УДК 537.312.5

ВЛИЯНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА СКОРОСТЬ УДАЛЕНИЯ НОСИТЕЛЕЙ ЗАРЯДА В КРЕМНИЙ-ГЕРМАНИЕВЫХ СПЛАВАХ р-ТИПА ПРИ ОБЛУЧЕНИИ АЛЬФА-ЧАСТИЦАМИ

Д.Н. ЖДАНОВИЧ 1 , Д.А. ОГОРОДНИКОВ 1 , И.Ф. МЕДВЕДЕВА 2 , ФАДЕЕВА Е.А. 1 , ТОЛКАЧЕВА Е.А. 3

¹Научно-практический центр НАН Беларуси по материаловедению, Минск, Беларусь; ²Белорусский государственный медицинский университет, Минск, Беларусь; 3Научно-практический центр Государственного комитета судебных экспертиз Республики Беларусь, Минск

Аннотация. Показано, что при облучении альфа частицами обратно-смещенных диодных структур на основе кристаллов *p*-SiGe скорость удаления основных носителей заряда значительно снижена в области пространственного заряда (ОПЗ) диодов по сравнению с квазинейтральной областью. Наблюдаемый эффект связан с инжекционно-ускоренной миграцией собственных межузельных атомов кремния и их взаимодействием с другими дефектами решетки в ОПЗ диодов во время облучения.

Ключевые слова: кремний-германиевый сплав; альфа-частица; глубокий уровень; радиационноиндуцированный центр; DLTS-спектроскопия.

INFLUENCE OF THE ELECTRIC FIELD ON THE RATE OF REMOVAL OF CHARGE CARRIERS IN SILICON-GERMANIUM ALLOYS p-TYPE UNDER IRRADIATION WITH ALPHA PARTICLES

D.N. ZHDANOVICH¹, D.A. AHARODNIKAU¹, I.F. MEDVEDEVA², A.A. FADZEYEVA¹, E.A. TALKACHOVA³

¹Scientific-Practical Materials Research Centre of NAS of Belarus, 220072 Minsk, Belarus,
²Belarusian State Medical University, Minsk, Republic of Belarus,
³Scientific and Practical Center of the State Committee of Forensic Examinations
Republic of Belarus, Minsk

Abstract. It is found that the removal rate of majority charge carriers is significantly reduced in depleted regions of reverse-biased SiGe-based n^+ -p diodes compared to that in the neutral regions upon irradiation with alfa particles. The observed effect is related to injection-enhanced mobility of Si self-interstitial atoms and their interactions with other lattice defects in the depleted regions of the diodes during irradiation.

Keywords: silicon-germanium alloy; alpha particle; deep level; radiation-induced center; DLTS spectroscopy.

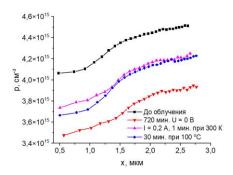
Введение

В работах [1-3] на основании анализа вольт-фарадных зависимостей рассмотрено изменение распределения концентрации дырок p(x) в базовых областях кремниевых диодных n+-p-структур в результате облучения α -частицами в режимах обратных смещений ($U_{c_M}=-5\div 10$ В), а также без смещения при температуре 290 К. Установлено, что на зависимостях p(x) n+-p-структур, облучаемых под обратным смещением, возникает участок немонотонности, который обусловлен меньшей скоростью удаления дырок в области пространственного заряда (ОПЗ) по сравнению с квазинейтральной частью базы. Участок немонотонности на зависимостях p(x) исчезает после инжекции неосновных носителей заряда в базовую p-область. Методом релаксационной спектроскопии глубоких уровней показано, что различие в скоростях удаления дырок в ОПЗ и квазинейтральной части базы в процессе облучения связано с особенностями термического и стимулированного инжекцией неосновных носителей заряда

(НН3) отжига собственных междоузельных атомов кремния (Si_i) в материале p-типа. Интерес представляет исследование влияния на этот процесс примеси германия.

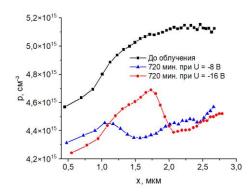
Методика проведения эксперимента

Для исследований использовались диффузионные n+-p-структуры, изготовленные на пластинах $\mathrm{Si}_{0.954}\mathrm{Ge}_{0.046}$ p-типа, легированных бором в концентрации [B] = $4\div5\cdot10^{15}$ см⁻³.

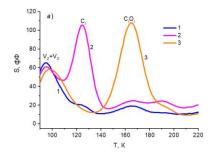

Облучение образцов проводилось альфа-частицами с энергией 5 МэВ при температуре 290÷295 К. Одна часть образцов облучалась при обратных смещениях $U_{\rm cm}$ = -8 и -16 В, вторая — без обратного смещения. Отжиг облученных образцов при 100°С в течение 30 минут проводился в печи на воздухе.

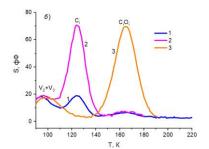
В работе определялось распределение концентрации носителей заряда p(x) в базовых областях диодных n+-p-структур до и после облучения из анализа вольтфарадных характеристик. Барьерная емкость измерялась при $T=300~\mathrm{K}$ на частоте 1 МГц с помощью измерителя LCR E7-12.

Определение характеристик радиационных дефектов (энергия активации эмиссии и сечение захвата носителей заряда) в базовой области n+-p-структур на основе p-Si $_{1-x}$ Ge $_x$ осуществлялось методом нестационарной емкостной спектроскопии глубоких уровней (Deep Level Transient Spectroscopy — DLTS). Спектры измерялись при значении окна скорости эмиссии $e_m=19$ с $^{-1}$ и длительности импульса заполнения ловушек 10^{-2} с в диапазоне температур 80–300 К. Спектры записывались в режимах заполнения ловушек как основными (дырки), так и неосновными (электроны) носителями заряда. Использовались разные значения напряжений смещения U_{cm} и заполнения U_{3an} . Для образцов, облучаемых при обратных смещениях $U_{cm}=0$ и -8 В сравнение типов и концентраций ловушек в пределах ОПЗ осуществлялось при $U_{cm}=-5$ и $U_{3an}=-1$ В, вне ОПЗ — $U_{cm}=-16$ и $U_{3an}=-10$ В. В режимах заполнения ловушек неосновными носителями заряда спектры записывались при $U_{cm}=-5$ и $U_{3an}=+2$ В для всех облученных образцов.


Результаты и их обсуждение

Результаты CV-измерений. На рис. 1 показаны профили концентрации подвижных носителей заряда p(x) в базовой p-области диодных n+-p-структур на p-Si $_{0,954}$ Ge $_{0,046}$ до и после облучения альфа-частицами в течение 720 минут без смещения, пропускания прямого тока I_{np} = 0,2 А при 300 К и термического отжига при T_{omx} = 100 °C в течение 30 мин. После облучения концентрация дырок в p-Si $_{0,954}$ Ge $_{0,046}$ уменьшается. При x = 2 мкм она уменьшилась в 1,15 раза. После пропускания прямого тока значение p частично восстанавливается. Так, при x = 2 мкм оно увеличилось примерно в 1,1 раза. Последующий термический отжиг образцов ведет к весьма незначительным уменьшениям p (особенно при x ≥ 1,3 мкм).


Рис. 1. Профили концентрации подвижных носителей заряда в базовой области диодных n+-p-структур на p-Si_{0,954}Ge_{0,046} до и после облучения альфа-частицами в течение 720 минут без смещения, пропускания прямого тока $I_{np}=0.2$ А при 300 К и термического отжига при $T_{omx}=100$ °C в течение 30 мин.


На рис. 2 представлены профили концентрации подвижных носителей заряда в базовой области диодных n^+ –p-структур на p-Si $_{0,954}$ Ge $_{0,046}$ до и после облучения альфа-частицами в течение 720 минут при различных значениях обратного смещения. В целом, полученные результаты повторяют данные, полученные в [2,3] для барьерных структур на p-Si. Участок немонотонности на зависимостях p(x) облученных образцов смещается в глубь p-области с ростом обратного смещения. Значения x, соответствующие этим участкам, совпадают приблизительно с толщинами областей пространственного заряда n+-p-структур при обратных смещениях, равных U_{cm} =-8 и -16 В. Во всех случаях скорость введения радиационных дефектов в ОПЗ обратно смещенных n+-p-структур на p-Si $_{0,954}$ Ge $_{0,046}$ ниже, чем в нейтральной части p-базы.

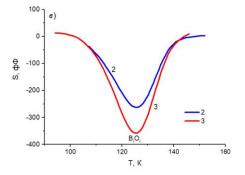
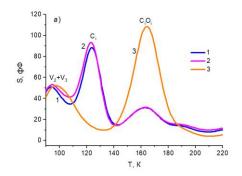
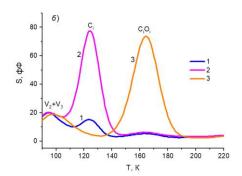
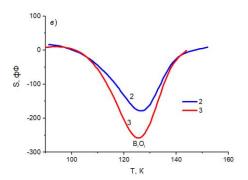


Рис. 2. Профили концентрации подвижных носителей заряда в базовой области диодных n^+ -p-структур на p-Si_{0,954}Ge_{0,046} до и после облучения альфа-частицами в течение 720 минут при различных значениях обратного смещения.

Данные DLTS-измерений. На рис. 3 представлены DLTS-спектры n^+ -p-структуры на p-Si_{0,954}Ge_{0,046} после облучения альфа-частицами в течение 720 минут без обратного смещения, пропускания прямого тока $I_{np}=0,05$ А при 300 К в течение 1 мин. и отжига при 100 °C в течение 30 мин.






Рис. 3. DLTS-спектры диодной n^+ -p-структуры на основе p-Si $_{0,954}$ Ge $_{0,046}$ в режиме эмиссии (a и \emptyset) и инжекции (a) после облучения альфачастицами в течение 720 мин. при U=0 (кр. 1), пропускания прямого тока $I_{np}=0,05$ А при 300 К в течение 1 мин. (2) и отжига при 100 °C в течение 30 мин. (3). Режимы измерения: $U_{cm}=-5$ В, $U_{3an}=-1$ (a); $U_{cm}=-16$ В, $U_{3an}=-10$ В (\emptyset); $U_{cm}=-10$ В, $U_{3an}=2$ В (a).

В результате облучения в базовую область диодных n+-p-структур вводятся радиационные дефекты с глубокими уровнями, перезарядка которых приводит к появлению на спектрах максимумов и минимумов. Типы ловушек, ответственных за возникновение на спектрах пиков, указаны на рисунке и описаны нами в [2-3]. После инжекционной обработки возросли амплитуды пиков ловушки междоузельный углерод C_i , а после термической — появились пики комплекса междоузельный углерод - междоузельный кислород C_iO_i (рис. а и б). Данный эффект проявляется при измерении спектров при разных значениях обратного смещения, то есть по всей глубине p-базы. Спектр в режиме инжекции измерялся только после инжекционной и термической обработок (рис. в).

На рис. 4 показаны DLTS-спектры n^+ -p-структуры после облучения альфа-частицами в течение 720 минут при $U_{c_M} = -8$ В, пропускания прямого тока $I_{np} = 0,05$ А при 300 К в течение 1 мин. и отжига при 100 °С в течение 30 мин. Вид спектров сразу после облучения на рис. а и б не отличается. То есть, в ОПЗ и квазинейтральную область p-базы вводятся одни и те же типы дефектов. Однако есть существенное различие в амплитудах пиков, соответствующих ловушке C_i . Видно, что в ОПЗ преимущественно ввелась ловушка C_i (рис. а). Ее амплитуда почти в два раза больше суммарной амплитуды ловушек вакансионного типа V_2+V_3 . В остальной части базы также присутствуют ловушки C_i , но в значительно меньшей степени (рис. б). После инжекционной обработки возрастает амплитуда пика C_i в спектре, измеренном главным образом за пределами ОПЗ (рис. б).

Рис. 4. DLTS-спектры диодной n^+ -p-структуры на основе p-Si_{0,954}Ge_{0,046} в режиме эмиссии (a), (\vec{o}) и инжекции (ϵ) после облучения альфа-частицами в течение 720 мин. при U=-8 В (кр. 1), пропускания прямого тока $I_{np}=0,05$ А при 300 К в течение 1 мин. (2) и отжига при 100 °C в течение 30 мин. (3). Режимы измерения: $U_{cm}=-5$ В, $U_{3an}=-1$ (a); $U_{cm}=-16$ В, $U_{3an}=-10$ В (\vec{o}) ; $U_{cm}=-5$ В, $U_{3an}=2$ В (ϵ) .

Сравнение результатов на рис. 36 и 46 показывает, что для обоих режимов облучения образцов спектры практически совпадают вне ОПЗ после всех обработок как по виду, так и по амплитудам пиков. Что же касается ОПЗ (рис. 3a и 4a), то здесь амплитуды пиков дефектов V_2 , C_i и C_iO_i практически одинаковы только после инжекционной и термической обработок. Однако сразу после облучения на спектрах, записанных в режиме перезарядки ловушек дырками, образца, облучаемого без смещения, практически отсутствуют пики ловушек междоузельного типа. Сравнение спектров, записанных в режиме инжекции (рис. 3a и 4a), показывает, что амплитуды пика ловушки B_iO_i после всех обработок в 1,4 раза меньше у облученного под обратным смещением образца по сравнению с облученным без смещения.

Заключение

Проведено облучение альфа-частицами диодных n^+ -p-структур на p-Si $_{0,954}$ Ge $_{0,046}$ с удельным сопротивлением 3-4 Ом·см в режимах обратных смещений ($U_{cm}=-8\div -16$ В) и без смещения, при температуре 293 К. Из анализа вольтфарадных характеристик показано, что у образцов облучаемых в режиме обратных смещений на профилях концентрации подвижных носителей заряда p(x) возникают участки немонотонности, совпадающие с границей области пространственного заряда.

Методом *DLTS*-спектроскопии показано, что различие в скорости удаления дырок в ОПЗ и квазинейтральной части базы в процессе облучения альфа частицами при обратном смещении n^+ -p-структур на основе p-Si_{0,954}Ge_{0,046} связано с инжекционно-стимулированной миграцией собственных междоузельных атомов кремния Si_i⁺⁺ и их взаимодействием с другими дефектами решетки в ОПЗ при облучении. Такие же особенности наблюдались ранее в облученных n^+ -p диодах на основе p-Si без примеси германия [1-3].

Список литературы

- 1. Кучинский П.В., Ломако В.М., Петрунин А.П. Инжекционная, электрополевая и термическая перестройка радиационных дефектов в р-кремнии. *ФТП*. 1989; 23(9). C.1625-742.
- 2. Огородников Д.А., Жданович Д.Н., Якушевич А.С., Ластовский С.Б., Мурин Л.И., Маркевич В.П., Шпаковский С.В. Влияние электрического поля на образование радиационно-индуцированных центров в кремнии р-типа при облучении α-частицами. *Труды 29-ой Междунар. конф. «Радиационная физика твердого тела»* (Севастополь, 8-13 июля 2019 г.), под ред. Бондаренко Г.Г. Москва, 2019. С.160-169.
- 3. Aharodnikau D.A., Lastovskii S.B., Shpakovski S.V., Markevich V.P., Halsall M.P., and Peaker A.R. The role of Si self-interstitial atoms in the formation of electrically active defects in reverse-biased silicon n⁺-p diodes upon irradiation with alpha particles. *Physica Status Solidi A*. 2021. https://doi.org/10.1002/pssa.202100104

References

- 1. Kuchinsky P.V., Lomako V.M., Petrunin A.P. Injection, electric field and thermal rearrangement of radiation defects in p-silicon. FTP. 1989; 23(9). C.1625-742.
- 2. Aharodnikau D.A., Zhdanovich D.N, Yakuchevich H.S., Lastovskii S.B., Murin L.I., Markevich V.P., Shpakovski S.V. Influence of an electric field on the formation of radiation-induced centers in p-type silicon upon irradiation with α-particles. Proceedings of the 29th Intern. conf. "Radiation Solid State Physics" (Sevastopol, July 8-13, 2019), ed. Bondarenko G.G. Moscow, 2019. C.160-169.
- 3. Aharodnikau D.A., Lastovskii S.B., Shpakovski S.V., Markevich V.P., Halsall M.P., and Peaker A.R. The role of Si self-interstitial atoms in the formation of electrically active defects in reverse-biased silicon n⁺-p diodes upon irradiation with alpha particles. *Physica Status Solidi A.* 2021. https://doi.org/10.1002/pssa.202100104