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Abstract: Double perovskite Cs2SnI6 and its doping products (with SnI2, SnF2 or organic lithium salts
added) have been utilized as p-type hole transport materials for perovskite and dye-sensitized solar
cells in many pieces of research, where the mechanism for producing p-type Cs2SnI6 is rarely reported.
In this paper, the mechanism of forming p-type Li+ doped Cs2SnI6 was revealed by first-principles
simulation. The simulation results show that Li+ entered the Cs2SnI6 lattice by interstitial doping
to form strong interaction between Li+ and I−, resulting in the splitting of the α spin-orbital of I–p
at the top of the valence band, with the intermediate energy levels created and the absorption edge
redshifted. The experimental results confirmed that Li+ doping neither changed the crystal phase
of Cs2SnI6, nor introduced impurities. The Hall effect test results of Li+ doped Cs2SnI6 thin film
samples showed that Li+ doping transformed Cs2SnI6 into a p-type semiconductor, and substantially
promoted its carrier mobility (356.6 cm2/Vs), making it an ideal hole transport material.

Keywords: first principles calculation; perovskite; hole transport; doping; ultrasonic spraying

1. Introduction

In recent years, organic-inorganic hybrid perovskite solar cells have attracted much at-
tention due to their low preparation cost and high photoelectric conversion efficiency [1–4],
and many methods are still used to improve their photovoltaic performance [5–9]. The maxi-
mum conversion efficiency of organic-inorganic hybrid perovskite solar cells is approaching
26% [10]. However, the disadvantages of organic-inorganic perovskite materials like insta-
bility in the atmospheric environment and containing the heavy metal Pb, have severely
affected the practicability and commercialization of such photovoltaic devices [11–13].
Therefore, the research has gradually turned to lead-free inorganic perovskite materials,
especially CsSnI3 and Cs2SnI6 [14–17]. However, these two materials have inherent draw-
backs. Our previous research found that CsSnI3 was prone to degrade in the atmospheric
environment, although it had a suitable band gap and a high optical absorption coeffi-
cient [18]. In spite of its relative stability in the atmospheric environment, Cs2SnI6, which
was restricted by the energy level density of the conduction band, had limited optical
absorption ability, leading to the low efficiency of photovoltaic devices fabricated based on
the Cs2SnI6 optical absorption layer [19].

The research on Cs2SnI6 was more focused on using it as a hole transport layer for
perovskite and dye-sensitized solar cells. For example, G. Zhang et al. enhanced the hole ex-

Nanomaterials 2022, 12, 2279. https://doi.org/10.3390/nano12132279 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12132279
https://doi.org/10.3390/nano12132279
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-0275-1580
https://orcid.org/0000-0002-5931-0893
https://orcid.org/0000-0003-4789-821X
https://doi.org/10.3390/nano12132279
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12132279?type=check_update&version=1


Nanomaterials 2022, 12, 2279 2 of 11

traction capability of high–efficiency carbon-based CsPbI2Br perovskite solar cells by using
Cs2SnI6 nanocrystals, with the device performance improved from 13.16% to 14.67% [20].
T. T. D. Lien et al. obtained Cs2SnI6 by natural degradation of CsSnI3 in the atmospheric
environment and added SnF2 in the preparation process to improve its carrier mobility.
The mobility of Cs2SnI6 film treated with 10% SnF2 can reach 468.1 cm2/Vs [21]. B. Lee
et al. added lithium bis (trifluoromethylsulfonyl) imide (Li–TFSI) and 4–tertbutylpyridine
(TBP) in undoped n-type Cs2SnI6, which has been successfully applied as hole transport
materials to dye-sensitized solar cells [16].

According to the references and our previous research, intrinsic Cs2SnI6 is an n-type
semiconductor [16,22,23]. If, however, Cs2SnI6 is obtained by the degradation of CsSnI3
or by adding Sn2+ ions in the preparation process, it will become a p-type semiconduc-
tor [21,24–26]. This is because half of the Sn2+ in the degradation process will be oxidized
to Sn4+ and yield isolated [SnI6]2– octahedrons, while the other half will be doped into
Cs2SnI6 [27,28]. However, in the process of forming p-type Cs2SnI6, Sn2+ are easily oxidized
by oxygen in the air to generate SnO2.

In this paper, Cs2SnI6 was doped with Li+ so that p-type Cs2SnI6 was directly obtained.
Combined with the first principles simulation and specific experiments, the effect of Li+

doping on the basic characteristics of Cs2SnI6, such as energy level structure, electron
distribution, optical absorption, and carrier mobility, were systematically studied. The
mechanism of Li+ doped Cs2SnI6 forming p-type semiconductor was revealed, and it was
confirmed that Li+ doped Cs2SnI6 is an ideal hole transport material.

2. Materials and Methods

In this research, the firstprinciples calculation of Li+ doped Cs2SnI6 was executed
through the Castep module of Materials Studio software. The simulation was performed
using the plane wave ultrasoft pseudopotential method based on density functional theory,
and the interaction between electrons and ions was described by ultrasoft pseudopoten-
tial. The properties of the object of calculation were calculated based on the optimiza-
tion of the corresponding model structure (including the relaxation of all atomic posi-
tions); the exchange-correlation energy between electrons was described by PBE (Perdew–
Burke–Ernzerhof) under the generalized gradient (GGA) combined with LDA+U gener-
alized functions; the band structure, density of states distribution and optical properties
were described with HSE06 function; the doping ions concentration was Li+:Cs+ = 1:4
(supercell 2 × 2 × 2).

The preparation process of Li+ doped Cs2SnI6 thin films by ultrasonic spraying is
shown in Figure 1. CsI and LiI in different proportions were dissolved in DMF to form clear
mixed solutions, in which the stoichiometric ratios of Li+ to Cs+ were 1:20, 1:10, 3:20, 1:5,
and 1:4, respectively, and the concentration of CsI was 0.2 mol/L. 0.1 mol/L SnI4 was added
to the mixed solutions and stirred until SnI4 was completely dissolved to generate red-
brown mixed solutions. Ultrasonic spraying parameters were set as follows: the working
distance was 10 cm, the flow rate was 20 µL/s, nozzle moving speed was 5 mm/s, working
pressure was 0.2 MPa, and substrate temperature was 130 ◦C; the prepared mixed solutions
were sprayed on the cleaned common glass slides according to the parameters mentioned
above 4 times, and then the substrates were baked at 130 ◦C for 5 minutes after spraying.
After that, substrates were immersed in 0.1 g/mL SnI4 anhydrous ethanol solution for
1 minute, then rinsed with anhydrous ethanol and dried. Hence the samples were obtained.

Using X-ray diffraction (XRD) (D8 ADVANCE, Bruker AXS, Karlsruhe, German), the
phase properties of samples were characterized and analyzed. The field–emission scanning
electron microscopy (GeminiSEM 500, Zeiss, Aalen, German) was employed to observe
the morphological property of these samples. In addition, Raman testing and analysis
was performed under a 532 nm laser for excitation with the laser Raman spectroscope
(LabRAM HR Evolution, HORIBA, Fukuoka, Japan). The UV–NIR spectrometer (JASCO
V–570 UV/vis/NIR, JASCO, Tokyo, Japan) was used to collect the absorption spectra, and
a Hall system (HL 5500, Accent Optical, York, UK) to test the Hall data of these samples.
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Figure 1. Schematic illustration for the preparation of Li+ doped Cs2SnI6 thin films.

3. Results and Discussion

In this paper, the energy difference of Li+ doped Cs2SnI6 configurations after struc-
tural optimization was systematically simulated and calculated for the position of Li+ in
the Cs2SnI6 lattice and the stability of Li+ doped Cs2SnI6 lattice. As shown in Figure 2,
substitutional doping and interstitial doping might occur in the process of Li+ doping
Cs2SnI6, where three different doping models could be constructed, namely Li+ replacing
Cs+ or two types of Li+ interstitial doping. According to the three types of doping of Li+ in
the Cs2SnI6 lattice, the doping energy difference of each model was calculated in this paper.
The calculation formula is as follows:
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Li+ replacing Cs +:

∆E = ECs3LiSn2I12 – 4ECsI – 2ESnI4 – µLi (1)

Li+ interstitial doping:

∆E = 2ECs2SnI6@Li – 4ECsI – 2ESnI4 – µLi (2)

The single-point energies of reactants and products are calculated by the first principles,
where, ECs3LiSn2I12 and ECs2SnI6@Li are the single-point energies of the substitutional doping
product Cs3LiSn2I12 and interstitial doping product Cs2SnI6@Li, respectively. ECsI and
ESnI4 are the single-point energies of reactants CsI and SnI4, respectively, and µLi is the
chemical potential of Li. The energy difference of each doping type is calculated according
to the above formula. The calculation results are shown in Table 1.
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Table 1. Energy difference calculation results of Li+ ions doped Cs2SnI6.

Doping Position Energy Difference

Substitution site 0.0416 eV/atom
Interstitial site 1 −0.01898 eV/atom
Interstitial site 2 −0.01813 eV/atom

According to the above calculation results, it can be seen that the crystal structure is
unstable after Li+ are doped into Cs2SnI6 lattice by replacing Cs+, hence corresponding
compounds fail to be generated in practice. The interstitial doping formed by Li+ entering
the Cs2SnI6 lattice has negative energy differences, which indicates that the interstitial
doping crystal structures are stable and the target products can be formed in practice.
Therefore, Li+ can only enter the Cs2SnI6 lattice in the form of interstitial doping, which is
mainly because the radius of the Li+ ion is small and it is easy to enter the interstitial voids.

After determining the type of Li+ doping, the effect of Li+ doping on the electron
distribution of Cs2SnI6 was observed through an electron density difference distribution
diagram. As shown in Figure 3a, electron cloud overlap occurs obviously between Sn4

+

and I− in the undoped Cs2SnI6, with Sn−I bonds forming [SnI6]2– octahedrons, among
which no electron cloud overlap arises due to the absence of other ions. When a Li+ is
on interstitial site 1, as shown in Figure 3b, there exists an obvious electron enrichment
between the Li+ and I−, forming a strong interaction. When the Li+ is on interstitial site 2, as
shown in Figure 3c, there are a few shared electrons between Li+ and I−, and the interaction
is relatively weak. The main reason for that is the distance between Li+ and I− on interstitial
site 2 are significantly longer than those on interstitial site 1, which weakens the interaction
between the Li+ and I−. This is also the main reason why the energy difference of interstitial
site 1 is slightly lower than that of interstitial site 2, and it is easier to yield doping products
when the Li+ is on interstitial site 1 during the experiment.
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In view of this, further analysis was conducted on the energy band and density of
states of the configuration of interstitial site 1. As shown in Figure 4a, for the undoped
Cs2SnI6, the band gap is 1.26 eV, and the calculated value is basically consistent with the
experimental one. According to the density of states distribution curve, it can be seen that
the energy level of the conduction band bottom of Cs2SnI6 is created by the hybridization
of I–p orbital and Sn–s orbital, while that of its valence band top is determined by I–p
orbital. In accordance with the band structure diagram of Cs2SnI6, it can be observed that
there is only one energy band at the bottom of its conduction band, and thus the effective
density of states is low. According to the Pauli Exclusion Principle, once an electron fills the
bottom of the conduction band, it will prevent other electrons from further filling, which is
prone to photon absorption saturation. Then, the energy difference between the minimum
and sub-minimum conduction band of Cs2SnI6 is as high as 3.34 eV, making it difficult
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to effectively absorb photoelectrons. This is also the main reason for the low conversion
efficiency of photovoltaic devices based on the Cs2SnI6 optical absorption layer.
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interstitial doped Cs2SnI6.

Figure 4b illustrates the band structure and density of states distribution of Li+ doped
Cs2SnI6. It is shown that the intermediate energy levels are yielded in the band gap of
Li+ doped Cs2SnI6 as a result of the α–spin electrons splitting off from the I–p orbital
near the top of the valence band. This is because the introduction of Li+ enables a strong
correlation between Li+ and I–, leading to the splitting of the I–p spin-orbital. In addition,
the formation of strong interaction between Li+ and I− significantly changes the energy
band near the bottom of the conduction band, and the introduction of intermediate energy
levels effectively improves the electronic density of states of the conduction band, which
is conducive to the absorption and transmission of photons, and which can effectively
broaden the optical absorption range and enhance the optical absorption ability.

Figure 5 shows the absorption coefficients of undoped Cs2SnI6 and Li+ doped Cs2SnI6.
It can be seen from the illustration that the absorption edges of undoped Cs2SnI6 and Li+

doped Cs2SnI6 are 1.48 eV and 0.7 eV, respectively, indicating a noticeable red shift. More-
over, the absorption coefficient of Li+ doped Cs2SnI6 considerably increased, which has
also proved that the intermediate energy levels improve its optical absorption properties.



Nanomaterials 2022, 12, 2279 6 of 11

Nanomaterials 2022, 12, x FOR PEER REVIEW 6 of 12 
 

 

doped Cs2SnI6 as a result of the α–spin electrons splitting off from the I–p orbital near the 
top of the valence band. This is because the introduction of Li+ enables a strong correlation 
between Li+ and I–, leading to the splitting of the I–p spin-orbital. In addition, the for-
mation of strong interaction between Li+ and I− significantly changes the energy band near 
the bottom of the conduction band, and the introduction of intermediate energy levels 
effectively improves the electronic density of states of the conduction band, which is con-
ducive to the absorption and transmission of photons, and which can effectively broaden 
the optical absorption range and enhance the optical absorption ability. 

Figure 5 shows the absorption coefficients of undoped Cs2SnI6 and Li+ doped Cs2SnI6. 
It can be seen from the illustration that the absorption edges of undoped Cs2SnI6 and Li+ 
doped Cs2SnI6 are 1.48 eV and 0.7 eV, respectively, indicating a noticeable red shift. More-
over, the absorption coefficient of Li+ doped Cs2SnI6 considerably increased, which has 
also proved that the intermediate energy levels improve its optical absorption properties. 

 
Figure 5. Calculated optical absorption coefficient spectrum undoped and Li+ interstitial doped 
Cs2SnI6. The inset is the partial enlarged absorption spectra from 0 to 3.5 eV. 

As shown in Figure 6, dense thin films with uniform surfaces can be obtained by 
ultrasonic spraying. According to Figure 6a, cubic phase crystals can be obviously ob-
served on the surface of undoped Cs2SnI6 thin films, with a grain size of about 500 nm, 
which is consistent with the theoretical crystalline state of Cs2SnI6 under normal condi-
tions, namely the face-centered cubic lattice of m 3m point group. When the doping con-
centration of Li+ rise, it can still be clearly observed that the morphology of Cs2SnI6 remains 
the cubic phase crystal. However, when the doping concentration reaches more than 20% 
(Li+:Cs+ = 1:5), the morphology of the crystals is distorted. Although their cubic structures 
can still be observed, they are hollow on the inside. XRD test results are required to further 
determine the specific crystallization. 

0 5 10 15 20 25 30 35 40

0.0

5.0 × 103

1.0 × 104

0.0

5.0 × 104

1.0 × 105

1.5 × 105

2.0 × 105

A
bs

or
pt

io
n 

/ c
m

−1

Energy / eV

 Cs2SnI6

 Li+ doped Cs2SnI6

2.5 × 105

0 1 2 3

Figure 5. Calculated optical absorption coefficient spectrum undoped and Li+ interstitial doped
Cs2SnI6. The inset is the partial enlarged absorption spectra from 0 to 3.5 eV.

As shown in Figure 6, dense thin films with uniform surfaces can be obtained by
ultrasonic spraying. According to Figure 6a, cubic phase crystals can be obviously observed
on the surface of undoped Cs2SnI6 thin films, with a grain size of about 500 nm, which is
consistent with the theoretical crystalline state of Cs2SnI6 under normal conditions, namely
the face-centered cubic lattice of m 3m point group. When the doping concentration of Li+

rise, it can still be clearly observed that the morphology of Cs2SnI6 remains the cubic phase
crystal. However, when the doping concentration reaches more than 20% (Li+:Cs+ = 1:5),
the morphology of the crystals is distorted. Although their cubic structures can still be
observed, they are hollow on the inside. XRD test results are required to further determine
the specific crystallization.

The XRD spectrums of undoped Cs2SnI6 and Li+ doped Cs2SnI6 are illustrated in
Figure 7. The diffraction peak positions of all samples are identical to the theoretical ones
of Cs2SnI6 standard PDF card # 73–0330 in ICSD (Inorganic Crystal Structure Database). It
suggests that Li+ doping does not change the crystalline morphology of the face-centered
cubic structure of Cs2SnI6, but there are differences in the relative strength of the diffraction
peaks, which may be caused by the morphology change in Figure 6. In addition, there
is no impurity diffraction peak but the standard diffraction peaks of Cs2SnI6 in Figure 7.
It indicates that Li+ are doped into the lattice of Cs2SnI6 without changing its inherent
crystalline phase, and Li+ do not form other lithium compounds. In order to further prove
that Li+ do not form the corresponding impurities, all samples were tested by Raman
spectroscopy.
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copy. 

Figure 6. SEM images of undoped Cs2SnI6 and Li+ doped Cs2SnI6 with different concentra-
tions, (a) undoped, (b) Li+:Cs+ = 1:20, (c) Li+:Cs+ = 1:10, (d) Li+:Cs+ = 3:20, (e) Li+:Cs+ = 1:5 and
(f) Li+:Cs+ = 1:4.

To further verify that Li+ do not form compounds but enter the Cs2SnI6 lattice, as
shown in Figure 8, the Raman spectrums of undoped Cs2SnI6 and samples of Li+ doped
Cs2SnI6 were further studied and analyzed. After spectral fitting, four Raman peaks can
be clearly observed. Among them, there are three obvious peaks, located at 76, 90, and
123 cm−1, belonging to δ (F2g), ν (Eg), and ν (A1g) vibration peaks of Cs2SnI6, respectively.
The tiny peak at 244 cm−1 is also the characteristic vibration peak of Cs2SnI6 as reported
in the reference [29]. In addition, there is no other impurity peak, which also confirms
the XRD test results that Li+ enter the Cs2SnI6 lattice, and no impurities are produced.
Furthermore, as Li+ doping concentration increases gradually, the main peak at 123 cm−1

shifts, which can be attributed to the change of crystalline morphology brought about by
lattice distortion caused by Li+ doping.
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Figure 9 shows the normalized absorption spectrums of undoped Cs2SnI6 and Li+

doped Cs2SnI6. As a direct band gap semiconductor, the band gap (Eg) of Cs2SnI6 can be
estimated by the classical Tauc relation [21]:

(αhν)2 = A (hν − Eg) (3)

where hν, α and A are photon energy, absorption coefficient, and constant, respectively.
The band gap value of the samples can be obtained by extrapolating the straight parts of
(αhν)2 and hν curve to the point α = 0. According to the inset in Figure 8, it can be directly
observed that the band gap value of undoped Cs2SnI6 is about 1.3 eV, which is almost
consistent with that of Cs2SnI6 reported in the references. It can be found with careful
observation that as Li+ doping concentration rises, a red shift occurs on the absorption edge
and the absorption spectrum range slightly widens, which dovetails with the theoretical
calculation results.
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In previous research, we found that undoped Cs2SnI6 featured an n-type semicon-
ductor with an electron mobility of 2.78 cm2/Vs [23]. In order to further explore the effect
of Li+ doping on the electrical properties of Cs2SnI6, the Hall effect test was conducted
on the samples of Li+ doped Cs2SnI6. The test results are shown in Table 2. First, all the
Li+ doped Cs2SnI6 samples show p-type semiconductors, and the main reasons are as
follows. The simulation results confirmed that Li+ enters the Cs2SnI6 lattice in the form of
interstitial doping, which forms a strong correlation between Li+ and I−, resulting in the
electrons as the majority carriers bound by Li+. Excessive Li+ provides a large number of
holes, making Cs2SnI6 transform from n-type to p-type semiconductors. Second, as the
Li+ doping concentration is elevated, the Hall mobility of the samples is also substantially
enhanced, mainly due to abundant Li+, which improves the carrier transport performance
of the samples.
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Table 2. Hall effect data of Li+ doped Cs2SnI6 with different concentrations.

Li+:Cs+ Conductivity Type Carrier Concentration
(1/cm3)

Hall Mobility
(cm2/Vs)

1:20 p 9.392 × 1013 89.51
1:10 p 1.996 × 1014 91.89
3:20 p 2.071 × 1014 104.5
1:5 p 2.5 × 1014 110.45
1:4 p 3.18 × 1014 356.6

4. Conclusions

This paper provided a systematic analysis of the effect of Li+ doping on the structure,
electrical and optical properties of Cs2SnI6 by firstprinciples calculation, and Cs2SnI6
samples with different Li+ doping concentrations were successfully prepared by ultrasonic
spraying. What is more, the simulation results showed that Li+ enter the Cs2SnI6 lattice by
interstitial doping, and a strong interaction between Li+ and I− was generated accordingly,
making the I–p spin-orbital near the top of the valence band split, hence leading to the
creation of intermediate energy levels and a red shift on the absorption edge. In addition,
the experimental results suggested that doping did not change the crystal phase of the
samples, nor produced impurities, and the band gap decreased with the increase of doping
concentration, which conformed to the rules of calculation results. The formation of
strong interaction between Li+ and I− allowed the transformation of Cs2SnI6 into a p-type
semiconductor from an n-type one, and the Hall mobility of the samples was enhanced
enormously as Li+ doping concentration rose. In summary, this paper uses the simulation
calculation and experimental results to analyze the reason why Li+ doping changes the
conductive type of Cs2SnI6 and confirms that Li+ doped Cs2SnI6 can be used as an ideal
hole transport material in photovoltaic devices.
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