
Zhang Bowen, Zhang Rongliang

COLLABORATIVE SOFTWARE

This article is proposed to analyze the development, current use and potential use of collaborative software. It

helps to understand in which particular situations, it might can applied.

Introduction

Collaborative software (or groupware) is
application software designed to help people
working on a common task to attain their goals,
which means it allow separate users to make parallel
operations towards the same project synchronously
or asynchronously, while preserving every saved
record by every user. This article contains �ve
sections. In the following section, background and
theory is brie�y introduced. Section III classi�es
and evaluates the di�erent categories of them, while
section IV presents speci�c instances. Section V is
the potential use of this Tech.

I. Backgoround

Thanks to division of labor, in the modern
society we don't have to do everything individually
in life, we only should focus on our own parts. And
Collaborative software has become an indispensable
tool in modern work and daily life. With the rise
of remote work, complex projects, and the need
for improved communication and transparency,
collaborative software has become essential for
teams to work together e�ectively. This process
takes decades and the development is shown as
follows:

1960s and 1970s: the collaborative software
is developed to support communication and
collaboration within research communities.

1980s: with the rise of PC and LANs, it
became more widely available and popular.

1990s and 2000s: web-based collaborative
software began to emerge.

Recent: cloud computing and mobile devices
have expanded the capabilities and accessibility.

Overall, the development of collaborative
software has been characterized by a continual
evolution of features and capabilities, driven by
advances in technology and changing user needs.

II. Theory

There are several theories and techniques that
can be used to avoid shared resource con�icts in
collaborative software. Here are a few examples:

Operational Transformation (OT): OT is a
technique that allows multiple users to edit the
same document or resource simultaneously without
con�icts. It works by tracking each user's changes
to the document and transforming those changes in
real-time to ensure that they do not con�ict with
other users' changes. OT ensures that all users see

the same version of the document, and that con�icts
are resolved automatically as users make changes.

Con�ict-free Replicated Data Types (CRDTs):
CRDTs are a class of data structures that allow
multiple users to edit the same resource without
con�icts. CRDTs work by ensuring that all updates
to the resource are commutative, meaning that they
can be applied in any order without changing the
result. This ensures that all users see the same
version of the resource, even if they are working
on di�erent parts of it simultaneously.

Locking and Version Control: Locking and
version control are techniques that allow users to
prevent con�icts by controlling access to the shared
resource. Locking allows users to "lock"speci�c
parts of the resource, preventing other users from
editing them. Version control allows users to track
changes to the resource over time, making it easier
to identify and resolve con�icts if they do arise.

Overall, the theory behind avoiding shared
resource con�icts in collaborative software is based
on the idea of ensuring that all users see the same
version of the resource, regardless of who is editing
it at any given time. Techniques such as operational
transformation, con�ict-free replicated data types,
locking, and version control are used to ensure that
con�icts are minimized and resolved quickly and
e�ciently when they do occur.

III. Instances

Collaborative software can be divided
into di�erent types based on their features
and functionality. Some of the most common
types of collaborative software include
conferencing software, coordination software, and
communication software. They can also be divided
into synchronous (real-time) and asynchronous
(non-real-time) software. Real-time collaborative
software allows users to work together at the
same time and includes audio-video communication
systems and chat systems. Non-real-time software
enables users to accomplish tasks together at
di�erent times and includes email, mailing lists,
group calendars, etc.

Two examples about version control and real
time collaborative software instances are discussed.
The �rst one is Git which mainly used as a
document version control, it can bring several
bene�ts, including:

Version Control: Git provides a complete
history of changes made to a document, allowing
you to track changes over time, and easily revert to
previous versions if needed.

65



Con�ict Resolution: Git provides tools
for resolving con�icts that may arise when
multiple users are working on the same document
simultaneously. This ensures that changes made
by each user are correctly integrated into the �nal
version of the document.

Backup and Restore: Git allows you to create
backups of your documents, making it easy to
restore documents to previous versions in case of
accidental deletion or loss of data.

Transparency: Git provides transparency in
document version control, enabling you to track
who made changes to the document, when changes
were made, and why changes were made. This can
help maintain accountability and transparency in
collaborative document projects.

Git can bring many bene�ts to document
version control, including version control,
collaboration, con�ict resolution, backup and
restore, and transparency. It is a powerful tool
that can be used to manage documents e�ciently
and e�ectively.

The second one is Live share, one of the
most commonly used scenarios for Visual Studio
Live Share is "pair programming": two or more
developers, working together on a shared task,
with the goal of sharing knowledge, increasing
team cohesion, and potentially, product quality.
The exact look-and-feel of pair programming can
di�er signi�cantly between teams and situations.
Live Share enables a form of pair programming
that allows developers to work on a shared goal,
without removing their individual autonomy or
environment preferences. This can lead to increased
productivity, better code quality, and enhanced
knowledge sharing.

IV. Potential use

In the future, collaborative software could be
applied to remote surgery, enabling remote surgeons

to collaborate with on-site medical teams in real-
time. This could be particularly useful in situations
where local medical expertise is limited, and remote
specialists can provide valuable assistance.

Collaborative software could allow remote
surgeons to access medical images and patient
data in real-time, enabling them to provide
guidance and advice to on-site medical teams.
Collaborative software could also enable remote
surgeons to collaborate with each other, sharing
expertise and experience, and working together
to solve complex medical problems. This could
be particularly valuable in situations where rare
or complex medical conditions require specialized
expertise that may be available only in a limited
number of locations.

To ensure the safety and e�ectiveness
of remote surgical collaboration, advanced
communication technologies, such as high-de�nition
video and audio, and secure data transfer protocols,
would need to be employed. Additionally, the
software would need to be designed with strict
security and privacy protocols to protect patient
data and ensure compliance with regulatory
requirements.

Overall, collaborative software might
revolutionize the �eld of remote surgery, enabling
remote surgeons to collaborate with on-site medical
teams in real-time, improving patient outcomes,
and expanding access to medical expertise.

V. Conclusion

Collaborative software can be applied in many
�elds to deal with complex and remote projects
with high transparency, high e�ciency, and more
interaction. At the same time the collaborative
software has been developing with a continual
evolution of features and capabilities, driven by
advances in technology and changing user needs.

Zhang Bowen, an undergraduate student of department of information technologies in automated
systems, BSUIR, zhangbowen800@outlook.com

Zhang Rongliang, an undergraduate student of department of information technologies in automated
systems, BSUIR, ZhangRL456@outlook.com

Scienti�c supervisor: Tro�movich Alexey Fyodorovich, Deputy Dean of FITU, Senior Lecturer of
ITAS Department, BSUIR, tro�maf@bsuir.by

66


