Semantic Approach to Designing Applications
with Passwordless Authentication According to
the FIDO2 Specification

Anton Zhidovich and Alexei Lubenko and losif Vojteshenko and Alexey Andrushevich
Belarusian State University
Minsk, Belarus
{anton.zhidovich, alexeilubenko02} @gmail.com, {voit, andrushevich} @bsu.by

Abstract—In this paper, a semantic approach to de-
signing applications with the FIDO2 specification-based
passwordless authentication using OSTIS technology is
proposed. Obtained results will improve the efficiency of
the component approach to the development of applications
with passwordless authentication, as well as provide the
ability to automatically synchronize different versions of
components, increasing their compatibility and consistency.

Keywords—FIDO2 technology, passwordless authentica-
tion, OSTIS technology, biometrics

I. INTRODUCTION

When building an intelligent system, it’s necessary
to accord special priority to the issue of access to
system resources and the differentiation of user rights.
The key concept here is authentication — a procedure
of identity verification to ensure that the user is the
subject whose identifier he uses. The issue becomes
more complicated when designing different semantically
compatible intelligent systems [1], requiring a unified
authentication apparatus: easy to use and integrate, as
well as the most secure.

The authentication system is only a component, and
therefore the development of a unified approach to
its design is required. There are various authentication
standards, many of which may not provide a high level
of security and, moreover, may be compatible only with
a certain software class or be proprietary.

II. ANALYSIS OF AUTHENTICATION METHODS

Let’s take a look at the most common authentication
methods. These methods can be encountered both in
everyday life, with the use of messengers, online banking
or other online services, and within corporate systems
where data is accessed by company employees and
delineated according to their position.

A. Password-based authentication

Being the most common because of its ease of
implementation, password-based authentication method is
vulnerable to the most types of attacks: brute-force, range
attacks, dictionary attacks, key-logging, social engineering
such as phishing, man-in-the-middle and replay attacks.

B. Trusted third-party authentication

The method is based on the fact that the service
(provider) that owns the user’s data, with his permission,
provides third-party applications with secure access to
this data. The provider is usually a service such as
Google, GitHub, Facebook or Twitter. The most common
implementation is the OAuth 2.0 protocol.

The OAuth 2.0 specification defines a protocol for
delegating user authentication to the service that hosts a
user account and authorising third-party applications to
access that user account [2].

In [2] the main participants of OAuth 2.0 authentication
and their interaction are described. Although this method
is one of the most user-friendly and, moreover, imple-
mented in most online resources, it is still vulnerable
to a man-in-the-middle attack, which is a common and
effective way to gain unauthorised access to a system.

C. One-time password (OTP)

OTP, which is used in many systems as a second
or first authentication factor, can be a number or some
string that is generated for a single login process. When
authenticating, the OTP can be sent to the user via SMS-
message, push notification or in a special application.
The most secure tool for generating one-time passwords
is a token (software, such as Google Authenticator, or
hardware).

OTP quickly becomes invalid, which provides re-
sistance to replay attacks. However, most attacks on
authentication systems with OTP target the way the user
receives it. For example, OTP transmitted via SMS can be
intercepted by software such as FlexiSPY or Reptilicus.

One-time passwords are protected against phishing in
the classic sense: users cannot reveal long-term credentials.
However, the man-in-the-middle attack can be used to
retrieve a currently valid one-time password.

D. Passwordless authentication methods

Passwordless authentication allows a user to access
an information system without entering a password or
answering security questions. Instead, the user provides

311

some other form of evidence such as a fingerprint,
proximity badge, or hardware token code [3].

The essence of passwordless authentication is to never
reveal any secrets. That is, everything about the user’s
identity and sensitive data remains protected.

There are several standards for passwordless authen-
tication, depending on which factor is used and the
available hardware, software and other features of the
information system and its users. For example, biometric
authentication involves comparing a user’s unique biomet-
ric characteristics (facial features, retinal structure, etc.)
with previously recorded samples of those characteristics.
Biometric characteristics are inseparable from their owner,
which ensures that it is impossible to refuse to log on
and perform certain actions in the system. However, these
authentication methods are also susceptible to hacking,
such as face spoofing with a photo, 3D head model, etc.
One way to combat such attacks on system security is
liveness detection technology, which consists in checking
the presented identifier for belonging to a "live" user and
is designed to strengthen the identification procedure and
protect against hacking in biometric authentication [4],
[5].

The modern approach to passwordless authentication
is the open standard FIDO?2, jointly developed by the
FIDO Alliance and the W3C consortium. The FIDO2
specification uses public-key cryptography and consists
of two groups of standards. One of these is called the
W3C WebAuthn standard. The second part is the Client
to Authenticator Protocol (CTAP, CTAP1, CTAP2). The
FIDO Alliance states that FIDO2 “reflects the industry’s
answer to the global password problem” by addressing
legacy authentication’s challenges as they pertain to
security, usability, privacy, and scalability [6].

FIDO2-based authentication has advantages, primarily
related to usability and security. FIDO2 can be used for
passwordless login to the application or as an additional
authentication factor, while ensuring a sufficient level of
security for most tasks [7], [8]. The following advantages
can be pointed out:

o The use of public-key cryptography provides re-
sistance to phishing and man-in-the-middle attacks.
Indeed, even by intercepting the public key or any
data during registration, a fraudster cannot create a
digital signature without access to the authenticator.
The user authenticator itself is either built into
the operating system, where the protection of the
credentials (private key) is organised at the hardware
level, or is an external device.

o Generating a special random byte buffer each time
the server communicates with the authenticator
prevents replay attacks.

o Users have a simple built-in mechanism like a
fingerprint scanner to provide fast, secure, and
convenient access to online services [9].

« Many operating systems and browsers have built-in
support for WebAuthn API, which greatly simplifies
the implementation of the technology in information
systems.

o Cryptographic keys are unique for every website,
providing users with enhanced privacy as sites cannot
track the users across the web [9].

Thus, FIDO2-authentication is a modern, secure and
convenient phishing-resistant method based on open
standards and implemented in browsers and operating
systems. The method provides ease of use by allowing
users to register their device with a given online service
through the selection of a local authentication mechanism.
Speaking into the microphone, looking into the camera,
inputting a PIN, or swiping a finger could all be valid
local authentication mechanisms [10], [11].

III. SEMANTIC DEFINITION OF FIDO2
SPECIFICATIONS AND SECURITY KEYS

In order to increase the level of convergence and subse-
quent integration of a unified authentication system with
next-generation intelligent computer systems, this paper
proposes a semantic approach to their designing based
on OSTIS technology. The OSTIS technology is a set
of models, methods and tools permanently developed as
part of an open project oriented on the ontological design,
production, operation and re-engineering of semantically
compatible hybrid intelligent computer systems that can
independently interact with each other [12]. A number of
languages are used to represent knowledge bases of ostis-
systems (systems built on OSTIS Technology). Among
them are external languages [12]:

o SCg (Semantic Code graphical) — a language whose
texts represent a graph structures of a general type
with precisely defined denotational semantics.

¢ SCn (Semantic Code natural) — a language for the
structured external representation of SC-code texts.

A. Definition of FIDO2-authentication specifications us-
ing SC-code

W3C WebAuthn

= [a specification developed by the FIDO alliance
and W3C that allows an application to register
and authenticate users using public-key cryptog-
raphy instead of a password.]

= [WebAPI built into platforms and browsers of all
common operating systems to support password-
less authentication]

CTAP
= decoding*:
[Client to Authenticator Protocol]
= [a specification that describes how the client

(mobile app or web browser) and operating

312

system interact with cross-platform (physical)
authenticators via USB, BLE, and NFC]
= levels*:
{e Authenticator API
= [level that represents a specific set
of authenticator functions used
for generating new credentials,
confirming authentication and can-
celling current operations]
° Message Encoding
= [level at which all requests to the
Authenticator API level are gener-
ated and encrypted]
° Transport-specific Binding
= [level at which requests and re-
sponses to the external authentica-
tor are transmitted via USB, BLE,
NFC]
}
= subdividing*:
{eo CTAPI
= [a protocol that describes client
interaction with legacy authenti-
cators as a second authentication
factor]
° CTAP2
= [a protocol that describes client
interaction with new authentica-
tors for passwordless access, two-
factor authentication or multi-
factor authentication]

The interaction of multiple parties is defined by the
specifications included in FIDO2. Each party performs
specific functions depending on its role in the authentica-
tion process:

FIDO2-authentication process participants

= {e user
° client
° credentials

= [the pair of private and public keys
associated with the user account]
° security key
° relying party
= [a server that stores the public key
associated with the user account,
makes requests to the WebAuthn
client, and verifies the authentica-
tion signature]

B. Definition of security keys in the WebAuthn specifica-
tion using SC-code

In general, a security key (also called authenticator) is
assumed to have only one user. If multiple natural persons
share access to an authenticator, they are considered to
represent the same user in the context of that authenticator.
If an authenticator implementation supports multiple users
in separated compartments, then each compartment is
considered a separate authenticator with a single user
with no access to other users’ credentials [13].

Platform authenticators have a built-in Trusted Platform
Module (TPM) used to secure any generated private keys
and are often biometric in nature, although this is certainly
not a requirement. When present however, the biometric
element provides a mechanism for the platform to match
against the device’s identity profile of a user, and in turn,
use the stored cryptographic credentials to authenticate
against a relying party. When it is not present, the same
outcome can be achieved with other methods such as PINs
for instance, although potentially, may be less secure [14].

The following definition of security keys can be made
in SC-code.

Security key
= synonyms™:
[authenticator, WebAuthn key]
= [a software component built into the operating
system or external device that supports FIDO2
authentication]
= subdividing*:
{e cross-platform (roaming) security key
= [an external physical device, not
tied to a specific platform (operat-
ing system), used for authentica-
tion on multiple devices]
= example*:
{e YubiKey, developed by
Yubico
° Titan Security Key,
developed by Google
° OneKey, developed by
CryptoTrust
}

° platform (internal) security key
= [a software module, implemented
either as a separate application
or at the operating system level,
used for authentication on a single
device]
= example*:
{e Windows Hello for
Windows 10/11
° Touch ID, Face ID for
10S/MacOS

313

. Graphic key, iris scanner
PIN code, etc. for Android

C. Definition of FIDO certification process using SC-code

At the moment, all common operating systems sup-
port passwordless FIDO2-authentication methods using
internal and roaming authenticators, certified by FIDO.
The authentication tool undergoes a multi-step FIDO cer-
tification, confirming compliance of the implementation
with FIDO2 specifications and defining a security level
(L1, L2, L3) depending on resistance to various types of
cyberattacks and built-in software and hardware protection
of credentials [15]. The FIDO certification process can
be represented as follows in SC-code:

FIDO certification process
= steps*:
{eo Confirmation of compliance with FIDO
specifications
Functional compatibility testing
Obtaining an authenticator security
certificate of at least L1 level
Certification submission
Obtaining a trademark FIDO® Certified
° FIDO Metadata Service Registration
}
The FIDO Authenticator Certification levels can be
represented in the following SC-code:

Authenticator Certification Levels
> {eo LI
= defence*:
[phishing and majority of scalable
attacks]
= example*:
[YubiKey 5 developed by Yubico]

= defence*:
[remote software attacks]

= example*:
[vFido developed by SecureMetric
Technology]

= defence*:
[remote software and local hard-
ware attacks]

= example*:
[de.fac2 developed by German Fed-
eral Office for Information Secu-
rity]

As shown in [16], authenticators with L1 certification
level can be vulnerable to timing attacks on FIDO2-
authentication, which can allow attackers to link user
accounts on multiple resources. Such authenticators may
not guarantee a high level of security and privacy. This
vulnerability has now been patched for major browsers
(Mozilla Firefox [17], Google Chrome [18]).

IV. REGISTERING A WEBAUTHN KEY AND
AUTHENTICATING WITH IT

The WebAuthn API allows applications to create and
use secure credentials based on public-key cryptography
with limited scope for user authentication. These creden-
tials are created and saved in protected memory by the
authenticator.

There are two operations defined in the WebAuthn API:
creation of new user credentials and authentication using
existing ones.

A. Registering new user credentials

Registration of new credentials can be done either for
an authorised user (using a password, other authenticator
or any available factor) or when creating a new account.
Figure 1 shows the sequence of actions of the participants
in the process of creating and registering new credentials.
Let’s look at the implementation using a WEB application
as an example.

The user initiates the creation of new credentials while
being on the WEB application page. The relying party’s
server sends a request to the client. The request contains
a challenge - a buffer of cryptographically random bytes
generated on the server, as well as information about
the user (the identifier) and information about itself. The
request data goes to the JavaScript program executed
by the client (browser). The protocol for communicating
with the server, as well as creating the request in the
required format, are beyond the scope of the WebAuthn
specification and depend on the platform on which the
server runs and the libraries used.

The JS program makes a request to the authenticator
to create new credentials. The request must contain
data received from the server, information about the
authenticator being used (internal or roaming), informa-
tion about the expected credentials (such as the type
of cryptographic algorithm used by the authenticator
to create the signature), and the name of the new
credentials (displayed for the user). The request is passed
as parameters to the authenticator via the WebAuthn API
built-in to the browser.

After the authenticator receives the data, the user au-
thentication phase begins. If the verification is successful,
the authenticator creates a new asymmetric key pair, saves
the private key in protected storage on the device and
generates a message to the client. The message contains
the unique identifier of the created credentials, the address
of the original web application, the challenge buffer, and

314

¥ i *
authentcaror setidd

“ibiid recaive® O h
®+’“ anthenticater
Ray regfstratlon v * (s
|—>O ‘e&l’sm“requﬂr cred. options "‘;Odm" —
S : ORF inf Qreg request diallimge™ sucoess™
| action decompesition* O’"‘" rbﬁrodm'!h'”é"' Buff Oﬂ"m Fjv_{oo.imv'urmme v ™y
3 ®

f G.sequeucf’] ®\'v|m"’ recefve

fan featdr i 1
s Osrar'ﬂgr

RP server i et kay
; — (5
RP M.MQ ()_ * authenticator & o
T Vi credential info (Sydota
8“,‘”{_, ®£‘JT:’SYI!.‘T*
slgnarure = o :
>0 -0 (utrestation object
public kq\‘o eliont j ~ +
@ vertfi* anrlienientor il O},m;‘r;,.km
assoctare® —=) - 'e)))
O T chall mge buff - J
§ TR,
Bitr éwq} witlh sent ® ®

Figure 1. Key

a special attestation object containing the public key and
other information to be verified by the authenticator. The
attestation object is signed with the private key.

The authenticator returns the data to the browser and
the data is sent to the JavaScript program. The program
creates a response to the server from the received data
and then sends it to the server.

After receiving the data, the server must perform a
series of checks to ensure that the registration process was
passed and the data have not been modified: compare the
received and sent values of the challenge buffer (they must
be the same), verify the signature and perform attestation
using the certificates set by the specific authenticator.
If all the steps are successful, the server will store the
received public key and associate it with the user account.
The public key will be used later in user authentication .

B. Authentication using registered credentials

After a user has registered the WebAuthn key, it can be
used in passwordless authentication. The authentication
flow is much the same as the registration, but has its own
peculiarities. The main difference is that the authenticator
creates a specific authorization response signed with the
private key instead of creating a new key pair. In a
simplified form, the authentication process is shown in
Figure 2.

V. ARCHITECTURE OF APPLICATION WITH
FIDO2-AUTHENTICATION

Based on the analysis above, and using [19], we
propose to formalise the architecture of an application
with passwordless authentication based on the FIDO2
specification in the form of the following tree:

(0) Application architecture S = A% B* C % D
(1) Client platform A = F %« F x G
(1.1) Client E = H * [

315

registration flow.

user authenticator client RP server

initiate aulhcntic‘al!m

L

request auth.

send auth. params

verify user
5 3

createfzsend sign

send sign

granl access

Figure 2. Authentication flow.

(1.1.1) Client-side JS-program H: H; (Processing of
the RP request), H> (Accessing the WebAuthn
API)

(1.1.2) WebAuthn API in the client I: I; (Authenti-
cator registration), I» (Signature creation)

(1.2) Authentication API built into the platform F': F}
(Locating the authenticator), F5> (Connecting to
the authenticator)

(1.3) Internal authenticator platform G: G; (Windows),
(5 (Android), G3 (I0S), G4 (MacOS)

(2) Roaming authenticator standard B = P « T’

(2.1) Protocols P: P; (CTAP1), P, (CTAP2)

(2.2) Transports T: T} (Bluetooth Low Energy (BLE)),
Ty (NFC), T5 (USB)

(3) Relying party C' = J x K % L

(3.1) Server application J: J; (Relying party opera-
tions), Jo (Basic logic)

(3.2) Library API interfaces K: K; (RSK FIDO2 Lib
for ASPNET), K5 (Yubico libfido2)

(3.3) FIDO2 server L = M « N

(3.3.1) User & key storage M: M; (internal), M,
(external)

(3.3.2) Attestation trust store N: N; (Full basic),
Ny (Surrogate basic), N3 (With a privacy
certification centre)

(4) External metadata service D: D; (Metadata Service
v2.0 (MDS2)), Dy (MDS3)

VI. CONCLUSION

In this paper a semantic approach to designing an
application with FIDO2 authentication is described. The
most common authentication methods have been analyzed
and their common vulnerabilities identified. Using the
capabilities of the OSTIS technology — SCn- and SCg-
languages — the main components of FIDO2, as well as the
WebAuthn key registration and authentication flows were
described. The proposed approach enhances the efficiency
of integration of FIDO2-authentication components in
multi-agent intelligent systems.

Most modern operating systems and browsers have
built-in support for FIDO2-authentication, in particular,
have support for WebAuthn API, which is user-friendly,
accessible, and protected from many types of attacks. In
combination with the proposed approach, the technology
can be easily integrated into OSTIS-systems, providing a
single authentication apparatus.

In the context of authentication, an ontology that defines
concepts — user, client, authenticator, certificates and
levels of security, credentials, relying party, and its actions
-— and the relationships between them are presented. This
will help to standardise the authentication process and
ensure that the different devices and systems interact
correctly. Standardisation of the authentication process
improves functional compatibility and interoperability of
systems and helps in the development and integration of
new components of the OSTIS ecosystem.

ACKNOWLEDGMENT

The authors thank the teams of the Department of Soft-
ware Engineering of the Belarusian State University and
the Department of Intellectual Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics for their help and valuable comments.

REFERENCES

[1] V. Chertkov, “Information security in intelligent semantic systems,”
Otkrytye semanticheskie tehnologii proektirovanija intellektual’nyh
sistem [Open semantic technologies for intelligent systems], pp.
417-420, 2022.

[2] (2023, Feb) An Introduction to OAuth 2. [Online].
Available: https://www.digitalocean.com/community/tutorials/
an-introduction-to-oauth-2

[3] (2022, Dec) Passwordless Authentication. [Online]. Available:
https://www.cyberark.com/what-is/passwordless-authentication/

[4] S. Policepatil and S. M. Hatture, “Face liveness detection: An
overview,” International Journal of Scientific Research in Science
and Technology, vol. 8, no. 4, pp. 22-29, Jul. 2021. [Online].
Available: https://doi.org/10.32628/IJSRST21843

[5] V. Zolotarev, A. Povazhnyuk, and E. Maro, ‘“Metody
usileniya procedury identifikacii pol’zovatelej na osnove
tekhnologii liveness detection [Methods of strengthening the
user identification procedure based on liveness detection
technology],” Izvestiya SFedU. Engineering Sciences, vol. 14,
no. 2, pp. 212-225, May 2022. [Online]. Available:
https://doi.org/10.18522/2311-3103-2022-2-212-225

(2023, Jan) FIDO2 Web Authentication. [Online]. Available: https:
/Iwww.hypr.com/security-encyclopedia/fido2- web- authentication
A. M. Kadan and E. R. Kirichonok, “Authentication module
based on the protocol of zero-knowledge proof,” Selected
Papers of the V International Scientific and Practical Conference
“Distance Learning Technologies”, pp. 365-373, 2020. [Online].
Available: https://CEUR-WS.org/Vol-2914/paper34.pdf

[8] A. Pathak, T. Patil, S. Pawar, P. Raut, and S. Khairnar, “Secure
authentication using zero knowledge proof,” in 2021 Asian
Conference on Innovation in Technology (ASIANCON), 2021, pp.
1-8.

(2022, Nov) What is FIDO2 and Its Benefits. [On-
line]. Available: https://www.kensington.com/news/security-blog/
what-is-fido2-and-its-benefits//

(2023, Jan) FIDO Authentication with WebAuthn. [Online]. Avail-
able: https://authO.com/docs/secure/multi-factor-authentication/
fido-authentication- with-webauthn

(2023, Dec) Pros and Cons of FIDO authentication.
[Online]. Available: https://www.securemetric.com/2019/05/17/
pros-and-cons-of-fido-authentication/

V. Golenkov, N. Guliakina, and D. Shunkevich, Open technology
of ontological design, production and operation of semantically
compatible hybrid intelligent computer systems. BSUIR, Minsk,
2021.

(2022, Jan) Webauthn Specification.
https://w3c.github.io/webauthn/

(2023, Feb) Platform and Roaming Authenticators. [Online].
Available: https://developers.yubico.com/Developer_Program/
WebAuthn_Starter_Kit/Platform_and_Roaming_Authenticators.
html

(2022, Dec) Functional Certification. [Online]. Available:
https://fidoalliance.org/certification/functional-certification/

M. Kepkowski, “How not to handle keys: Timing attacks on
fido authenticator privacy,” 22nd Privacy Enhancing Technologies
Symposium, pp. 705-726, 2022.

(2023, Jan) FIDO2/WebAuthn privacy leak through a timing
attack using silent authentications. [Online]. Available: https:
//bugzilla.mozilla.org/show_bug.cgi?id=1730434

(2023, Jan) Stable Channel Update for Desktop.
[Online]. Available: https://chromereleases.googleblog.com/2021/
11/stable-channel-update-for-desktop.html
(2023, Feb) WebAuthn Introduction.
https://developers.yubico.com/WebAuthn/

[6

=

[7

—

[9

—

[10]
[11]

[12]

[13] [Online]. Available:

[14]

[15]

[16]
(17]
(18]

[19] [Online]. Available:

CemMaHTHYeCKHIT NOJXO0/] K NPOEKTHPOBAHUIO
TIPWJIOKEHNH ¢ GecniapoybHO ayTeHTHHMKAINEH 10
crnenudukamm FIDO2

Kunosuu A. A., JIybensko A. A,
Boiiremenko U. C., Auapymesuy A. A.

B pabote mpeasioxeH ceMaHTHYECKUil TIOIXO]] K MPOEKTUPO-
BaHUIO TIPUJIOKEHHH ¢ OecraposbHON ay TeHTU(UKALUEH 1o Crie-
uudpukanun FIDO2 Ha 0CHOBE UCTIONb30BAHUSI KOMIIOHEHTOB U
cpeacts texHosnornu OSTIS. [IpuseeHo popmanbHOE onmcaHme
cneruKanuii u kiovei 6ezonacHoct FIDO2.

[onydyenHble pe3ynbTaThl MO3BOJAT HOBBICUTH 3(PEKTUB-
HOCTh KOMIIOHEHTHOTO TMOJAXOJa K pa3paboTKe MPHIOKEHHUH C
OecrapoibHON ayTeHTH(UKALKEH, a Takke O0eCHevYnuTh BO3-
MOXHOCTb aBTOMAaTUYECKOM CUHXPOHU3AIMH Pa3JIMUHbIX BEPCUl
KOMITOHEHTOB, MOBBIIIAsI COBMECTUMOCTD M COIIACOBAHHOCTb.

Received 14.03.2023

316

https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2
https://www.cyberark.com/what-is/passwordless-authentication/
https://doi.org/10.32628/IJSRST21843
https://doi.org/10.18522/2311-3103-2022-2-212-225
https://www.hypr.com/security-encyclopedia/fido2-web-authentication
https://www.hypr.com/security-encyclopedia/fido2-web-authentication
https://CEUR-WS.org/Vol-2914/paper34.pdf
https://www.kensington.com/news/security-blog/what-is-fido2-and-its-benefits//
https://www.kensington.com/news/security-blog/what-is-fido2-and-its-benefits//
https://auth0.com/docs/secure/multi-factor-authentication/fido-authentication-with-webauthn
https://auth0.com/docs/secure/multi-factor-authentication/fido-authentication-with-webauthn
https://www.securemetric.com/2019/05/17/pros-and-cons-of-fido-authentication/
https://www.securemetric.com/2019/05/17/pros-and-cons-of-fido-authentication/
https://w3c.github.io/webauthn/
https://developers.yubico.com/Developer_Program/WebAuthn_Starter_Kit/Platform_and_Roaming_Authenticators.html
https://developers.yubico.com/Developer_Program/WebAuthn_Starter_Kit/Platform_and_Roaming_Authenticators.html
https://developers.yubico.com/Developer_Program/WebAuthn_Starter_Kit/Platform_and_Roaming_Authenticators.html
https://fidoalliance.org/certification/functional-certification/
https://bugzilla.mozilla.org/show_bug.cgi?id=1730434
https://bugzilla.mozilla.org/show_bug.cgi?id=1730434
https://chromereleases.googleblog.com/2021/11/stable-channel-update-for-desktop.html
https://chromereleases.googleblog.com/2021/11/stable-channel-update-for-desktop.html
https://developers.yubico.com/WebAuthn/

