Spark Streaming	Core Storm
Hadoop distribution	Hortonworks, Cloudera, MapR	Hortonworks
Implemented in	Scala	Clojure (Lisp tike on JVM)
API language	Java, Scala, Python	Java, Scala, Clojure, Python, Ruby
Stack	Spark SQL & Hive integration, Spark MLLib, Spark GraphX	N/A
Processing model	Micro-batching	Record-at-a-time
Coordinator	Zookeeper	Zookeeper
Resource manager	Standalone, Yarn, Mesos	Standalone, Yarn
Latency	Few seconds	Sub-seconds
Delivery semantics	Exactly once	At most once, at least once
Message passing layer	Netty + Akka	Netty
Batch framework integration	Spark	N/A
Fault tolerance	Recovery of lost work. Restart of workers via RM.	Restart of workers and supervisors like nothing happened.
Performance	400000 records / second / node	10000 records / second / node

HUMAN FAULT-TOLERANCE & OTHER BENEFITS

Human fault-tolerance

- As we have master dataset with raw data
 - all views can be recalculated
 - new views can be crated any time

- Algorithmic flexibility
- Easy ad-hoc analysis
- Self-auditing & keeping whole history (versioning of data rows) by design

It's real "Data Agility" way!

IS IT ENOUGH?

- What about valuable events publishing at real-time? What about CEP (Complex Event Processing)?
- - fraud detection
 - compliance violations
 security breaches
 - network outage

 - machine failures application failures
- operational issues

- What about real-time analytics:
 online machine learning and predictions

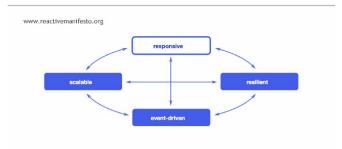
 What about real-time optimization:
 pricing, customer service, supply chain, offers, bandwidth allocation

BE REACTIVE! (IN RESPONSE TO DEMAND)

- · Customers demand more and more
- Business wants systems that are
 - responsive
 - resilient
 - elastic message driven
 - able to process huge volumes of data

So, be reactive! @

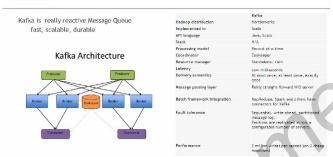
REACTIVE MANIFESTO



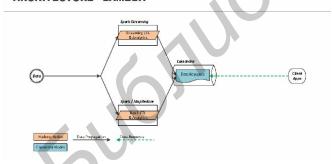
REACTIVE STREAMS

RxJava RxScala RxCloture var q = from imageOffset in mouseDown
 from pos in mouseNove.Until(mouseUp)
 select new {
 X = pos.X - imageOffset.X,
 Y = pos.Y - imageOffset.Y }; Rx.NET RxJS and others

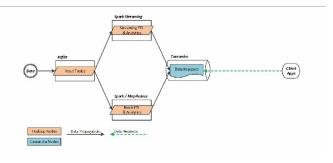
KAFKA



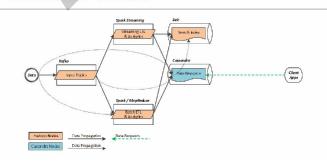
ARCHITECTURE - LAMBDA



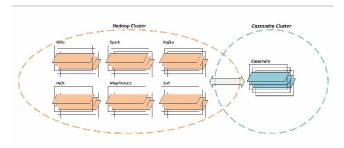
ARCHITECTURE - REALITY



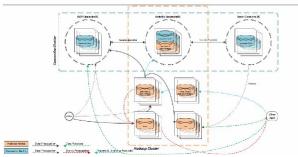
ARCHITECTURE - SERVICES



ARCHITECTURE - ROLES



ARCHITECTURE - CLUSTER



SOLR ON YARN

www.lucidworks.com/blog/solr-yarn www.github.com/LucidWorks/yarn-proto issues.apache.org/jira/browse/SOLR-6743

RECOMMENDED RESOURCES

O'Reilly, 2015, Hadoop - The Definitive Guide, 4ed O'Reilly, 2015, Learning Spark - Lightning Fast Data Analysis O'Reitly, 2015, Learning Spark - Lighthing Fast Data Analys Packt, 2015, Learning Apache Kafka, 2ed Packt, 2015, Learning Apache Cassandra Packt, 2015, Real-time Analysis with Storm and Cassandra Nathan Marz's blog: http://nathanmarz.com Databricks & DataStax & Hortonworks blogs