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PREFACE 

 

The technical manual was composed in accordance with Electric Circuit 

Theory syllabus. The part 2 includes the AC circuit analyses with using complex 

numbers and phasor diagrams. Series and parallel resonance are considered.  

For every topic the solutions of the tasks were included that should help clarify 

the approach and gain a better understanding. The part 2 includes further problems 

with answers at the end for independent solution. 

The technical manual is designed for use by international students getting an 

education in English. 
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1. INTRODUCTION TO AC CIRCUIT ANALYSIS 

 

An alternating voltage (AC voltage) is one that periodically changes polarity, 

and an alternating current (AC current) is an electric current that periodically changes 

direction.  

The variation of an AC voltage or current versus time is called its waveform. 

 

1.1. Sinusoidal AC Voltage and Current 

 

Expressions for the AC sinusoidal voltage and current are: 

 

( ) sin(ω ψ );

( ) sin(ω ψ ),

m u

m i

v t V t

i t I t

 

 
 

 

where v(t) and i(t) – instantaneous voltage and  instantaneous current values that 

are the values of voltage and current at any instant of time.  

Vm, Im – the largest value reached in a half cycle is called the maximum value 

or the amplitude of the waveform. 

ω – angular velocity measured in radians per second, related to the frequency f 

by ω = 2f. 

A sine wave or sinusoidal АС waveform is shown in Fig. 1.1. 

 

 
 

Fig. 1.1. Instantaneous values: v(t) and i(t) 
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Starting at zero, the voltage increases to a positive maximum, decreases to 

zero, changes polarity, increases to a negative maximum, then returns again to zero. 

One complete variation is called a cycle. Period (T) or the periodic time is the 

time of one cycle. 

The number of complete cycles completed in one second is called the 

frequency (f) and is measured in cycles per second, which is called the Hertz (Hz): 

 

 

 

 

The time axis may be converted into an angle axis simply by multiplying by ω. 

 

SUMMARY: 

 the sine wave is a time-varying periodic waveform; 

 alternating current changes direction in response to changes in the polarity of 

the source voltage; 

 one cycle of an alternating sine wave consists of a positive alternation and a 

negative alternation; 

 full cycle of a sine wave is 360°, or 2π radians. A half-cycle is 180°, or π 

radian. A quarter-cycle is 90°, or π/2 radians. 

 

SELF-ASSESSMENT TEST: 

1. Describe one cycle of a sine wave. 

2. How many maximum points does a sine wave have during one cycle?  

4. How is the period of a sine wave measured?  

5. Define frequency, and state its unit. 

6. Determine f when T = 5 µs. 

7. Determine T when f = 110 Hz. 

 

1.2 Phase Shifts: ψv and ψi 

 

The phase of a sine wave is an angular measurement that shows the position of 

that sine wave relative to a reference. Fig. 1.1 shows a voltage sine wave that may be 

used as the reference.  

If a sine wave does not pass through zero at t = 0 sec as in Fig. 1.2, it has a 

phase shift. Waveforms may be shifted to the left (see Fig. 1.2, a) or to the right (see 

Fig. 1.2, b).  

1
Hz.f

T

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a                                                                                   b 

Fig. 1.2. Waveforms have a phase shift: 

a – positive phase shift; b – negative phase shift 

 

For a waveform shifted left as in (a): ( ) sin(ω ψ )m vv t V t  . 

For a waveform shifted right as in (b): ( ) sin(ω ψ )m vv t V t  . 

 

1.3. Phase Difference: φ 

 

Phase difference refers to the angular displacement between different 

waveforms of the same frequency: 

 

φ = ψv – ψi. 

 

View the following figures: 

 

 
            a                                            b                                        c 

 

Fig. 1.3. The angular displacement between two sine waves: 

a – in phase; b – current leads; c – current lags 

 

For Fig. 1.3, a: if the angular displacement is 0° the waveforms are said to be in 

phase: ψv = ψi and therefore φ = 0. For Fig. 1.3, b: the current waveform leads the 

voltage one: ψv < ψi  so φ = ψv – ψi < 0. For Fig. 1.3, с: the voltage waveform 

leads the current one: ψv  > ψi  so φ = ψv – ψi  > 0.  

In other words, in cases «b» and «c» current and voltage are out of phase. 
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Example 1.1 

Four sinusoidal alternating quantities are represented by: 

a) i(t) = 5sinωt A;                 b) i(t) = 15sin(ωt – 30°) A;  

с) v(t) = 10sin(ωt + 60°) V;  d) v(t) = 5sin2ωt V,  

where  ω = 314 rad/sec. 

1. Comment on the relative magnitudes and frequencies of these quantities. 

2. Determine the frequency of quantity «d» and its instantaneous value at  

t = 0: d(0). 

3. State the period of quantity «b» and its instantaneous value at t = 0: i(0). 

4. State the phase relationship of: 

 «a» with respect to «b»; 

 «a» with respect to «c»; 

 «b» with respect to «c». 

Solution: 

1. The coefficient of the sine function represents the magnitude of the quantity: 

a) Im = 5 A; b) Im = 15 A; c) Vm = 10 V; d) Vm = 5 V. 

The frequency of quantities «a», «b» and «c» is the same 
ω

,
2π

f  whereas that 

of quantity «d» is double at 
2ω

.
2π

f   

2. The frequency of «d» is (2∙314)/(2∙3,14) = 100 Hz. 

3. The period T of quantity «b» is the reciprocal of the frequency: 

 

2π 2 3,14 2
0,02 sec,

ω 314 100
T


   

 
 

instantaneous  current value at t = 0: i(0) = 15sin(ω · 0 – 30°) = 15sin(–30°) = –7,5 A. 

4. a) «a» leads «b» by 30°; b) «a» lags «c» by 60°;  

c) φbc = ψb – ψc = – 30° – 60° = –90°. 

 

Example 1.2 

Find: the phase relationship between i(t) = –4sin(ωt + 50°), A and v(t) =  

= 120sin(ωt – 60°),V. 

Solution: 

Current i(t)= –4sin(ωt + 50°) has phase shift ψi = 50°, which can be 

represented as ψi = 50° – 180° = –130°. We can rewrite the current in such way: 

i(t) = 4sin(ωt – 130°). 
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The voltage has phase shift ψv  = – 60°.       

The phase difference φ = ψv – ψi = – 60°–(–130°) = 70° and voltage leads. 

 

1.4. RMS Value (the Root Mean Square Value) 

 

The term RMS stands for root mean square.  The RMS value represents the 

ability of the waveform to do useful work. For this reason RMS value is often called 

effective value. The concept of effective value is an important one; in practice, most 

ac voltages and currents are expressed as effective values.   

The RMS value of sinusoidal current is actually a measure of the heating effect 

of the sine wave. The RMS value of sinusoidal current is equal to the dc current that 

produces the same amount of heat in a resistance as does the sinusoidal current.  

The effective value of AC current can be found by using the following 

equation 

 

2

0

1
( )

T
I i t dt

T
  . (1.1)

 

 

Note: The RMS value of sinusoidal current, voltage or EMF will be 

represented by I, V and E. These symbols are the same as those used for DC current, 

voltage or EMF. 

Find the RMS value of sinusoidal current using formula (1.1): 

 

2π 2π2 2 2π
00 0

1 1 1 cos2ω 1
sin (ω ) | 0 0,707 ,

2π 2π 2 4π 2

m
m m m m

It
I I t dt I dt I t I


       

 

or 

0,707 .
2

m
m

I
I I   (1.2)

 

 

Effective values for voltage are found in the same way: 

 

0,707 ;
2

0,707 .
2

m
m

m
m

V
V V

E
E E

 

 

 

 

Effective values for sinusoidal waveforms depend only on magnitude.
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To obtain peak values from effective values, rewrite equations (1.2). 

Thus 

 

2 1,414 ;

2 1,414 ;

2 1,414 .

m

m

m

I I I

V V V

E I E

 

 

 

 (1.3)
 

 

Example 1.3 

Determine the effective values of: 

a) i(t) = 10sin ωt A; 

b) v(t) = 50sin(ωt – 20°) V. 

Solution: 

a) I = 0,707∙10 = 7,07 A; 

b) V = 0,707∙50 = 35,35 V. 

 

SUMMARY: 

 amplitude is the maximum value of a voltage or current; 

 phase angle is the difference in degrees or radians between a given sine 

wave and a reference sine wave; 

 the RMS value is the value of a sinusoidal voltage (or current) that indicates 

its heating effect, also known as the effective value. It is equal to 0,707 times the 

peak value.  

 

SELF-ASSESSMENT TEST: 

1. A sinusoidal current has a period of  25 ms and an amplitude of 0,8 A. Write 

its equation in the form of i = Imsin ωt, with numerical values for Im and ω. 

2. If phase difference is a positive value, does a current lead or lag? 

3. If a voltage and a current are in phase what is the phase difference between 

them? 

4. Determine equations for sine waves with the following: 

a) Vm = 170 V, f  = 60 Hz;  b) Im = 40 mA, T  = 10 ms; 

c) T = 120 ms, v = 10 V at t = 12 ms. 

5. Determine the effective values of each of the following: 

a) v =100 sin(ωt) V;  b) i =8 sin(377t) A; 

c) v = 40 sin(ωt + 40°) V; d) i =120 cos ωt mA. 
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2. RESPONSE OF BASIC R, L AND C ELEMENTS TO A SINUSOIDAL 

VOLTAGE OR CURRENT 

 

R, L and C circuit elements each have quite different electrical properties. 

Resistance, for example, opposes current, while inductance opposes changes in 

current, and capacitance opposes changes in voltage. These differences result in quite 

different voltage – current relationships. 

 

2.1. Resistance and Sinusoidal AC 

 

In a purely resistive circuit current is directly proportional to voltage. 

  

R

v(t)

i(t)

 
 

Fig. 2.1. Resistance 

 

The voltage is represented by 

 

( ) sinω .mv t V t  

 

Define i(t) using Ohm’s law 

 

sinω( )
( ) sinω ,m

m

V tv t
i t I t

R R
  

 

where  and .m
m m m

V
I V I R

R
   

 

Similarly for RMS values 

 

and
V

I V IR
R

  . 
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Peak and RMS values are related by Ohm’s Law. Comparison of formulas for 

v(t) and i(t) shows that phase difference between voltage and current is equal to 

zero: 

 

                                                   φ = ψv – ψi = 0.             (1.4) 

 

Conclusion: For purely resistive element, the voltage across and the current 

through the element are in phase. It means that current variations follow voltage 

variations, reaching their peak when voltage reaches its peak, changing direction 

when voltage changes polarity, and so on (Fig. 2.2). 

 

 
 

Fig. 2.2. The voltage across and the current through the resistor are in phase 

 

Example 2.1 

For the circuit of Fig. 2.1 find: vR(t) if R = 5 Ω and i(t) = 0,5sin (ωt – 25°) A. 

Solution: vR(t) = Ri(t) = 5∙0,5sin (ωt – 25°) = 2,5sin (ωt – 25°) V. 

 

2.2. Inductance and Sinusoidal AC 

 

Current through inductor is equal to 

 

                 ( ) sinωmi t I t . (1.5) 
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The relationship between voltage across inductor (Fig. 2.3) and current through it is 

 

L
L

di
v L

dt
 . 

(1.6) 

  

   

Li(t)

( )
L

v t
. 

 

 

Fig. 2.3. Inductance 

 

Substitution the expression (1.5) into the formula (1.6) gives: 

 

sinω
ω cosω ω sin(ω 90 )mL

L m m

dI tdi
v L L LI t LI t

dt dt
      

 

or 

 

sin(ω 90 )L mv V t  . (1.7)
 

 

where  Vm = ωLIm  – peak value of voltage; V = ωLI – RMS value of voltage. 

The quantity ωL, called the inductive reactance (from the word reaction) of 

an inductor, is symbolically represented by XL and is measured in ohms, that is, 

 

XL = ωL Ω.  (1.8)
 

 

Inductive reactance is the opposition to the flow of current. Inductive 

reactance does not dissipate electrical energy. In this element the continual 

interchange of energy between the source and magnetic field of an inductor has place. 

The reciprocal of inductive reactance is called inductive conductance, that is, 

 

1 1
S.

ω
L

L

b
X L

    (1.9)
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From comparison of formulas (1.5) and (1.7) follows that phase difference 

between voltage across inductor and current through it is 

 

φ = ψv – ψi = 90°. 

 

For a purely inductive circuit, current lags voltage by 90°. Alternatively, 

Voltage leads current by 90° (Fig. 2.4). 

 

 
 

Fig. 2.4. Voltage leads current by 90° 

 

If a phase angle is included in the sinusoidal expression for iL, such as 

 

( ) sin(ω ψ )m ii t I t  , 

 

then           

 

sin(ω ψ 90 )L m iv V t   , 

 

where  ψv = ψi  + 90°. 

 

Example 2.2 

Given: The voltage across a 0,2 H inductance is vL = 100sin(400t  + 70°) V. 

Determine  iL. 
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Solution:  

ω = 400 rad/s. Therefore, XL = ωL = 400 ∙ 0,2 = 80 Ω. 

 

100
1,25 A

80

m
m

V
I

R
   . 

 

The current lags the voltage by 90°. Therefore i(t) = 1,25sin(ωt – 20°) A. 

Variation of Inductive Reactance with Frequency. Since XL = ωL = 2πfL, 

inductive reactance is directly proportional to frequency (Fig. 2.5). Thus, if 

frequency is doubled, reactance doubles, while if frequency is halved, reactance 

halves, and so on. In addition, XL is directly proportional to inductance. Thus, if 

inductance is doubled, XL is doubled, and so on.  

 

 
 

Fig. 2.5. Inductive reactance versus angular velocity 

 

Note, that at f = 0, X L= 2π∙0 = 0 Ω. This means that inductance looks like a 

short circuit to DC (Fig. 2.6). 

 

 
 

Fig. 2.6. Short circuit 

 

2.3. Capacitance and Sinusoidal AC 

 

Voltage across capacitor is equal to  

 

( ) sinωmv t V t .  (1.10)
 

 

The fundamental equation relating the voltage across a capacitor (Fig. 2.7) to the 

current is: 
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                      C
C

dv
i C

dt
 .  

(1.11) 

 

 

 

( )Cv t

Ci(t)

 
 

Fig. 2.7. Capacitance 

 

Substitute expression (1.10) into formula (1.11) and obtain: 

 

sinω
ω cosω ω sin(ω 90 )C m

C m m

dv dV t
i C C CV t CV t

dt dt
       

 

or     

 

          sin(ω 90 )L mi I t  ,
 

  (1.12)
 

 

where  Im = ωCVm – peak current value through capacitor; I = ωCV – RMS current 

value. 

The quantity ωC, called the capacitive conductance, is symbolically 

represented by bC  and it is measured in Siemens, that is,  

 

                          bC = ωC  S.   (1.13)
 

 

The reciprocal of the capacitive conductances is called capacitive reactance: 

 

                        
1

.
ω

CX
C

     (1.14)
 

 

Capacitive reactance is the opposition to the flow of charge. Capacitive 

reactance does not dissipate energy in any form. In this element the continual 

interchange of energy between the source and the electric field of capacitor has place.  

From comparison formulas (1.10) and (1.12) follows that phase difference 

between voltage across capacitor and current through it is 

 

φ = ψv – ψi = – 90°. 
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In a purely capacitive circuit, current leads voltage by 90° (Fig. 2.8). 

Alternatively, Voltage lags current by 90°. Current leads voltage by 90°.  
 

 
 

Fig. 2.8. Current leads voltage by 90° 

 

If a phase angle is included in the sinusoidal expression for vC, such as 

 

( ) sin(ω ψ )C m vv t V t  , 

 

then   

 

sin(ω ψ 90 )C m vi I t   , 

 

where  ψi = ψv + 90°. 

 

Example 2.3 

The voltage across a 10 mF capacitance is vC = 100sin(ωt – 40°) V and f = 1000 Hz.  

Determine iC. 

Solution: 

 

ω = 2πf  = 2π∙1000 = 6283 rad/s; 

6

1 1
15,92

ω 6283 10 10
CX

C 
   

 
; 

100
6,28 A

15,92

m
m

C

V
I

X
   . 
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Since current leads voltage by 90°, iC(t) = 6.28sin(6283t + 50°) A. 

Variation of Capacitive Reactance with Frequency. Since XC = 1/ωC =  

= 1/2πfC, the сapacitive reactance varies inversely with frequency. This means that 

the higher the frequency, the lower the reactance, and vice versa (Fig. 2.9).  

 

 
 

Fig. 2.9. Capacitive reactance versus angular velocity 

 

Note: That at f = 0 (i. e., DC), XC  is infinite. 

This means that capacitance looks like an open circuit to DC (Fig. 2.10). 

 

 
 

Fig. 2.10. Open circuit 

 

Note: That XC is also inversely proportional to capacitance. Thus, if 

capacitance is doubled, XC is halved, and so on. 

Fig. 2.11 illustrates effect of high and low frequencies on the circuit model of 

an inductor and a capacitor. 

 

 

Fig. 2.11. Effect of high and low frequencies on the circuit model  

of an inductor and a capacitor 

         Element              f = 0 Hz f = very high frequencies 
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SUMMARY: 

 Ohm’s Law is true relationship between instantaneous voltage across resistor 

and instantaneous current through it; 

 voltage across resistor and current in it are in phase; 

 voltage leads current by 90° in an inductor; 

 inductive reactance, XL, is directly proportional to frequency and inductance; 

 the true power in an inductor is zero; that is, no energy is lost in an ideal 

inductor due to conversion to heat, only in its winding resistance; 

 the amount of induced voltage is directly proportional to the inductance and 

to the rate of change in current; 

 energy is stored by an inductor in its magnetic field; 

 current leads voltage by 90° in a capacitor; 

 capacitive reactance, XC, is inversely proportional to frequency and 

capacitance; 

 the true power in a capacitor is zero; that is, no energy is lost in an ideal 

capacitor due to conversion to heat. 

 

SELF-ASSESSMENT TEST: 

1. The voltage across a resistor is indicated. Find the sinusoidal expression for 

the current i(t) if the resistor is 10 Ω: 

a) vR(t) = 100sin 377t V; 

b) vR(t) = 25sin (377t +60°) V. 

2. The current through a 0.1 H coil is provided. Find the sinusoidal expression 

for the voltage across the coil: 

a) i(t) = 10sin 377t A. 

b) i(t)= 7sin (377t – 70°) A. 

3. The current through a 100 µF capacitor is given. Find the sinusoidal 

expression for the voltage across the capacitor: 

a) i(t) = 40sin 500t A. 

b) i(t) = 12sin (377t +70°) A. 

4. Give the relationship between voltage and current: 

a) In a purely resistive circuit; 

b) In a purely inductive circuit; 

c) In a purely capacitive circuit. 

5. State the phase relationship between current and voltage in a resistor. 

6. State the phase relationship between current and voltage in an inductor. 

7. State the phase relationship between current and voltage in a capacitor. 

8. Define inductive and capacitive reactance versus frequency. 
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3. COMPLEX NUMBER IN AC ANALYSIS 

 

3.1. Introduction to Phasors 

 

A phasor is a rotating vector whose projection on a vertical axis can be used to 

represent sinusoidally varying quantities. 

 

 
a                                                         b 

 

Fig. 3.1. Rotating anticlockwise vector and sine wave: 

a – phasor; b – resulting sine wave 

 

Fig. 3.1, a illustrates rotating anticlockwise vector or phasor. The vertical 

projection of the phasor (indicated in dotted red) is Vm sinα. Now, assume that the 

phasor rotates at angular velocity of ω rad/s. Then, α = ωt, and its vertical projection 

is Vmsin ωt (Fig. 3.1, b). If we designate this projection as v, we get v  = Vmsin ωt, 

which is the familiar sinusoidal voltage equation. 

 

Example 3.1 

Given: the sinusoidal voltage is v(t) = 35sinωt V. Draw the phasor that 

represents this waveform. 

Solution:  the phasor of Fig. 3.2 has length of 35 V in any scale. As voltage 

v(t) has zero phase shift, the phasor is drawn at its t = 0 position with zero degrees. 
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Fig. 3.2. Sinusoidal current and it’s phasor representation 

 

Example 3.2 

Given: the sinusoidal current is i(t) = 1,5sin (ωt + 45°) A. Draw the phasor that 

represents this sinusoidal current. 

Solution: the phasor of  Fig. 3.3 has length of 1,5 A in any scale. So its phase 

shift equal to 45°, the phasor is drawn at its t = 0 position with angle 45°. 

 

 
 

Fig. 3.3. Sinusoidal current and it’s phasor representation 

 

Conclusion: A sinusoidal waveform can be created by plotting the vertical 

projection of a phasor that rotates in the counterclockwise direction at constant 

angular velocity ω.  

Note: Phasors apply only to sinusoidal waveforms. Phasor algebra for 

sinusoidal quantities is applicable only for waveforms having the same frequency. 
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3.2. Representing AC Voltages and Currents by Complex Numbers 

 

Previously it was shown that AC voltages and currents may be represented as 

phasors. Since phasors have magnitude and angle, they may be represented as 

complex numbers. Let consider the current through the load of Fig. 3.4, a. Its phasor 

equivalent (b) has magnitude Im and angle ψi. Therefore it may be viewed as the 

complex number. 

 

 
                                   a                                           b   

 

Fig. 3.4. Sinusoidal current and it’s phasor representation 

 

Representation of a sinusoidal current as a complex number. From this 

viewpoint, the sinusoidal current i(t) = 2,5sin(ωt + 30°) of Fig. 3.5, a can be 

represented by its phasor equivalent, 302,5 Aj

mI e  , as in (b). 

 

 
 

                                 a                                                          b 

 

Fig. 3.5. Sinusoidal current and it’s phasor representation 
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We can take the advantage of this equivalence: 

 rather than show current (or voltage) as a time – varying quantity i(t)  

(or v(t)) that we later convert to a phasor, we can represent this current (or voltage) by 

its phasor equivalent right from the start; 

 by replacing the time function i(t) or v(t) with its phasor equivalent I


 or V


, we 

have transformed the current or the voltage from the time domain to the phasor domain. 

 

SUMMARY: 

 a complex number represents a phasor quantity; 

 a phasor is effective technique for representation of sinusoidal quantities; 

 a phasor length is equal to amplitude or RMS of a sinusoidal function; 

 a phasor angle position is equal to phase shift of a sinusoidal function. 

 

SELF-ASSESSMENT TEST: 

1. What are the two characteristics of a quantity indicated by a complex 

number? 

2. Write the phasor interpretation for the following sinusoidal quantities: 

a) i(t) = 3,84sinωt A; b) v(t) = 42sin(ωt + 38°) V;  

c) v(t) = 95sin(ωt – 120°) V; d) e(t) = 220sin(ωt + 115°) V. 

 

4. OHM’S LAW IN COMPLEX FORM 

 

Simple AC circuits may be analysed by using complex numbers and phasor 

diagrams. 

The table 4.1 illustrates Ohm’s Law for time – varying quantities i(t) or v(t), 

their phasor representation and Ohm’s Law in complex notation for pure resistive, 

pure inductive and pure capacitive circuits. 

 

Table 4.1 

A passive part of 

the circuit
 

A time – varying 

quantity i(t) or v(t)
 

Phasor 

diagrams 

Ohm’s Law in 

complex form
 

1 2 3 4 

Pure resistive 

circuit 

R

v(t)

i(t)

 

v(t) = Vmsinωt; 

( )
sinωR m

v t
i I t

R
   

 

 

ψ

ψ

;

;

i

i

j

j

R

I Ie

V RIe RI




 
 

RV IR


  
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1 2 3 4 

Pure inductive 

circuit 

Li(t)

( )
L

v t

 

( ) sinω ;mi t I t  

sin(ω 90 )

L
L

m

di
v L

dt

V t

 

 

 

 

ψ

(ψ 90 )

ψ 90

;

ω

ω

ω ;

i

i

i

j

j

L

j j

I Ie

V LIe

LIe e

j LI



 





 

 



 

L LV IjX


  

Pure capacitive 

circuit 

( )Cv t

Ci(t)

 

( ) sinω ;mv t v t  

=ω sin(ω 90 )

C
C

m

dv
i C

dt

CV t

 

 

 

 

ψ

(ψ 90 )

ψ 90

;

1

ω

1

ω

1
;

ω

i

i

i

j

j

C

j j

I Ie

V Ie
C

Ie e
C

j I
C



 

 



 

 

 

 

( )C СV I jX


   

 

Example 4.1 

Given: i(t) = 2,3sin (314t – 35°) A; XL = 55 Ω. 

Calculate the complex voltage across resistor using Ohm’s Law in complex 

notation. Write answer in the time domain. 

Solution: The current amplitude in complex form is 
352.3 j

mI e


  . Apply 

Ohm’s Law: 

 

35 35 90 ( 35 90 ) 552,3 55 2,3 55 126,5 126,5 V.j j j j j

m m LV I jX e j e e e e
 

            

 

The voltage in the time domain is v(t) = 126,5sin(314t + 55°) V. 

The Fig. 4.1 below demonstrates the phasor diagram for voltage and current. 
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Fig. 4.1. Phase diagram 

 

Example 4.2 

Given: v(t) = 380sin (314t – 27°) V; XC = 38 Ω. 

Calculate the complex current through capacitor using Ohm’s Law in complex 

notation. Write answer in the time domain. 

Solution: The voltage amplitude in complex form is 
27380 j

mV e


  . Apply 

Ohm’s Law: 
 

27 27
( 27 90 ) 63

90

380 380
10 10 A.

38 38

j j
j jm

m j
C

V e e
I e e

jX j e


 

 


    
 

 

 

The current in the time domain is i(t) = 10sin(314t + 63°) A. 

Fig. 4.2 demonstrates the phasor diagram of voltage and current. 

 
Fig. 4.2. Phasor diagram of voltage and current 

 

SUMMARY: 

 an angle between voltage and current on the phasor diagram for pure 

resistive element is zero (voltage and current phasors have the same directions), that 

represents zero phase difference in a pure resistive circuit (voltage and current are in 

phase); 
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 an angle between voltage and current on the phasor diagram for pure 

inductive element is equal to 90°, that represents phase difference of 90° for a pure 

inductive circuit (in terms of electrical circuits: voltage leads current by 90°); 

 an angle between voltage and current on the phasor diagram for pure 

capacitive element is equal to (– 90°), that represents phase difference of – 90° for a 

pure capacitive circuit (in terms of electrical circuits: voltage lags current by 90°). 

 

SELF-ASSESSMENT TEST: 

1. Voltage across the pure resistive element R = 5,7 Ω is v(t) = 17,1sin(ωt +  

+ 30°) V. Define current, using Ohm’s Law in complex form. What is the current 

phase shift? 

2. Current through the pure inductive element  L = 0,1 H is i(t) = 17,1sin(50t  – 

– 15°) A. Define complex voltage across inductor and draw the vector diagram. 

3. Current through the pure capacitive element C = 0,1 pF is i(t) = 14,1sin(50t – 

– 45°) A. Define complex voltage across capacitor and draw the vector diagram. 

4. Define complex voltage across inductor and draw the vector diagram if the 

current i(t) = 17,1sin(100t  + 75°) A.  

 

5. IMPEDANCE CONCEPT 

 

Practically each circuit may be represented by its impedance.  Impedance is 

the opposition that circuit element presents to current in phasor domain. The symbol 

for impedance is the letter Z and the unit is the ohm (Ω). 

In general, the impedance of the element is the ratio of voltage phasor across it 

to its current phasor: 

 

Ohm.
V

Z
I

  (5.1) 

 

Formula (5.1) presents Ohm’s Law in complex notation for AC circuit. 

Since voltage and current in expression (5.2) are complex, Ż is also complex: 

 
ψ

(ψ ψ ) φ

ψ
.

v

v i

i

j
j j

j

V Ve
Z ze ze

I Ie


      (5.2) 

 

where  φ – is phase difference between voltage and current. 

Impedance for the basic circuit elements R, L, C: 
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ŻR = R; 

ŻL = jωL; 

ŻC = – j(1/ωC). 

 

Note: Although Ż is a complex number, it is not a phasor since it does not 

represent a sin wave quantity. 

 

SUMMARY: 

 impedance is the opposition to current flow in an AC circuit; 

 impedance is complex number, but is not the sinusoidal quantity; 

 the argument of impedance phasor is phase shift between voltage across any 

element and current through it. 

 

SELF-ASSESSMENT TEST: 

1. Formulate the general formula for Ohm’s Law for AC circuit in complex 

notation. 

2. Express impedance in complex form. 

3. Call impedance for purely resistive, purely inductive and purely capacitive 

elements. 

 

6. AC SERIES AND PARALLEL CIRCUITS 

 

6.1. Series Configuration. The KVL in the Complex Form 

 

We can apply KVL for series connection of  resistor, inductor and capacitor, 

since the overall properties of series AC circuits  (Fig. 6.1) are the same as those for 

dc circuits: 

 

t R L CV V V V   . (6.1) 

 

 

 

 

 

 

 

Fig. 6.1. The series R-L-C circuit 
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After substitution Ohm’s Law in complex form for resistor, inductor and 

capacitor into expression 6.1 we obtain the following formula: 

 

( ) [ ] ,t L C L CV I R I jX I jX I R jX jX            (6.2) 

 

where expression in square brackets (see formula (6.2)) Ż = R + jXL – jXC = R + j(XL –  

– XC) is called the total impedance of series circuit; 

the term X = XL  – XC  is called the total reactance. 

Thus, the total impedance    

 

Ż = R ±  jX .  (6.3) 

 

Formula (6.3) represents the total impedance in rectangular form, in that the 

real part R is the total of all resistance looking into the input terminal of the circuit; 

the imaginary part X is the difference between the total inductive and capacitive 

reactance. 

Fig. 6.2 illustrates the phasor diagram for series R-L-C circuit.  

 

 
 

Fig. 6.2. The phasor diagram for series R-L-C circuit 

 

 

The total reactance will be positive (X > 0) if the inductive reactance is greater 

than the capacitive reactance XL  > XC; 

The total reactance will be negative(X < 0) if the inductive reactance is less 

than the capacitive reactance XL < XC. 

 

Note: In an AC series circuit the current is common to each element of one and 

therefore it is taken as a reference phasor. 
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The phasor diagram indicates that current İ is in phase with the voltage across 

the resistor, lags the voltage across the inductor by 90° and leads the voltage across 

the capacitor by 90°. 

The hatched area on Fig. 6.2 is called voltage triangle.  

If each side of the voltage triangle will be divided by the current İ the diagram 

of Fig. 6.3 is obtained, which is called an impedance triangle. 

 

 
 

Fig. 6.3. An impedance triangle 

 

The angle φ (Fig. 6.3) is the phase difference between the input voltage and 

current. From geometry of the impedance triangle it is seen the following 

relationships: 

 

2 2;

cosφ
;

sinφ

φ arctg .

Z R X

R Z

X Z

X

R

 

 


 



 
(6.4) 

 

Example 6.1 

Given: for series R-L-C circuit: R = 5 Ω, XL = 17 Ω, XC = 7 Ω.  

a) Express the total impedance.  

b) Determine its magnitude and phase angle.  

Solution: 

a)  Ż = R + jXL – jXC = 5 + j17 – j7 = 5 + j10 Ω. This expression is the total 

impedance in the rectangular form. 

b)  To determining its magnitude it is possible to convert complex number from 

rectangular to polar form or use formulas (6.4): 

 
2 2 2 25 10 25 100 11,18Z R X        . 
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Then find phase angle φ: 

 

10
φ arctg arctg arctg2 63,43

5

X

R
     . 

 

Note the total impedance in polar form: 

 

63,4311,18 jZ e  . 

 

Example 6.2 

Given: R = 2,5 Ω; XL = 7,5 Ω; İ = 3,2e–j40° A. 

Find: 𝑉̇t; 𝑉̇R; 𝑉̇L for the circuit below. 

 

 

Draw phasor diagram. 

Solution: 

1. Determine the total resistance: Ż  = R + jXL = 2,5 + j7,5 = 7,9ej71,6°Ω. 

2. Using Ohm’s Law in complex notation define: 

a) total voltage across the circuit: 

 
40 71.6 31,6  3,2 7,9  25,28 V;j j j

tV IZ e e e       

 

b) voltage across resistor: 

 
– 40 – 403,2 2,5  8 V; j j

RV IR e e     

 

c) voltage across inductor: 

 
– 40 – 40 90 503,2 7,5 3,2 7,5 24 V.j j j j

L LV IjX e j e e e         

 

 



32 

3. The phasor diagram is shown below (Fig. 6.4). 

 

 
 

Fig. 6.4. The phasor diagram 

 

SUMMARY: 

 for AC series circuit the KVL is correctly written in complex notation; 

 the total impedance is the complex sum of total resistance and total 

reactance looking into input circuit’s terminals; in rectangular form the real part of 

that complex number is total resistance an d the imaginary part is the total reactance; 

 the argument of the total impedance is phase angle between total voltage 

current through the circuit. 

 

SELF-ASSESSMENT TEST: 

1. Write down the expression of Ohm’s Law for АС series circuit in complex 

form. 

2. Write down the expression of the KVL for AC series circuit in complex 

form. 

3. Draw phasor diagram for series R-L-C configuration. 

4. Write down the total impedance for series circuit in complex form. 

5. Draw an impedance triangle. 

6. How to calculate impedance magnitude and the phase angle. 

7. Note all known relationships for Z, R, XL, XC and φ, that are determined from 

impedance triangle geometry. 
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6.2. Parallel Configuration. The KCL in the Complex Form 

 

We can apply KCL for parallel connection of resistor, inductor and capacitor, 

since the overall properties of parallel  AC circuits (Fig. 6.5) are the same as those for 

DC circuits: 

 

.t R L CI I I I     (6.5) 

 

I

R L C
.

V

RI LI СI

 
 

Fig. 6.5. The parallel R-L-C circuit 

 

After substitution Ohm’s Law in complex form for resistor, inductor and 

capacitor into expression (6.5) we obtain the following formula: 

 

1 1 1
( ) [ ]t L C

L C L C

V V V
I V V g jb jb

R jX jX R jX jX
        

 
. (6.6) 

 

where expression in square brackets (see formula (6.6)) 𝑌 ̇ = g – jbL + jbC = g –  

– j(bL – bC) is the total conductance of parallel circuit, often called an admittance; 

g is the admittance of a resistor R and it is called conductance; 

bL and bC are called an inductive and a capacitive susceptance 

correspondingly; 

b = bL – bC  is the total susceptance. 

Thus 

 

Y = g ± jb.  (6.7) 
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Formula (6.7)  represents the total admittance in rectangular form, in that the 

real part g is the total of all conductance looking into the input terminal of the circuit; 

the imaginary part b is the difference between the total inductive and capacitive 

susceptance. The total susceptance will be positive (b > 0) if the inductive 

susceptance is greater than the capacitive susceptance bL  > bC. The total susceptance 

will be negative (b < 0) if the inductive susceptance is less than the capacitive 

susceptance bL < bC. 

Fig. 6.6 illustrates phasor diagram for parallel circuit R-L-C.  

+j

+1φ

RI

LI СI
I

U

 

 

Fig. 6.6. The phasor diagram for parallel circuit R-L-C 

 

Note: in an AC parallel circuit the voltage is common to each element of one 

and therefore taken as a reference phasor. 

The phasor diagram indicates that current İ is in phase with the voltage across 

the resistor, lags the voltage across the inductor by 90° and leads the voltage across 

the capacitor by 90°. 

The hatched area on Fig. 6.6 is called current triangle. If each side of the 

current triangle will be divided by the voltage   𝑉̇ the diagram of  Fig. 6.7 is obtained, 

which is called an admittance triangle. 

 

 
Fig. 6.7. An admittance triangle 

 

The angle φ is the phase difference between the input voltage and total current. 

From geometry of the admittance triangle it is seen the following relationships: 
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ψijI I e


 

2 2 ;

cosφ
;

sinφ

φ arctg .

Y g b

g Y

b Y

b

g

 

 


 



 
(6.8) 

 

SUMMARY: 

 for AC parallel circuit the KCL is correctly written in complex notation; 

 the total admittance is the complex sum of total conductance and total 

susceptance looking into input circuit’s terminals; in rectangular form the real part of 

that complex number is total conductance an d the imaginary part is the total 

susceptance; 

 the argument of the total admittance is phase angle between input voltage 

and input current. 

 

SELF-ASSESSMENT TEST: 

1. Write down the expression of Ohm’s Law for AC parallel circuit in complex 

form. 

2. Write down the expression of the KCL for AC parallel circuit in complex 

form. 

3. Draw phasor diagram for parallel R-L-C configuration. 

4. Write down the total admittance for parallel circuit in complex form. 

5. Draw an admittance triangle. 

6. How to calculate admittance magnitude and the phase angle. 

7. Note all known relationships for Y, g, bL, bC and φ, that are determined from 

admittance triangle geometry. 

 

7. POWER IN COMPLEX FORM. THE POWER TRIANGLE 

 

When complex voltage 
ψvjV V e



   exists across load Ż and complex current 

ψijI I e


   flows through it (Fig. 7.1) the complex apparent power S


 is equal to: 

 

,S V I
  

   (7.1) 

 

where is complex conjugate of current İ. 
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Fig. 7.1. Section of an electrical circuit 

Therefore  

ψ ψ ψ ψ( ) φ VAv i v ij j j jS Ve Ie VIe Se


    , (7.2)  

 

where  φ – phase angle between an input voltage and an input current in a complex 

AC circuit. 

Formula (7.2) expresses complex power in polar form.  Power relationship may 

be written in rectangular form: 

 

V AS P jQ


   , (7.3)  

 

where  P – is active power in an AC circuit; Q – is reactive power in an AC circuit. 

  If a circuit is inductive Q is positive and «+» is used before Q in the formula 

(6.7). If a circuit is capacitive Q is negative and «–» is used before Q in the 

expression (6.7). 

If each side of the voltage triangle (see Fig. 6.2) is multiplied by İ, the power 

triangle will be obtained. Fig. 7.2 illustrates it. Each side of this triangle represents a 

particular type of power. 

                              
 

a                                                                b 

Fig. 7.2. Power triangle for inductive and capacitive load: 

a – power triangle for inductive load; b – power triangle for capacitive load 

Z
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The phase angle is positive (φ > 0) in the case of inductive load and negative  

(φ < 0) in the case of capacitive load.   

If a network has both capacitive and inductive elements, the reactive 

component of the power triangle will be determined by the difference between the 

reactive power delivered to each.  

If QL > QC, the resultant power triangle will be similar to Fig. 7.2, a.  

If QC  > QL, the resultant power triangle will be similar to Fig. 7.2, b. 

Fig. 7.2 (a) and (b) demonstrates that the three powers are related by the 

Pythagorean theorem, that is: 

2 2 V A;S P Q    

                                            cosφ cosφ Wt;P VI S                                       (7.4) 

sinφ sinφ VAr.Q VI S   

  

Phase angle φ is determined by: 

 

φ arc tg .
Q

P
                                                    (7.5) 

 

Power factor is: 

 

cos φ .
P

S
                                                    (7.6) 

 

Example 7.1 

Given:  The current through the series R-L-C circuit is equal İ = 0,15ej30° A;  

R = 8  Ω; XL = 6,5 Ω; XC = 17 Ω.  

Find: a) active and reactive power for each element of the circuit; b) the 

apparent power supplied by the generator; c) the generator voltage; d) the phase angle 

and power factor; e) draw phasor diagram.  

Solution:  
a) Power delivered in the resistive element: 

 

2 20,15 8 0,18 WtP I R    . 
 

Reactive power in the inductance: 

 

2 20,15 6,5 0,146 VArL LQ I X    . 
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Reactive power in the capacitance: 

 

2 20,15 17 0,383 VArC CQ I X    . 
 

The total reactive power: 

 

0,146 0,383 0,237 VArt L CQ Q Q      . 
 

The negative sign of total reactive power indicates about capacitive character 

of the original circuit. 

b)  Apparent power is as follows in both complex forms: 

 

530,18 0,237 0,298 V Aj

tS P jQ j e


      . 

 

c) Determine the source voltage using two methods: 

The 1st method: according Ohm’s Law: ,V I Z
  

    where 

 

53( ) 8 (6,5 17) 8 10,5 13,2 ;j

L CZ R j X X j j e           
30 53 230,15 13,2 1,98 V.j j jV e e e



     
 

The 2nd method: use formula (7.1): 

 

,
S

V

I






  

 

where complex conjugate of current is 
300,15 jI e


  . 

 
53

23

30

0,298
1,98 V.

0,15

j
j

j

e
V e

e







 

 

 

d) The phase angle between  the source voltage and  the current is the argument 

of the both: total impedance and apparent power in the polar form. So φ = – 53°.  

The negative angle is referred for capacitive case of the circuit. 
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Power factor, according to (7.6): 

 

0,18
cosφ 0,6

0,298

P

S
   . 

 

e) Draw phasor voltage diagram for series R-L-C circuit in chosen scale:  

mV = 0,2 V/Sm. For this purpose calculate modules of  VR, VL and VC: 

 

0,15 8 1,2 V;RV IR   
 

0,15 6.5 0,975 V;L LV IX   
 

0,15 17 2,55 V.C CV IX   
 

 

The phasor diagram is shown in the figure below.

 

 

 
 

SUMMARY: 

 the components of complex apparent power are average (or active) power 

and reactive power; 

 the argument of complex apparent power is phase angle, that is positive for 

inductive load and is negative for capacitive load; 

 the power triangle demonstrates relationships between power components. 
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SELF-ASSESSMENT TEST: 

1. Write down two complex notations of apparent power: in polar and in 

rectangular forms. 

2. Note the relationships between P, Q and S, using power triangle. 

3. Define phase angle φ, using power triangle, if P, Q, S are given. 

 

8. RESONANCE 

 

8.1. Introduction 

 

The resonance is very important mode of operation of electrical circuits, because 

resonant circuits are widely adopted in electrical and electronic systems today. 

 
Fig. 8.1. The general representation of resonant circuit 

 

The resonant electrical circuit must have both inductance and capacitance.  

When the voltage V


applied to an electrical network containing resistance, 

inductance and capacitance is in phase with the resulting current İ, the circuit is 

said to be resonant.  

There are two types of resonant circuits: series and parallel. Each of them will 

be considered in detail. 

 

8.2. Series Resonance. The Resonant Condition 

 

Fig. 8.2 illustrates the basic configuration for series resonant circuit, that consists of 

a resistor, an inductor and a capacitor. The total impedance of this circuit is  

 

( )L C L CZ R jX jX R j X X


      . 
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Fig. 8.2. The series resonant circuit 

 

Resonance occurs when the total reactance of the circuit is equal to zero: 

 

X = XL – XC = 0. 

 

So the resonant condition is  

 

XL = XC. (8.1) 

 

 

Conclusion: 

 the zero reactive component of the total impedance means that a total 

impedance is purely resistive: Zt = R;       

 impedance Ż has a minimum value at resonance. 

 

8.3. Series Resonance. The Resonant Frequency 

Since  
1

2π and
2π

L CX fL X
fC

   at resonance 
0

0

1
2π

2π
f L

f C
 . 

Thus 

 

      0

1
;

2π
f

LC
  

(8.2) 

      0

1
ω .

LC
  

 

where  f0 – resonant frequency in Hertz; ω0 – the resonant angular velocity in rad/s. 

The subscript 0 in the above equations indicates that the frequency determined 

is the series resonant frequency. 
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Example 8.1 

Calculate: a) the resonant frequency and b) total impedance in resonance of a 

series circuit consisting of a resistor 3 Ω, inductor 20 mH and capacitor 165 mF. 

Solution:  

a) 
0 3 6

1 1
87,6 Hz;

2π 2π 20 10 165 10
f

LC  
  

  
 

0 0ω 2π 2π 87,6 550,5 rad s.f      

 

б) The total impedance is resistive: Zt = R = 3 Ω. 

 

8.4 . Series Resonance. Current at Resonance 

 

Since impedance at resonance has a minimum value (Ż = R) so the current at 

resonance has a maximum value: 

 

V
I

R





 . (8.3) 

 

Above and below resonance, the current decreases because the impedance 

increases. Fig. 8.3 (a and b) shows total impedance and current versus frequency. 

 

 
 

                           a                         b 

 

Fig. 8.3. Impedance (а) and current (b) versus frequency 
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8.5. Series Resonance.  Voltages at Resonance. Phasor Diagram at Resonance 

 

As the current is the same through each element of series circuit (including 

capacitor and inductor) and  XL = XC, the voltage across inductor and across capacitor 

is equal in magnitude:  

 

VL = VC. 

 

The voltage across inductor and across capacitor in a complex notation are: 

 

90 ;j
L L LV I jX I X e

  

    

90( ) .j
C C CV I jX I X e

  

     

 

Phasor diagram (Fig. 8.4) illustrates that LV


and  CV


 are opposite in phase. 

 

Fig. 8.4. Phasor diagram for the series resonance circuit 

 

It is clearly from phasor diagram that:  

 the input voltage of the series resonance circuit is equal to the voltage across 

resistor in the magnitude and phase angle: in RV V
 

 ;  

 ; andin RV V I
  

 
are in phase at resonance. 
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Example 8.2 

A series circuit consists of a resistor 70 Ω, inductor 10 mH and capacitor 95 nF. 

Supply voltage is 49 V. Determine:  a) the current; b) the voltage across the inductor 

and across the resistor. 

Solution:  

a) Current at resonance is determined using Ohm’s Law: 

 

49
0,7 A

70

V
I

R





   .
 

 

At beginning calculate resonant frequency and inductive reactance: 

 

4

0 3 9

1 1
ω 3,24 10 rad s;

10 10 95 10LC  
   

  
 

4 3

0ω 3,24 10 10 10 324,4 .LX L         

 

Using Ohm’s Law calculate  the voltage across inductor: 

 

0,7 324,4 227 VLV IX    . 

 

Note: This is 4.6 times greater than the supply voltage. The voltage across 

resistor is equal to the supply voltage VR  = Vsupply = 49 V. 

 

8.6. XL, XC and Zt Versus Frequency in the Series Resonant Circuit 

 

Reactance XL, XC, total reactance X and impedance Zt  are functions of 

frequency. Their magnitudes versus frequency (and angular velocity) are: 

 

ω 2π ;LX L fL   

1 1
;

ω 2π
CX

C fC
   

1 1
ω 2π ;

ω 2π
L CX X X L fL

C fC
       

2 2 2 2 2 21 1
( ) (ω ) (2π ) .

ω 2π
t L CZ R X X R L R fL

C fC
          
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The curves of the Fig. 8.5 illustrates how these quantities change with 

frequency: 

 resistance R isn’t function of frequency; 

 since XL is directly proportional to frequency, so the curve of XL(f) is 

straight line; 

 XC is inversely proportional to frequency, so the curve of XC(f) is hyperbola; 

 the point, where XL =  XC, defines the condition of resonance and resonant 

frequency; 

 as at resonant frequency XL = XC, the total reactance is 0 and the curve of the 

total reactance X( f ) passes through 0 at f  = f0, and Zt  = R and has its minimum value. 

 

 
 

Fig. 8.5. XL, XC and Zt versus frequency in the series resonant circuit. 

 

At frequencies less than f0,  XL < XC and the circuit is capacitive. At 

frequencies greater than f0, XL > XC and the circuit is inductive. 
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8.7. Phase Angle as a Function of Angular Frequency 

 

At frequencies less then f0, XС > XL, and the current leads the input voltage, as 

indicated in Figure above. The phase angle decreases as the frequency approaches the 

resonant value and is 0° at resonance. At frequencies more then f0, XL > XC, and the 

current lags the source voltage. As the frequency goes higher, the phase angle 

approaches 90° (Fig. 8.6).  

 

 
 

Fig. 8.6. Phase difference versus frequency 

 

8.8. The Quality Factor (Q) or Q-factor 

 

Q-factor is a qualitative characteristic of merit for a resonant device such as 

an R-L-C circuit. Q-factor is an abbreviation for quality factor and refers to the 

‘goodness’ of a reactive component. The quality factor is also an indication of how 

much energy is placed in storage (continual transfer from one reactive element to the 

other) compared to that dissipated.  

For any resonant circuit, Q-factor is defined as the ratio of reactive power to 

average power: 

 
2 2

2 2

L C L C L CQ Q I X I X X X
Q

P P I R I R R R
      . (8.4) 

 

Hence 
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L C L C L C

R R

X X IX IX V V
Q

R R IR IR V V
      . (8.5) 

 

From  formula (8.5) follows:  

 

;

.

L R in

C R in

V V Q V Q

V V Q V Q

 

 
 (8.6) 

 

As Q-factor can have a value of several hundreds at resonance, so voltages VL 

and VC may be much greater than that of the supply voltage Vin. For this reason,  

Q-factor is often called the circuit magnification factor.  

For series resonant circuits used in communication systems, Q-factor is usually 

greater than 1. Resonance is usually of interest only in circuits of Q-factor greater 

than about 10. 

As follows from aforesaid one of practical application of series resonance 

circuit is as the voltage amplifier. 

 

Example 8.3 

In the series circuit at resonance condition  R = 10 Ω;  XL = XC = 560 Ω and  

Vin = 15 V. Determine: Q-factor; VL and VC. 

Solution: 
560

56; 15 56 840 V.
19

L
L C in

X
Q V V V Q

R
         

 

8.9. VR, VL, VC Versus Frequency 

 

Current, voltages across resistor, inductor and capacitor versus frequency. 

Diagrams of Fig. 8.7 illustrates voltages across resistor, inductor and capacitor 

against frequency for series resonant circuit. Observation shows that: 

 the curve VR(f) has the same shape as the curve I(f) and at resonant 

frequency f0 the value of  VR is equal to Vin; 

 the curve VL(f) changes from zero to its maximum at frequency after 

resonance. After reaching its peak value the voltage VL will drop toward Vin; 

 the curve VC(f) changes from value  equal to Vin at zero frequency. Its peak 

value will occur at a frequency just before resonance. After reaching its maximum the 

voltage VC will drop in magnitude to zero. 
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,

,

L C

R

V V

V I

I

0f0L
f f

CV LV

RV

0C
f

maxI

maxV

 

Fig. 8.7. Versus frequency 

 

8.10. Characteristic Reactance 

 

The value of inductive and capacitive reactance at resonant frequency is called 

characteristic reactance and is indicated by letter ρ and has unit of Ohm (Ω)  

 

ρ L CX X  . 
 

Let substitute the formula for ω0 to the expressions of inductive and capacitive 

reactance and obtain the following 

 

0

0

1
ω ;

1
.

ω

L

C

L
X L L

CLC

LC L
X

C C C

  

  

     

 

Hence characteristic reactance: 

 

ρ
L

C
  . (8.7) 

 

Substituting ρ in formula (8.5) we obtain the formula for Q-factor: 

 

ρ
.Q

R
  (8.8) 
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8.11. Bandwidth 

 

Fig. 8.8 shows the range of frequencies at which the current is not greater than 

0,707 of the maximum current. This definite range of frequencies is called the 

bandwidth (abbreviated BW).  

The BW is the range of frequencies for which the current is equal or greater 

than 0,707 of its maximum value at resonance. 

The frequencies corresponding to 0,707 of the maximum current are called 

critical frequencies, cut off frequencies, or half – power frequencies and indicated as 

f1 and f2.  

 

I

0f1f f

0,707

maxI

2f

BW

 
 

Fig. 8.8. Resonant current curve and bandwidth 

 

The BW is the difference between f2 and f1: 

 

2 1BW .f f   (8.9) 

 

Ideally the resonant frequency is located in the center between f1 and f2. So it 

can be calculated as follows: 

 

1 2
0 .

2

f f
f


  

(8.10) 

 

 

The BW is an important characteristic of a resonant circuit. A series resonance 

circuit that has a narrow BW is the circuit with large Q-factor. 
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Example 8.4 

A certain series resonant circuit has a maximum current of 100 mA at f0 and 

cut of frequency f1 = 8 kHz and f2 = 12 kHz. 

Find: the value of current at this critical frequencies; BW;  f0. 

Solution:  

The current at the critical frequencies:  

 

If1 = If2 = 0,707Imax = 70,7 mA; 

BW = f2 – f1 = 12 – 8 = 4 kHz; 

1 2
0

12 8
10 kHz.

2 2

f f
f

 
    

 

8.12. Selectivity 

 

The curve in Fig. 8.9 is called selectivity curve.  

I

0f1f f

0,707

maxI

2f0
 

 

Fig. 8.9. The selectivity curve 

 

This term is derived from the fact that only frequencies around f0 will permit 

significant amounts of power to be dissipated by the circuit (examine the selectivity 

curve of Fig. 8.9). 

Selectivity is the ability of a resonant circuit to respond to a signal of certain 

frequency and discriminate against all other. 

The response becomes progressively weaker as the frequency departs from the 

resonant frequency. Discrimination against other signals becomes more pronounced 

as circuit losses are reduced, in other words, as the Q-factor is increased.  
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Thus 

 

0

2 1

f
Q

f f



  

 

is a measure of the circuit selectivity in terms of the points on each side of resonance 

where the circuit current has fallen to 0,707 of its maximum value reached at 

resonance. 

The higher the Q-factor, the narrower the bandwidth and the more selective is 

the circuit.  

 

SUMMARY: 

 at series resonance, the inductive and capacitive reactances are equal in 

magnitude; 

 the impedance of a series R-L-C circuit is purely resistive at resonance; 

 in a series R-L-C circuit the current is maximum  and in phase with input 

voltage at resonance; 

 the voltages VL and VC are equal in magnitude and 180° out of phase, 

therefore they cancel each other; 

 the bandwidth of a series resonant circuit is the range of frequencies for 

which the current is 0,707 of Imax or greater; 

 a higher Q-factor produces a narrower bandwidth. 

 

SELF-ASSESSMENT TEST: 

1. What is the condition for series resonance?  

2. State the formula for resonant frequency. 

3. Is the impedance minimum or maximum at series resonance? 

4. Why is the current maximum at resonance? 

5. State the relation between VR, VL, VC, Vin at series resonance and plot their 

graphs: VR(f), VL(f), VC(f). 

6. Explain the behavior of reactance XL, XC,  Xt  and Z versus frequency and plot 

their graphs.  

7. State the formula for bandwidth. 

8. Explain how the Q-factor affects the bandwidth. 
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8.13. Parallel Resonance. Resonance at an Ideal Parallel Circuit 

 

Fig. 8.10 illustrates an ideal parallel resonant circuit and the phasor diagram for 

resonant state. In an ideal case resistors are not present at both inductive and 

capacitive branches. In other words, an inductor and a capacitor are considered as 

pure elements. Resonant condition for ideal parallel circuit is the same as for series 

one: XL = XC. 

 

 
 

Fig. 8.10. An ideal parallel circuit and phasor diagram at resonance 

 

Hence the resonant frequency is the same as in the series case 

 

0

0

1
;

2π

1
ω .

f
LC

LC





 (8.11) 

 

Conclusion: 

 when the parallel resonance occurs, the two branch currents IC and IL are 

equal in magnitude and 180°out of phase with each other; 

 so the total input current is equal to zero; 

 at resonance current circulates within the closed L–C loop only; 

 the case of It = 0 means that the total impedance of ideal parallel circuit is 

infinitely large at resonance. And the circuit’s behavior is as an open circuit.  

 

8.14. An Almost Ideal Parallel Circuit 

 

Consider admittance Versus Frequency. Fig. 8.11 shows an almost ideal 

circuit, since one of the parallel branches contains the pure resistive element. 



53 

 
 

Fig. 8.11. An almost ideal parallel circuit 

 

The admittance of each parallel branch is determined as following: 

 resistive conductance:  

 

1
;g

R
  

 

 inductive admittance: 

 

1
;

ω
L

L

j
b

jX L
    

 

 capacitive admittance:  

 

1
ω .C

C

b j C
jX

 


 

 

The total circuit admittance: 

 

1
( ) (ω )

ω
C LY g j b b g j C

L



      . 

 

According to resonance definition, the circuit is in resonance when phase angle 

between input voltage and current is equal to zero. It has place when the imaginary 

part of the total circuit admittance is zero: 

 

1 1
ω 0 or ω .

ω ω
C C

L L
  
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Hence the total circuit admittance is minimum and  equal to the resistive 

conductance 

 

1
is min .Y g

R



   
(8.12) 

 

 

Formula (8.12) represents the condition for parallel resonance in an almost 

ideal circuit.  

The condition of minimum admittance means the maximum of total impedance and 

consequently the minimum of the total input current of parallel circuit at the resonance 

 

1
is max;

is min.t

Z R
g

V
I VY

Z



 

 
 

 

 
 

Fig. 8.12. Inductive, capacitive and the total circuit admittance versus frequency 

 

Fig. 8.12 shows graphs of bC, bL, g and Y versus frequency. At the point of  f0, 

bC and bL are equal in magnitude and Y = g (the resonant circuit behaves itself as a 

resistor element). 
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8.15. A Practical Parallel Resonant Circuit. Condition of Resonance 

 

Fig. 8.13 illustrates the case of practical network that includes a real coil of 

inductance (R1 – L) in parallel with capacitance and resistance (R2 – C). 

Consider an admittance of each parallel branch: 

– admittance of branch 1: 

 

1 1
1

2 2 2 2 2 2

1 1 1 11

1 1 L L

L L L L

R jX R X
Y j

R jX R X R X R XZ


 
    

   
; 

 

– admittance of branch 2: 

 

2 2
2

2 2 2 2 2 2

2 2 2 22

1 1
.C C

C C C C

R jX R X
Y j

R jX R X R X R XZ


 
    

   
 

 

 
 

Fig. 8.13. The practical parallel resonance network 

 

The total circuit admittance: 

 

1 2
1 2

2 2 2 2 2 2 2 2

1 1 2 2

L C

L L C C

R X R X
Y Y j j

R X R X R X R X

 

     
     

1 2

2 2 2 2 2 2 2 2

1 2 1 2

( ).L C

L C L C

R R X X
j

R X R X R X R X
   

   
 

 



56 

For resonant condition the imaginary part of the total network admittance must 

be equal to zero, hence 

 

2 2 2 2

1 2

0L C

L C

X X

R X R X
 

 
, 

 

or 

 

                  
2 2 2 2

1 2

L C

L C

X X

R X R X


 
. 

(8.13) 

 

    

Expression (8.13) is the condition of parallel resonance at practical network. 

At resonance   

 

                      
2 2

2 21
2

1

ω ω

1(ω )
( )
ω

r r

r

r

L C

R L
R

C






, 
(8.14) 

 

   

where ωr – is the resonant angular velocity of parallel practical network. 

Rearranging of (8.14) gives 

 

            

2
2 21

1
0 2 2

2 2
2

1 ρ
ω ω

ρ
r

L
R

RC
L RLC R
C




  




, 
(8.15) 

 

 

where ω0 and ρ – are resonant angular velocity of ideal network and characteristic 

reactance accordantly. 

And resonant frequency 

 

2 2

0 1

2 2

2

ω ρ

2π ρ
r

R
f

R





. 

(8.16) 
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8.16. Q-factor and Bandwidth in a Parallel Network 

 

As was mentioned in section 8.12 currents circulate within the parallel 

branches of a parallel resonant circuit: the current leavs the capacitor and produces 

the magnetic field of the inductance, then it collapsis and rechargs the capacitor, and 

so on. These currents are higher than the input current. 

The Q-factor of a parallel resonant circuit is the ratio of the current circulating 

in the parallel branches of the circuit to the supply current, i. e. in a parallel circuit,  

Q-factor is a measure of the current magnification: 

 

1 2

t t

I I
Q

I I
  . 

(8.17) 

 

 

Currents in parallel branches (I1 and I2) may be several hundreds of times 

greater than the supply current at resonance. The formula of Q-factor for parallel 

circuit is the same as for series one. 

The expression used for calculating of BW in the series circuit also applied to 

parallel circuit: 

 

2 1

so BW ,
BW

r r rf f f
Q

f f Q
  


 

 

where f1 and f2 – are cut off frequencies and are defined by the condition that the 

output voltage is 0,707 times the maximum value. 

 

8.17. V, IL, IC, It Versus Frequency 

 

Fig. 8.14 shows that currents in parallel branches are more higher than supply 

current and are equal in magnitude at resonance. The total current reaches to its 

minimum value at resonant frequency. 
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Fig. 8.14. The currents in parallel branches and voltage versus frequency 

 

8.18. Phase Angle Versus Frequency 

 

At low frequencies (Fig. 8.15), the capacitive reactance is quite high, and the 

inductive reactance is low. Since the elements are in parallel, the total impedance at 

low frequencies will therefore be inductive.  

At high frequencies, the reverse is true, and the network is capacitive. At 

resonance ( fr), the network appears resistive. 

 

 
 

Fig. 8.15. Phase angle versus frequency 
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Example 8.5 

Given: I


= 4,5 mA; R = 750 Ω; C = 4 µF; L = 8 mH. Find: a) the resonant 

frequencies: ω0 and f0; b) 𝑉̇in ; c) İR, İL, İC; d) Q  factor; e) BW. 

 

 
Solution:  

a) As the circuit of Figure above is the almost ideal network the resonant 

frequencies ω0 and f0 are determined by expressions (8.15): 

 

3

0 3 6

1 1
ω 5,6 10 rad/s;

8 10 4 10LC  
   

    

3

0
0

ω 5,6 10
891,7 Hz.

2π 2π
f


    

 

b) In parallel circuit 𝑉̇in = 𝑉̇R = 𝑉̇C = 𝑉̇L, hence 

 

34,5 750 10 3,37 V.inV I R
 

       

 

c) At resonance:  İR = I


= 4,5 mA; 

 

90

3 3 90

3,37
75 mA,

5,6 10 8 10

in in j
L

j

L L

V V
I e

Z jX e

 






   

  
 

9075 mA.j
CI e



  

 

d) 
750

16,7.
44,8L

R
Q

X
    

e) 0 891,7
BW 53,2 Hz.

16,7

f

Q
    
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Example 8.6 

Given: the coil of inductor and capacitor are connected in parallel; V


= 18 V; 

Rc = 40 Ω; Lc = 0,45 H; C = 20 µF. Find: a) the resonant frequency fr; b) Q-factor. 

 

 

 

Solution:  

a) For the circuit of Figure above we will use formula (8.16): 

 

2 2

6

6

1 1 40
1 1 51,13 Hz.

0,452π 2π 0,45 20 10
20 10

c
r

c

R
f

LLC

C





    
 



 

 

b)  
2π 144,5

3,6
40

r

c

f L
Q

R
   . 

 

Alternatively, Q-factor at resonance is a current magnification (for a parallel 

circuit) equal to IC/IR: 

 

ω 18 0,00642
3,6.

0,032

C

t t

I V C
Q

I I


   

  

The same result was obtained above. 

 

SUMMARY: 

 at parallel resonance, the admittances of inductive and capacitive branches  

are equal in magnitude; 

 the total impedance of an ideal parallel resonant  circuit is infinite quantity at 

resonance; 

 so the input current in an ideal circuit is zero at resonance; 

 the total impedance of a practical parallel resonant  circuit is resistive  and 

has its maximum value at resonance; 
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 so the input current in a practical resonant circuit is minimum at f = fr; 

 the bandwidth and Q-factor of a parallel resonant circuit are determined 

using the same expressions as for series circuit; 

 in a parallel circuit the Q-factor is a measure of current magnification, 

whereas in a series circuit it is a measure of voltage magnification.  

 

SELF-ASSESSMENT TEST: 

1. What is the condition for parallel resonance: a) in an ideal parallel circuit;  

b) in a practical parallel network?  

2. State the formula for resonant frequency: a) in an ideal parallel circuit; b) in 

a practical parallel network?  

3. Are currents in parallel branches of an ideal resonant circuit cancel each 

other? 

4. Is the impedance minimum or maximum at parallel resonance? 

5. Why is the input current equal to zero in an ideal parallel circuit at f = f0? 

6. What is the difference between f0 and fr in the case of parallel resonance? 

7. Why is the current minimum at parallel resonance in a practical circuit? 

8. State the relation between  It, IL, IC, Vin  at parallel resonance and plot their 

graphs: Vin(f), IL(f), IC(f), It(f). 

9. Explain the behavior of admittances  bL, bC,  bt  and Y versus frequency and 

plot their graphs.  

10. State the formula for  Q-factor and bandwidth. 

 

9. AC CIRCUIT. TASKS 

 

Task №1 

1.1. Determine the periodic time for the following frequencies: 

a) 10 Hz; b) 250 Hz; c) 80 kHz. 

1.2. Calculate the frequency for the following periodic times: 

a) 2 ms; b) 50 µs; c) 0.04 s. 

Answer: 1.1:  a) 0,1 s;  b) 4 ms;  c) 12,5 µs. 

1.2:  a) 0,5 kHz; b) 20 kHz; c) 25 Hz. 

 

Task №2  

Two sinusoidal alternating quantities are represented by: 

a) i(t) = 0,17sin(ωt – 35°) A; b) v(t) = 54sin(3ωt + 45°) V, where ω = 200 rad/sec;  

2.1. Comment on the relative magnitudes and frequencies of these quantities.  
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2.2. Determine the frequency of quantity «b» and its instantaneous value at  

t = 0: v(0). 

2.3. State the period of quantity «b». 

2.4. State its phase shifts. 

2.5. State the phase relationship of «b» with respect to «a». 

2.6. Determine RMS value for current and voltage. 

Answer: 2.1: a) Im = 0,17 A, ω = 200 rad/sec; b) Vm = 54 V, ω = 600 rad/sec. 

2.2:  f = 95,54 Hz; v(0) = 38,18 V. 

2.3: T= 0,01 s. 

2.4: ψi = –35°; ψv  = 45°. 

2.5: φ = ψv – ψi = 80°. 

2.6: I = 0,12 A, V = 38,3 V. 

 

Task №3 

3.1. The current through  a 3,7 Ω  resistor is indicated. Find the sinusoidal 

expression for the voltage v(t) if  i(t) = 2,5sin(314t – 110°) A; 

3.2. The current through  a 3,7 kΩ  resistor is indicated. Find the sinusoidal 

expression for the voltage v(t) if  i(t) = 0.025sin(314t + 60°) A. 

Answer: 3.1:  vR (t) = 9,25sin(314t – 110°) V; 

3.2: vR (t) = 92,5sin(314t + 60°) V. 

 

Task №4  

The voltage across a 0.5 H coil is provided. Find the sinusoidal expressions for 

the current across the coil: 

4.1. vL(t) = 165sin(100t – 37°) A; 

4.2. vL (t) = 95sin(100t + 115°) A. 

Answer: 4.1: i(t) = 3,3sin(314t – 127°) A; 

4.2: i(t) = 1,9sin(314t + 25°) A. 

 

Task №5  

The current through a 5,5 µF capacitor is given. Find the sinusoidal 

expressions for the voltage across the capacitor: 

5.1. i(t) = 0,54sin(7272t + 55°) A; 

5.2. i(t) = 1,27sin(7272t + 10°) A. 

Answer: 5.1: vR (t) = 9,25sin(314t – 110°) V; 

5.2: vR (t) = 92,5sin(314t + 60°) V. 
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Task №6  

Solve tasks №3–5 using complex algebra. Draw phasor representation for 

complex voltages and currents.   

 

Task №7  

A coil of inductor with R = 10 Ω and L= 0,05 H is connected to voltage source, 

RMS of that is V = 120 V and f = 50 Hz.  

Define: a) the total complex impedance of the coil; b) the complex current 

through the coil; c) phase difference between voltage and current; d) active, reactive 

and apparent power; e) draw phasor diagram. 

Answer: a) Ż = 18,6e j57° Ω; b) İ = 6,45e –j57°A; c) φ = 57°; d) P = 416 W,  

Q = 653 V∙Ar, S = 773 V∙A. 

 

Task №8 

The series connection of resistor R = 120 Ω and capacitor C = 30 µF is 

supplied by voltage source v(t) = 311sin314t  V. 

Define: a) the total complex circuit impedance; b) RMS voltage’s and current’s 

values; c) phase difference between voltage and current; d) active and reactive power; 

e) draw phasor diagram. 

Answer: a) Ż = 160e –j41° Ω; b) V = 220 V, I = 1,37 A; c) φ = – 41°; d) P = 226 W, 

Q = – 210 V∙Ar. 

 

Task №9 

A series circuit consists of a resistor, an inductor and a capacitor: R = 3 Ω,  

L = 8 mH, C = 15 µF. A voltage source V = 20 V, f = 500 Hz supplies that circuit.  

Find: a) the complex current through the circuit; b) voltage through each 

element; c) active power; d) draw phasor diagram. 

Answer: a) İ = 4e j53°A; b) VR = 12 V, VL = 101 V, VC = 85 V; c) P = 48 W. 

 

Task №10 

Current through the series connection of resistor R = 12 Ω, inductor XL = 20 Ω  

and capacitor XC = 24 Ω is equal to i(t) = 0,04sin314t A. Using complex algebra 

define voltage across each element and total input voltage. Write down each voltage 

as a function of time. Draw phasor diagram. 

Answer: vR(t) = 0,48sin314t V; vL(t) = 0,8sin(314t + 90°) V;  

              vC(t) = 0,8sin(314t – 90°)V; vinput(t) = 0,506sin(314t – 18,44°) V. 
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Task №11 

Given: Ė1 = 100 V, Ė2 = 100e –j30° V, Ż1 = Ż2 = 50 + j30 Ω, Ż3= 100 Ω.  

Determine all currents using the method of superposition and active power, 

delivered in the circuit. 

 
 

Answer: İ1 = 0,693e j13°A; İ2= 0,45e – j85°A; İ3 = 0,77e – j21°A; P = 93,2 W. 

 

Task №12 

Given: E = 40 V, R1 = 200Ω , R2 = 160  Ω,  R3 = 120 Ω, R4 = 80 Ω, XC = 60 Ω.  

Determine current of ammeter using Thevenin’s Theorem. 

 

 
 

Answer: İA = 56 mA. 

 

Task №13 

Given: Ė = 55 V; R = 5 Ω; Rc = 6 Ω; L = 10 mH; C = 1 µF. 

Find the following quantities for the circuit of Figure below: 

a) total impedance at resonance; 

b) current at resonance; 

c) resonant frequency expressed as ω (rad/sec); 

d) voltages: VL and VC; 

e) active and reactive powers: P, QC and QL; 

f) Q-factor of the circuit. 
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Answer: Ż = 11 Ω; İ = 5 A; ω0 = 10 000 rad/sec;  𝑉̇L = 100e j90° V; 𝑉̇C = 100e –j90° V; 

P = 275 W; QL = QC = 2500 VAr;  Q-factor = 9,1. 

 

Task №14 

The series resonant circuit with  Rcoil = 16 Ω and  Lcoil = 158 µH is at resonance 

at frequency f0 = 1 MHz, Vin = 1,8 V.  

Define the following quantities for that circuit: 

a) the capacitance of this resonant circuit; 

b) current at resonance; 

c) voltages: Vcoil and VC; 

d) active power: P. 

Answer: C = 160 pF; I = 50 mA; VL = VC = 49,6 V; P = 40 mW. 

 

Task №15 

The series circuit consists of a coil of inductance (Rcoil, Lcoil) and capacitor.  

The supply voltage Vin = 35 V.  

Define the voltage across the coil of inductor, if the capacitor voltage is equal 

to 120 V. 

Answer: Vcoil = 125 V. 

 

Task №16 

For the series resonant circuit R – L – C: R = 2 Ω , XL = XC = 10 Ω 

Find:   

a) I, VR, VL, and VC at resonance, if supply voltage Vin = 10 V. 

b) What is the Q-factor of the circuit? 

c) If the resonant frequency is 5000 Hz, find the bandwidth. 

d) What is the power dissipated in the circuit at the half-power frequencies (HPF)? 
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Answer: I = 5 A; VR = 10 V; VL = VC  = 50 V;  Q-factor = 5; BW = 1000;  

PHPF = 25 W. 

 

Task №17 

The bandwidth of a series resonant circuit is 45 Hz; the resonant frequency is 

1500 Hz.  

Find:  

a) the value of Q-factors; 

b) the value of XL at resonance if R = 7,5 Ω; 

c) the inductance L and capacitance C of the circuit. 

Answer: Q-factor = 33,3; XL = 250 Ω; L = 26 mH; C = 0,42 µF. 

 

Task №18 

A series R-L-C circuit has a series resonant frequency of 16000 Hz. The circuit 

resistance is 15 Ω and inductive reactance XL =  900 Ω. 

Find:  

a) the bandwidth; 

b) the cut off frequencies. 

Answer: BW = 266,7 Hz; f1 = 15866,65 Hz and f2 = 16133,35 Hz. 

 

Task №19 

Given: R = 16 Ω; L = 1,6 mH; C = 0,42 µF; Vin = 10 V. 

Determine the following quantities for the circuit of Figure above: 

a) the resonant frequency f0; 

b) currents I, IL, IC. 

 

 
 

Answer: ω0  = 5000 rad/s;   I = 0,625 A; IL = 1,25 A, IC = 1,25 A. 
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Task №20 

The coil of inductance (Rcoil – Lcoil) of Figure below is connected with 

capacitance C in parallel: Rcoil = 11,2 Ω ;  Lcoil = 4 mH; C = 2,5 µF.  

Determine for that circuit: 

a) the resonant frequency fr; 

b) the total impedance at resonance; 

c) draw the phasor diagram at resonance. 

 

 
 

Answer:  fr = 9600 Hz; Zt = 143 Ω. 
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