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PREFACE

The technical manual was composed in accordance with Electric Circuit
Theory syllabus. The part 2 includes the AC circuit analyses with using complex
numbers and phasor diagrams. Series and parallel resonance are considered.

For every topic the solutions of the tasks were included that should help clarify
the approach and gain a better understanding. The part 2 includes further problems
with answers at the end for independent solution.

The technical manual is designed for use by international students getting an
education in English.



1. INTRODUCTION TO AC CIRCUIT ANALYSIS

An alternating voltage (AC voltage) is one that periodically changes polarity,
and an alternating current (AC current) is an electric current that periodically changes
direction.

The variation of an AC voltage or current versus time is called its waveform.
1.1. Sinusoidal AC Voltage and Current

Expressions for the AC sinusoidal voltage and current are:

v(t) =V, sin(ot +v,);
i(t) =1, sin(ot +v,),

where v(t) and i(t) — instantaneous voltage and instantaneous current values that
are the values of voltage and current at any instant of time.

Vm, Im — the largest value reached in a half cycle is called the maximum value
or the amplitude of the waveform.

« — angular velocity measured in radians per second, related to the frequency f
by ® = 2xf.
A sine wave or sinusoidal AC waveform is shown in Fig. 1.1.

v.i A

Vm
Inm

Fig. 1.1. Instantaneous values: v(t) and i(t)



Starting at zero, the voltage increases to a positive maximum, decreases to
zero, changes polarity, increases to a negative maximum, then returns again to zero.

One complete variation is called a cycle. Period (T) or the periodic time is the
time of one cycle.

The number of complete cycles completed in one second is called the
frequency (f) and is measured in cycles per second, which is called the Hertz (Hz):

1

f= Hz.
T

The time axis may be converted into an angle axis simply by multiplying by o.

SUMMARY:

— the sine wave is a time-varying periodic waveform;

— alternating current changes direction in response to changes in the polarity of
the source voltage;

— one cycle of an alternating sine wave consists of a positive alternation and a
negative alternation;

— full cycle of a sine wave is 360°, or 2z radians. A half-cycle is 180°, or @
radian. A quarter-cycle is 90°, or 7/2 radians.

SELF-ASSESSMENT TEST:

1. Describe one cycle of a sine wave.

2. How many maximum points does a sine wave have during one cycle?
4. How is the period of a sine wave measured?

5. Define frequency, and state its unit.

6. Determine fwhen T =5 ps.

7. Determine T when f =110 Hz.

1.2 Phase Shifts: yy and ;i

The phase of a sine wave is an angular measurement that shows the position of
that sine wave relative to a reference. Fig. 1.1 shows a voltage sine wave that may be
used as the reference.

If a sine wave does not pass through zero at t = 0 sec as in Fig. 1.2, it has a
phase shift. Waveforms may be shifted to the left (see Fig. 1.2, a) or to the right (see
Fig. 1.2, b).
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Fig. 1.2. Waveforms have a phase shift:
a — positive phase shift; b — negative phase shift

For a waveform shifted left as in (a): v(t) =V_sin(ot +v, ).
For a waveform shifted right as in (b): v(t) =V, sin(ot —y,).

1.3. Phase Difference: ¢

Phase difference refers to the angular displacement between different
waveforms of the same frequency:

¢ =W Vi
View the following figures:
A A A
-~ ™, v
i / \t ///‘ -\‘i\ j/ \
[ —\ L— \ / o\
g \1\ ' - Vi / \\\ \\ ’ > / \\\\\ / >
L e N >0 \\&_
N I / '._\H:_f / / F \\ -«_.7-:/...:
N AN N4
a b C

Fig. 1.3. The angular displacement between two sine waves:
a — in phase; b — current leads; ¢ — current lags

For Fig. 1.3, a: if the angular displacement is 0° the waveforms are said to be in
phase: Wy = i and therefore ¢ = 0. For Fig. 1.3, b: the current waveform leads the
voltage one: Wy < yi so @ = yv — yi < 0. For Fig. 1.3, c: the voltage waveform

leads the current one: Wy > i so @ = yy — yi > 0.
In other words, in cases «b» and «c» current and voltage are out of phase.



Example 1.1

Four sinusoidal alternating quantities are represented by:

a) i(t) = Ssinwt A; b) i(t) = 15sin(wt — 30°) A;

¢) v(t) = 10sin(wt + 60°) V; d) v(t) = 5sin2wt V,
where o = 314 rad/sec.

1. Comment on the relative magnitudes and frequencies of these quantities.

2. Determine the frequency of quantity «d» and its instantaneous value at
t = 0: d(0).

3. State the period of quantity «b» and its instantaneous value at t = 0: i(0).

4. State the phase relationship of:

— «a» with respect to «by;

— «a» with respect to «c»;

— «b» with respect to «c».

Solution:

1. The coefficient of the sine function represents the magnitude of the quantity:
aAln=5A;b)I1,=15A;¢)V,h,=10V;d) V=5 V.

The frequency of quantities «a», «b» and «c» is the same f = 22 whereas that
T

of quantity «d» is double at f = 2—(’).

2n
2. The frequency of «d» is (2:314)/(2-3,14) = 100 Hz.
3. The period T of quantity «by is the reciprocal of the frequency:

To2m_2:314 2 =0,02 sec,
0) 314 100

instantaneous current value at t = 0: i(0) = 15sin(® - 0 — 30°) = 15sin(-30°) = -7,5 A.
4. a) «a» leads «b» by 30°; b) «a» lags «c» by 60°;
C) Qbc = Wb — Yo = — 30° — 60° =-90°.

Example 1.2

Find: the phase relationship between i(t) = —4sin(ot + 50°), A and v(t) =
= 120sin(ot — 60°),V.

Solution:

Current i(t)= —4sin(ot + 50°) has phase shift yi = 50°, which can be
represented as y; = 50° — 180° = —130°. We can rewrite the current in such way:
i(t) = 4sin(ot — 130°).



The voltage has phase shift vy, = — 60°.
The phase difference ¢ = y,— yi = — 60°—(-130°) = 70° and voltage leads.

1.4. RMS Value (the Root Mean Square Value)

The term RMS stands for root mean square. The RMS value represents the
ability of the waveform to do useful work. For this reason RMS value is often called
effective value. The concept of effective value is an important one; in practice, most
ac voltages and currents are expressed as effective values.

The RMS value of sinusoidal current is actually a measure of the heating effect
of the sine wave. The RMS value of sinusoidal current is equal to the dc current that
produces the same amount of heat in a resistance as does the sinusoidal current.

The effective value of AC current can be found by using the following

equation
| = /% [ iyt (1.1)

Note: The RMS value of sinusoidal current, voltage or EMF will be
represented by I, V and E. These symbols are the same as those used for DC current,
voltage or EMF.

Find the RMS value of sinusoidal current using formula (1.1):

1 f2m o, o B 1 f2nl-cos2mt = 1 on 1y
I_\/z_njo 12 sin (mt)dt_lm\/%jo — =1, /E’”O ~0=—&=0707Iy,

or

|=!m _g7071_. (1.2)

N

Effective values for voltage are found in the same way:

v

V == —0,707V,;
2 "

E=Em_0,707E
J2o

Effective values for sinusoidal waveforms depend only on magnitude.
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To obtain peak values from effective values, rewrite equations (1.2).

Thus
| =12 =1,4141;
V,, =V+2=1,414V; (1.3)
E. =12 =1,414E.

Example 1.3

Determine the effective values of:
a) i(t) = 10sin ot A;

b) v(t) = 50sin(wt — 20°) V.
Solution:

a)1=0,707-10 =7,07 A,
b)V=0,707-50 =35,35 V.

SUMMARY::

— amplitude is the maximum value of a voltage or current;

— phase angle is the difference in degrees or radians between a given sine
wave and a reference sine wave;

— the RMS value is the value of a sinusoidal voltage (or current) that indicates
its heating effect, also known as the effective value. It is equal to 0,707 times the
peak value.

SELF-ASSESSMENT TEST:

1. A sinusoidal current has a period of 25 ms and an amplitude of 0,8 A. Write
its equation in the form of i = I,sin wt, with numerical values for I,and o.

2. If phase difference is a positive value, does a current lead or lag?

3. If a voltage and a current are in phase what is the phase difference between
them?

4. Determine equations for sine waves with the following:

a) V=170 V, f =60 Hz; b) In=40mA, T =10 ms;

c)T=120ms,v=10Vatt=12 ms.

5. Determine the effective values of each of the following:

a) v =100 sin(wt) V; b) i =8 sin(377t) A;

¢) v =40 sin(ot + 40°) V; d) i =120 cos ot mA.

11



2. RESPONSE OF BASIC R, L AND C ELEMENTS TO A SINUSOIDAL
VOLTAGE OR CURRENT

R, L and C circuit elements each have quite different electrical properties.
Resistance, for example, opposes current, while inductance opposes changes in
current, and capacitance opposes changes in voltage. These differences result in quite
different voltage — current relationships.

2.1. Resistance and Sinusoidal AC

In a purely resistive circuit current is directly proportional to voltage.

i0) R

v(t)

Fig. 2.1. Resistance

The voltage is represented by
v(t) =V, sinot.
Define i(t) using Ohm’s law

. v(t) V., sinot :
i(t)= = - =|_sinot,
(t) s R m

where Im:Vm and V=1

= =1R.

m

Similarly for RMS values

o<

12



Peak and RMS values are related by Ohm’s Law. Comparison of formulas for
v(t) and i(t) shows that phase difference between voltage and current is equal to
Zero:

o=vyy—Vyi=0. (1.4)

Conclusion: For purely resistive element, the voltage across and the current
through the element are in phase. It means that current variations follow voltage
variations, reaching their peak when voltage reaches its peak, changing direction
when voltage changes polarity, and so on (Fig. 2.2).

Vil

Fig. 2.2. The voltage across and the current through the resistor are in phase
Example 2.1
For the circuit of Fig. 2.1 find: vg(t) if R=5 Q and i(t) = 0,5sin (ot — 25°) A.
Solution: vg(t) = Ri(t) = 5-0,5sin (ot — 25°) = 2,5sin (ot — 25°) V.
2.2. Inductance and Sinusoidal AC

Current through inductor is equal to

it)=1_sinot. (1.5)

13



The relationship between voltage across inductor (Fig. 2.3) and current through it is

_dip (1.6)
T Tt
I(D), L
|
v (t)

Fig. 2.3. Inductance

Substitution the expression (1.5) into the formula (1.6) gives:

v, = I_diL _ I_dlmsincot

=Ll cosot =wLl , sin(owt +90°

or

v, =V, sin(wt +90°%). (1.7)
where Vi, = oLIl, — peak value of voltage; V = oLI — RMS value of voltage.
The quantity oL, called the inductive reactance (from the word reaction) of
an inductor, is symbolically represented by X, and is measured in ohms, that is,
X|_ = oL Q. (18)
Inductive reactance is the opposition to the flow of current. Inductive
reactance does not dissipate electrical energy. In this element the continual

interchange of energy between the source and magnetic field of an inductor has place.
The reciprocal of inductive reactance is called inductive conductance, that is,

o =S—=-—"175 (1.9)

14



From comparison of formulas (1.5) and (1.7) follows that phase difference
between voltage across inductor and current through it is

¢ =yy— i =90°

For a purely inductive circuit, current lags voltage by 90°. Alternatively,
Voltage leads current by 90° (Fig. 2.4).

VL)'i ‘

Vi

!

¢=90°

Fig. 2.4. Voltage leads current by 90°
If a phase angle is included in the sinusoidal expression for i, such as
it)=1_sin(wttvy,),
then
v, =V, sin(et £ y; +90%),
where y, = y; + 90°,
Example 2.2

Given: The voltage across a 0,2 H inductance is v, = 100sin(400t + 70°) V.
Determine 1.

15



Solution:
o = 400 rad/s. Therefore, X, = oL =400 - 0,2 = 80 Q.

v :@:1,25 A.
80

_'m
" R
The current lags the voltage by 90°. Therefore i(t) = 1,25sin(wt — 20°) A.

Variation of Inductive Reactance with Frequency. Since X, = oL = 2xfL,
inductive reactance is directly proportional to frequency (Fig. 2.5). Thus, if
frequency is doubled, reactance doubles, while if frequency is halved, reactance

halves, and so on. In addition, X, is directly proportional to inductance. Thus, if
inductance is doubled, X, is doubled, and so on.

X

\

Fig. 2.5. Inductive reactance versus angular velocity

Note, that at f = 0, X (= 2w-0 = 0 Q. This means that inductance looks like a
short circuit to DC (Fig. 2.6).

XL:O

Fig. 2.6. Short circuit
2.3. Capacitance and Sinusoidal AC
Voltage across capacitor is equal to
v(t) =V sinwt. (1.10)

The fundamental equation relating the voltage across a capacitor (Fig. 2.7) to the
current is:

16



dve (1.11)

Ly
; C
S 0
| | _
Ve (1)

Fig. 2.7. Capacitance

Substitute expression (1.10) into formula (1.11) and obtain:

ic =C d(;/tc =C de(j:n ol _ oCV,, coswt = wCV,, sin(wt + 90°)
or
i, =1,sin(ot +90°%), (1.12)
where I, = oCVy, — peak current value through capacitor; 1 = oCV — RMS current
value.

The quantity ©C, called the capacitive conductance, is symbolically
represented by bc and it is measured in Siemens, that is,

be = wC S. (1.13)

The reciprocal of the capacitive conductances is called capacitive reactance:

Xe=— Q.
c=— (1.14)

Capacitive reactance is the opposition to the flow of charge. Capacitive
reactance does not dissipate energy in any form. In this element the continual
interchange of energy between the source and the electric field of capacitor has place.

From comparison formulas (1.10) and (1.12) follows that phase difference
between voltage across capacitor and current through it is

¢ =yv—yi=—90°%
17



In a purely capacitive circuit, current leads voltage by 90° (Fig. 2.8).
Alternatively, Voltage lags current by 90°. Current leads voltage by 90°.

Veik

V()
i(t)

ot
99° 0° 270° 60°

¢p=90°

Fig. 2.8. Current leads voltage by 90°
If a phase angle is included in the sinusoidal expression for vc, such as
Ve (t) =V, sin(et tvy,),
then
ic =1 ,sin(ot £y, +90°),

where ;i =y, + 90°.

Example 2.3

The voltage across a 10 mF capacitance is vc = 100sin(wt — 40°) V and f = 1000 Hz.

Determine ic.
Solution:

o = 2xnf = 271000 = 6283 rad/s;
1 1

Xo=—t= ==1592 Q;
oC  6283-10-10"
Im:V—m:&=6,28 A.

Xe 15,92

18



Since current leads voltage by 90°, ic(t) = 6.28sin(6283t + 50°) A.

Variation of Capacitive Reactance with Frequency. Since X¢c = 1/oC =
= 1/2=fC, the capacitive reactance varies inversely with frequency. This means that
the higher the frequency, the lower the reactance, and vice versa (Fig. 2.9).

X

-
Fig. 2.9. Capacitive reactance versus angular velocity

Note: Thatatf=0 (i. e., DC), Xc is infinite.
This means that capacitance looks like an open circuit to DC (Fig. 2.10).

Xeo=0

g0  o—Hf

Fig. 2.10. Open circuit

Note: That Xc is also inversely proportional to capacitance. Thus, if
capacitance is doubled, Xc is halved, and so on.

Fig. 2.11 illustrates effect of high and low frequencies on the circuit model of
an inductor and a capacitor.

Element f=0Hz f = very high frequencies
L
— Y ° .
(_1
| —C o
!

-

Fig. 2.11. Effect of high and low frequencies on the circuit model
of an inductor and a capacitor

19



SUMMARY:

— Ohm’s Law is true relationship between instantaneous voltage across resistor
and instantaneous current through it;

— voltage across resistor and current in it are in phase;

— Voltage leads current by 90° in an inductor;

— inductive reactance, Xy, is directly proportional to frequency and inductance;

— the true power in an inductor is zero; that is, no energy is lost in an ideal
inductor due to conversion to heat, only in its winding resistance;

— the amount of induced voltage is directly proportional to the inductance and
to the rate of change in current;

— energy is stored by an inductor in its magnetic field,;

— current leads voltage by 90° in a capacitor;

— capacitive reactance, Xc, is inversely proportional to frequency and
capacitance;

— the true power in a capacitor is zero; that is, no energy is lost in an ideal
capacitor due to conversion to heat.

SELF-ASSESSMENT TEST:

1. The voltage across a resistor is indicated. Find the sinusoidal expression for
the current i(t) if the resistor is 10 €:

a) Vr(t) = 100sin 377t V;

b) vr(t) = 25sin (377t +60°) V.

2. The current through a 0.1 H coil is provided. Find the sinusoidal expression
for the voltage across the coil:

a) i(t) = 10sin 377t A.

b) i(t)= 7sin (377t — 70°) A.

3. The current through a 100 upF capacitor is given. Find the sinusoidal
expression for the voltage across the capacitor:

a) i(t) = 40sin 500t A.

b) i(t) = 12sin (377t +70°) A.

4. Give the relationship between voltage and current:

a) In a purely resistive circuit;

b) In a purely inductive circuit;

c) In a purely capacitive circuit.

5. State the phase relationship between current and voltage in a resistor.

6. State the phase relationship between current and voltage in an inductor.

7. State the phase relationship between current and voltage in a capacitor.

8. Define inductive and capacitive reactance versus frequency.

20



3. COMPLEX NUMBER IN AC ANALYSIS
3.1. Introduction to Phasors

A phasor is a rotating vector whose projection on a vertical axis can be used to
represent sinusoidally varying quantities.

v
Vi d Amplitude is the
@ same as the length
DN s of the phasor
i
Vm v
0 ' 2n _—
0=
-V sina
— (O [
Vm
a b

Fig. 3.1. Rotating anticlockwise vector and sine wave:
a — phasor; b — resulting sine wave

Fig. 3.1, a illustrates rotating anticlockwise vector or phasor. The vertical
projection of the phasor (indicated in dotted red) is Vn, sino. Now, assume that the
phasor rotates at angular velocity of o rad/s. Then, o = wt, and its vertical projection
IS Vmsin ot (Fig. 3.1, b). If we designate this projection as v, we get v = Vpsin ot,
which is the familiar sinusoidal voltage equation.

Example 3.1

Given: the sinusoidal voltage is v(t) = 35sinot V. Draw the phasor that
represents this waveform.

Solution: the phasor of Fig. 3.2 has length of 35 V in any scale. As voltage
v(t) has zero phase shift, the phasor is drawn at its t = O position with zero degrees.

21



w), V A
35 )
] V., ~
Un=35V t > "1
-35
Fig. 3.2. Sinusoidal current and it’s phasor representation
Example 3.2

Given: the sinusoidal current is i(t) = 1,5sin (ot + 45°) A. Draw the phasor that

represents this sinusoidal current.
Solution: the phasor of Fig. 3.3 has length of 1,5 A in any scale. So its phase
shift equal to 45°, the phasor is drawn at its t = 0 position with angle 45°.

i(0.4k
1.5

7 A

' -
Lso| 450 ot

\ \Pi=45°

+"
—

-1.5

Fig. 3.3. Sinusoidal current and it’s phasor representation

Conclusion: A sinusoidal waveform can be created by plotting the vertical
projection of a phasor that rotates in the counterclockwise direction at constant

angular velocity o.
Note: Phasors apply only to sinusoidal waveforms. Phasor algebra for

sinusoidal quantities is applicable only for waveforms having the same frequency.

22



3.2. Representing AC Voltages and Currents by Complex Numbers

Previously it was shown that AC voltages and currents may be represented as
phasors. Since phasors have magnitude and angle, they may be represented as
complex numbers. Let consider the current through the load of Fig. 3.4, a. Its phasor
equivalent (b) has magnitude I, and angle yi. Therefore it may be viewed as the
complex number.

+7 A
].771
ift) # 1t
— " Ly
i(t)=I.sin(wt+y:) "1
a b

Fig. 3.4. Sinusoidal current and it’s phasor representation

Representation of a sinusoidal current as a complex number. From this
viewpoint, the sinusoidal current i(t) = 2,5sin(ot + 30°) of Fig. 3.5, a can be

represented by its phasor equivalent, I =2,5¢/*" A, as in (b).

i(f),A |
2,5

|
300 |0 90 180 570
v = 30°

Fig. 3.5. Sinusoidal current and it’s phasor representation
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We can take the advantage of this equivalence:

— rather than show current (or voltage) as a time — varying quantity i(t)
(or v(t)) that we later convert to a phasor, we can represent this current (or voltage) by
its phasor equivalent right from the start;

— by replacing the time function i(t) or v(t) with its phasor equivalent | orV , We
have transformed the current or the voltage from the time domain to the phasor domain.

SUMMARY:

— a complex number represents a phasor quantity;

— aphasor is effective technique for representation of sinusoidal quantities;
— aphasor length is equal to amplitude or RMS of a sinusoidal function;

— aphasor angle position is equal to phase shift of a sinusoidal function.

SELF-ASSESSMENT TEST:

1. What are the two characteristics of a quantity indicated by a complex
number?

2. Write the phasor interpretation for the following sinusoidal quantities:

a) i(t) = 3,84sinwt A; b) v(t) = 42sin(ot + 38°) V;

c) v(t) = 95sin(mt — 120°) V; d) e(t) = 220sin(wt + 115°) V.

4. OHM’S LAW IN COMPLEX FORM

Simple AC circuits may be analysed by using complex numbers and phasor
diagrams.

The table 4.1 illustrates Ohm’s Law for time — varying quantities i(t) or v(t),
their phasor representation and Ohm’s Law in complex notation for pure resistive,
pure inductive and pure capacitive circuits.

Table 4.1
A passive part of A time — varying Phasor Ohm’s Law in
the circuit quantity i(t) or v(t) diagrams complex form
1 2 3 4
Pure resistive V(t) = Vpsinot; V | =leM:
circuit I :@: I, sinot .:j“r”» / jvi .
i) R m V, =Rle™ =R,
* | I * . .
0 > V. =IR
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1 2 3 4
Pure inductive | i(t)=1_sinwt; = e
circuit di, . . |
=L—= " _ iy +90°)
M, L ST, V, =olle =
—_— Y'Y\ i 2 j90°
v | = Vmsin(et+907) > =oLle'e’™ =
L " i .
h = JoLl;
V, = ljX,
Pure capacitive | v(t)=v_sinwt; ) AT
circuit .-r.
c=cfe_ T:_. VoL it _
i(t C dt c
W, 7, oC
* # | =0CV,, sin(ot +90°) 1
|| > __I J‘I’iefjgoo:
ve() o
R
J(oC
VC = I(_ch)
Example 4.1

Given: i(t) = 2,3sin (314t — 35°) A; XL =55 Q.
Calculate the complex voltage across resistor using Ohm’s Law in complex
notation. Write answer in the time domain.

Solution: The current amplitude in complex form is Im=2.32""" Apply

Ohm’s Law:

V=1 -jX, =2,37% . j55=2,3e7% . 550)% = 126,50)% %) =126,50% V/,

The voltage in the time domain is v(t) = 126,5sin(314t + 55°) V.
The Fig. 4.1 below demonstrates the phasor diagram for voltage and current.
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55°

35°

>
+1

I
Fig. 4.1. Phase diagram

Example 4.2

Given: v(t) = 380sin (314t - 27°) V; Xc = 38 Q.

Calculate the complex current through capacitor using Ohm’s Law in complex
notation. Write answer in the time domain.

Solution: The voltage amplitude in complex form is Vm =380 Apply
Ohm’s Law:

;Y :380f_e-127°:380ef"207°:1Oej<-zmoo>zloe,-sao A
" —jX.  —j38 38e1%

The current in the time domain is i(t) = 10sin(314t + 63°) A.
Fig. 4.2 demonstrates the phasor diagram of voltage and current.

Fig. 4.2. Phasor diagram of voltage and current

SUMMARY:

— an angle between voltage and current on the phasor diagram for pure
resistive element is zero (voltage and current phasors have the same directions), that
represents zero phase difference in a pure resistive circuit (voltage and current are in
phase);
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— an angle between voltage and current on the phasor diagram for pure
inductive element is equal to 90°, that represents phase difference of 90° for a pure
inductive circuit (in terms of electrical circuits: voltage leads current by 90°);

— an angle between voltage and current on the phasor diagram for pure
capacitive element is equal to (— 90°), that represents phase difference of — 90° for a
pure capacitive circuit (in terms of electrical circuits: voltage lags current by 90°).

SELF-ASSESSMENT TEST:

1. Voltage across the pure resistive element R = 5,7 Q is v(t) = 17,1sin(wt +
+ 30°) V. Define current, using Ohm’s Law in complex form. What is the current
phase shift?

2. Current through the pure inductive element L =0,1 His i(t) = 17,1sin(50t —
— 15°) A. Define complex voltage across inductor and draw the vector diagram.

3. Current through the pure capacitive element C = 0,1 pF is i(t) = 14,1sin(50t —
—45°) A. Define complex voltage across capacitor and draw the vector diagram.

4. Define complex voltage across inductor and draw the vector diagram if the
current i(t) = 17,1sin(100t + 75°) A.

5. IMPEDANCE CONCEPT

Practically each circuit may be represented by its impedance. Impedance is
the opposition that circuit element presents to current in phasor domain. The symbol
for impedance is the letter Z and the unit is the ohm (Q).

In general, the impedance of the element is the ratio of voltage phasor across it
to its current phasor:

Z :\T/' ohm. (5.1)

Formula (5.1) presents Ohm’s Law in complex notation for AC Circuit.
Since voltage and current in expression (5.2) are complex, Z is also complex:

Z=-—=—_—=zelw ¥ —zel0 (5.2)

v Ve j‘VV
|’ le Jvi

where ¢ — is phase difference between voltage and current.
Impedance for the basic circuit elements R, L, C:
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ZR =R;
Z|_ =j(D|_;
Zc = —j(1/0C).

Note: Although Z is a complex number, it is not a phasor since it does not
represent a sin wave quantity.

SUMMARY:

— Impedance is the opposition to current flow in an AC circuit;

— impedance is complex number, but is not the sinusoidal quantity;

— the argument of impedance phasor is phase shift between voltage across any
element and current through it.

SELF-ASSESSMENT TEST:

1. Formulate the general formula for Ohm’s Law for AC circuit in complex
notation.

2. Express impedance in complex form.

3. Call impedance for purely resistive, purely inductive and purely capacitive
elements.

6. AC SERIES AND PARALLEL CIRCUITS
6.1. Series Configuration. The KVL in the Complex Form
We can apply KVL for series connection of resistor, inductor and capacitor,

since the overall properties of series AC circuits (Fig. 6.1) are the same as those for
dc circuits:

V=V, +V, +V.. (6.1)
—Ip R X X
,,_:'_KW\_| l_,
Ve | 4
7 >

Fig. 6.1. The series R-L-C circuit
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After substitution Ohm’s Law in complex form for resistor, inductor and
capacitor into expression 6.1 we obtain the following formula:

Vo=[-R+1-jX +1-(=jX)=1-[R+ jX_ - jX.], (6.2)

where expression in square brackets (see formula (6.2)) Z=R + jX_— jXc =R + j(X_ -
— Xc) is called the total impedance of series circuit;

theterm X =X_ — Xc is called the total reactance.

Thus, the total impedance

Z=R= jX. (6.3)

Formula (6.3) represents the total impedance in rectangular form, in that the
real part R is the total of all resistance looking into the input terminal of the circuit;
the imaginary part X is the difference between the total inductive and capacitive
reactance.

Fig. 6.2 illustrates the phasor diagram for series R-L-C circuit.

+7 A

4 . Voltage
The phasor A _ 1 triangle

sum

-
+1

Fig. 6.2. The phasor diagram for series R-L-C circuit

The total reactance will be positive (X > 0) if the inductive reactance is greater
than the capacitive reactance X, > Xc;

The total reactance will be negative(X < 0) if the inductive reactance is less
than the capacitive reactance X_ < Xc.

Note: In an AC series circuit the current is common to each element of one and
therefore it is taken as a reference phasor.
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The phasor diagram indicates that current I is in phase with the voltage across
the resistor, lags the voltage across the inductor by 90° and leads the voltage across
the capacitor by 90°.

The hatched area on Fig. 6.2 is called voltage triangle.

If each side of the voltage triangle will be divided by the current 7 the diagram
of Fig. 6.3 is obtained, which is called an impedance triangle.

%X
¢

R

Fig. 6.3. An impedance triangle

The angle ¢ (Fig. 6.3) is the phase difference between the input voltage and
current. From geometry of the impedance triangle it is seen the following
relationships:

Z =R*+ X?%;
R=2Zcoso
X =Zsing

! (6.4)

= arct é
¢ gR°

Example 6.1

Given: for series R-L-C circuit: R=5Q, X, =17 Q, Xc =7 Q.

a) Express the total impedance.

b) Determine its magnitude and phase angle.

Solution:

a) Z=R + jXL— jXc=5+j17 —j7 =5 + j10 Q. This expression is the total
Impedance in the rectangular form.

b) To determining its magnitude it is possible to convert complex number from
rectangular to polar form or use formulas (6.4):

Z =JR?*+ X2 =+/52 +10? =/25+100 =1118 Q.
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Then find phase angle o:
Q= arctgé = arctgE =arctg?2 =63,43°.
R 5
Note the total impedance in polar form:
Z=1118e"%% Q.

Example 6.2
Given: R=25Q: X, =75 Q:; [ =320 A,
Find: V¢, Vr; V for the circuit below.

I, R X
|48 |
: >
Vi

Draw phasor diagram.
Solution:

1. Determine the total resistance: Z =R + jX_ = 2,5 +j7,5 = 7,9el"9°Q.

2. Using Ohm’s Law in complex notation define:
a) total voltage across the circuit:

V, =12=3,2e71%".7,0e)718" = 25 28 131%° v/,
b) voltage across resistor:
Vo =IR=32e14".25 = g ¥ v

¢) voltage across inductor:

Vi, = ijX, =3,2e714° . j7,5 =3 26714 .7,5019" 24 ¢I5° /.
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3. The phasor diagram is shown below (Fig. 6.4).

5] |
Vi
vy
Wy =31.6° _
v, = —40° 1
Vg
I

Fig. 6.4. The phasor diagram

SUMMARY:

— for AC series circuit the KVL is correctly written in complex notation;

— the total impedance is the complex sum of total resistance and total
reactance looking into input circuit’s terminals; in rectangular form the real part of
that complex number is total resistance an d the imaginary part is the total reactance;

— the argument of the total impedance is phase angle between total voltage
current through the circuit.

SELF-ASSESSMENT TEST:

1. Write down the expression of Ohm’s Law for AC series circuit in complex
form.

2. Write down the expression of the KVL for AC series circuit in complex
form.

3. Draw phasor diagram for series R-L-C configuration.

4. Write down the total impedance for series circuit in complex form.

5. Draw an impedance triangle.

6. How to calculate impedance magnitude and the phase angle.

7. Note all known relationships for Z, R, X, Xc and ¢, that are determined from
Impedance triangle geometry.
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6.2. Parallel Configuration. The KCL in the Complex Form

We can apply KCL for parallel connection of resistor, inductor and capacitor,
since the overall properties of parallel AC circuits (Fig. 6.5) are the same as those for
DC circuits:

=T+ +1,. (6.5)

Fig. 6.5. The parallel R-L-C circuit

After substitution Ohm’s Law in complex form for resistor, inductor and
capacitor into expression (6.5) we obtain the following formula:

%V V. _yl, L, 1

[ =—+—+— _ :
JXL _JXC R JXL _JXC

t

)=V[g - jb_+ jb.]. (6.6)

where expression in square brackets (see formula (6.6)) Y=g — jb. + joc = g —
—j(bL — be) is the total conductance of parallel circuit, often called an admittance;

g is the admittance of a resistor R and it is called conductance;

brand bc are called an inductive and a capacitive susceptance
correspondingly;

b = b_— bc is the total susceptance.

Thus

Y=g+jb. (6.7)
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Formula (6.7) represents the total admittance in rectangular form, in that the
real part g is the total of all conductance looking into the input terminal of the circuit;
the imaginary part b is the difference between the total inductive and capacitive
susceptance. The total susceptance will be positive (b > 0) if the inductive
susceptance is greater than the capacitive susceptance b, > bc. The total susceptance
will be negative (b < 0) if the inductive susceptance is less than the capacitive
susceptance b, < be.

Fig. 6.6 illustrates phasor diagram for parallel circuit R-L-C.

+jA

Fig. 6.6. The phasor diagram for parallel circuit R-L-C

Note: in an AC parallel circuit the voltage is common to each element of one
and therefore taken as a reference phasor.

The phasor diagram indicates that current I is in phase with the voltage across
the resistor, lags the voltage across the inductor by 90° and leads the voltage across
the capacitor by 90°.

The hatched area on Fig. 6.6 is called current triangle. If each side of the
current triangle will be divided by the voltage V the diagram of Fig. 6.7 is obtained,
which is called an admittance triangle.

¢
Nb

Fig. 6.7. An admittance triangle

The angle ¢ is the phase difference between the input voltage and total current.
From geometry of the admittance triangle it is seen the following relationships:
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Y =g°+b?;
g=Ycos(p}

b=Ysing |’ (6.8)

b
¢ =arctg—.
9

SUMMARY::

— for AC parallel circuit the KCL is correctly written in complex notation;

— the total admittance is the complex sum of total conductance and total
susceptance looking into input circuit’s terminals; in rectangular form the real part of
that complex number is total conductance an d the imaginary part is the total
susceptance;

— the argument of the total admittance is phase angle between input voltage
and input current.

SELF-ASSESSMENT TEST:
1. Write down the expression of Ohm’s Law for AC parallel circuit in complex
form.

2. Write down the expression of the KCL for AC parallel circuit in complex
form.

3. Draw phasor diagram for parallel R-L-C configuration.

4. Write down the total admittance for parallel circuit in complex form.

5. Draw an admittance triangle.

6. How to calculate admittance magnitude and the phase angle.

7. Note all known relationships for Y, g, b., bc and o, that are determined from
admittance triangle geometry.

/. POWER IN COMPLEX FORM. THE POWER TRIANGLE

When complex voltage V =V -e'* exists across load Z and complex current

| =1-e™ flows through it (Fig. 7.1) the complex apparent powers is equal to:

*

S=VI, (7.1)

where | =].e i iscomplex conjugate of current /.
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Fig. 7.1. Section of an electrical circuit

Therefore
S :Vej\VVIe_j\Vi :Vlej(Wv_Wi) — SeJ(P VA’ (7.2)

where ¢ — phase angle between an input voltage and an input current in a complex
AC circuit.

Formula (7.2) expresses complex power in polar form. Power relationship may
be written in rectangular form:

S=P+jQ V-A, (7.3)

where P — is active power in an AC circuit; Q — is reactive power in an AC circuit.

If a circuit is inductive Q is positive and «+» is used before Q in the formula
(6.7). If a circuit is capacitive Q is negative and «—» is used before Q in the
expression (6.7).

If each side of the voltage triangle (see Fig. 6.2) is multiplied by 7, the power
triangle will be obtained. Fig. 7.2 illustrates it. Each side of this triangle represents a
particular type of power.

P
¢ <0

0 ; 0

¢>0
P

a b
Fig. 7.2. Power triangle for inductive and capacitive load:
a — power triangle for inductive load; b — power triangle for capacitive load
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The phase angle is positive (¢ > 0) in the case of inductive load and negative
(¢ <0) in the case of capacitive load.

If a network has both capacitive and inductive elements, the reactive
component of the power triangle will be determined by the difference between the
reactive power delivered to each.

If QL > Qc, the resultant power triangle will be similar to Fig. 7.2, a.

If Qc > Q, the resultant power triangle will be similar to Fig. 7.2, b.

Fig. 7.2 (a) and (b) demonstrates that the three powers are related by the

Pythagorean theorem, that is:
S=4P?+Q% V-A;
P=VIcosp=Scosp Wt; (7.4)

Q=VlIsinp=Ssingp VAr.

Phase angle ¢ is determined by:

q):arctg%. (7.5)

Power factor is:
CoS @ = g (7.6)

Example 7.1

Given: The current through the series R-L-C circuit is equal 7 = 0,15eP” A;
R=8 Q; XL =6,5Q; Xc =17 Q.

Find: a) active and reactive power for each element of the circuit; b) the
apparent power supplied by the generator; c) the generator voltage; d) the phase angle
and power factor; €) draw phasor diagram.

Solution:
a) Power delivered in the resistive element:

P=1°R=0,15"-8=0,18 Wt.
Reactive power in the inductance:

Q =1°X_=0,15"-6,5=0,146 VAr.
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Reactive power in the capacitance:

Q. =1°X_.=0,15*-17=0,383 VAr.
C C

The total reactive power:

Q =0Q, —Q.=0,146-0,383=-0,237 VAr.

The negative sign of total reactive power indicates about capacitive character
of the original circuit.
b) Apparent power is as follows in both complex forms:

S=P-jQ =0,18—j0,237=0,298e 1% VA,

c) Determine the source voltage using two methods:

The 1% method: according Ohm’s Law: V= IZ, where
Z=R+ j(X —X.)=8+j(6,5-17)=8- j10,5=13,2e 1% ;
V =0,156/%.13,2¢ 1% =1,98¢ 12 V.

The 2"Y method: use formula (7.1):

where complex conjugate of current is | =0,15-e71%,

. -3 _
V :% :1,986_123 V
,L0€

d) The phase angle between the source voltage and the current is the argument
of the both: total impedance and apparent power in the polar form. So ¢ = — 53°.
The negative angle is referred for capacitive case of the circuit.
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Power factor, according to (7.6):

cos(ngzﬁzo,ﬁ
S 0,298

e) Draw phasor voltage diagram for series R-L-C circuit in chosen scale:
my = 0,2 V/Sm. For this purpose calculate modules of Vg, V. and Vc:

V,=IR=0,15-8=12 V;
V., =IX =015-6.5=0,975 V;

V. =1X.=015-17=2,55 V.
The phasor diagram is shown in the figure below.

—j A

N Y=220
¢=-52""~__

SUMMARY:

— the components of complex apparent power are average (or active) power
and reactive power;

— the argument of complex apparent power is phase angle, that is positive for
inductive load and is negative for capacitive load;

— the power triangle demonstrates relationships between power components.
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SELF-ASSESSMENT TEST:

1. Write down two complex notations of apparent power: in polar and in
rectangular forms.

2. Note the relationships between P, Q and S, using power triangle.

3. Define phase angle ¢, using power triangle, if P, Q, S are given.

8. RESONANCE
8.1. Introduction

The resonance is very important mode of operation of electrical circuits, because
resonant circuits are widely adopted in electrical and electronic systems today.

e(1)

Fig. 8.1. The general representation of resonant circuit

The resonant electrical circuit must have both inductance and capacitance.

When the voltage V applied to an electrical network containing resistance,
inductance and capacitance is in phase with the resulting current I, the circuit is
said to be resonant.

There are two types of resonant circuits: series and parallel. Each of them will

be considered in detail.

8.2. Series Resonance. The Resonant Condition

Fig. 8.2 illustrates the basic configuration for series resonant circuit, that consists of
a resistor, an inductor and a capacitor. The total impedance of this circuit is

Z =R+ jX_— jXc =R+ j(X_—X.).
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;. R x. X
. I:l N TY "‘.4'

Va Vi Ve
- -
Ve

Fig. 8.2. The series resonant circuit
Resonance occurs when the total reactance of the circuit is equal to zero:
X=X - Xc=0.
So the resonant condition is

XL = Xe. (8.1)

Conclusion:

— the zero reactive component of the total impedance means that a total
impedance is purely resistive: Z; = R;

— impedance Z has a minimum value at resonance.

8.3. Series Resonance. The Resonant Frequency

Since X, =2afL and X_= at resonance 2xf,L = L
2nfC 2nf,C
Thus
f, = 1 _.
0o~ 1
2n+/LC
1 (8.2)
Oy =—F—.
° JLc

where f, — resonant frequency in Hertz; oo — the resonant angular velocity in rad/s.
The subscript 0 in the above equations indicates that the frequency determined
is the series resonant frequency.
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Example 8.1

Calculate: a) the resonant frequency and b) total impedance in resonance of a
series circuit consisting of a resistor 3 €, inductor 20 mH and capacitor 165 mF.

Solution:

1 1
a) f, = =
" 2nJLC  27420-102-165-10°°

0, =2mn- f,=2n-87,6=550,5 rad/s.

=87,6 Hz;

0) The total impedance is resistive: Z; =R = 3 Q.
8.4. Series Resonance. Current at Resonance

Since impedance at resonance has a minimum value (Z = R) so the current at
resonance has a maximum value:

=Y (8.3)
R

Above and below resonance, the current decreases because the impedance
increases. Fig. 8.3 (a and b) shows total impedance and current versus frequency.

Z Ia
IZ‘iﬂT_—_

ZE‘E.‘VE_ _ —

|

I

|

|

|

|

|
£ / JA f
Fig. 8.3. Impedance (a) and current (b) versus frequency
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8.5. Series Resonance. Voltages at Resonance. Phasor Diagram at Resonance
As the current is the same through each element of series circuit (including
capacitor and inductor) and X_ = Xc, the voltage across inductor and across capacitor
is equal in magnitude:
V|_ = Vc.
The voltage across inductor and across capacitor in a complex notation are:
Vi=1jX, =1X_-e®;

Ve =I(=jXo)=1X-e %,

Phasor diagram (Fig. 8.4) illustrates that Vi.and V¢ are opposite in phase.

/A
+
|8 . _
r—
- _|_ 1
] 1
v/

Fig. 8.4. Phasor diagram for the series resonance circuit

It is clearly from phasor diagram that:
— the input voltage of the series resonance circuit is equal to the voltage across

resistor in the magnitude and phase angle: Vin=Vr ;

— Vin; Vr and | are in phase at resonance.

43



Example 8.2

A series circuit consists of a resistor 70 Q, inductor 10 mH and capacitor 95 nF.
Supply voltage is 49 V. Determine: a) the current; b) the voltage across the inductor
and across the resistor.

Solution:

a) Current at resonance is determined using Ohm’s Law:

i:\i:4—9:0,7 A.
R 70

At beginning calculate resonant frequency and inductive reactance:

1 1
JLC  10-10%.95.10°°

X, =0,L=3,24-10*-10-10"°=324,4 Q.

®, =3,24-10* rad/s;

Using Ohm’s Law calculate the voltage across inductor:

V=IX =0,7-324,4=227 V.

Note: This is 4.6 times greater than the supply voltage. The voltage across
resistor is equal to the supply voltage Vk = Vgyppiy =49 V.

8.6. X, Xc and Z; Versus Frequency in the Series Resonant Circuit

Reactance X., Xc, total reactance X and impedance Z; are functions of
frequency. Their magnitudes versus frequency (and angular velocity) are:

X, =obL=2nfL;

_1_1.

¢ oC 2xfC’
X:XL—XC:wL—i:2nfL— L ;
oC 2nfC

Z, = JR?+ (X — X.) :\/RZ +(@L—$)2 :\/R2+(2nfL—ﬁ)2.
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The curves of the Fig. 8.5 illustrates how these quantities change with
frequency:
— resistance R isn’t function of frequency;

— since X_ is directly proportional to frequency, so the curve of X.(f) is
straight line;

— Xcis inversely proportional to frequency, so the curve of Xc(f) is hyperbola;

— the point, where X_ = Xc, defines the condition of resonance and resonant
frequency;

— as at resonant frequency X = Xc, the total reactance is 0 and the curve of the
total reactance X( f) passes through 0 at f =fy, and Z; = R and has its minimum value.

X, %

X<0
Xe=Xp
circuit is
Y capacitive

Z=R
circuit is
resistive

X1>Xo)
circuit is
inductive

Fig. 8.5. X, Xc and Z; versus frequency in the series resonant circuit.

At frequencies less than fo, X_. < Xc and the circuit is capacitive. At
frequencies greater than fo, X, > Xc and the circuit is inductive.
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8.7. Phase Angle as a Function of Angular Frequency

At frequencies less then fo, Xc > X, and the current leads the input voltage, as
indicated in Figure above. The phase angle decreases as the frequency approaches the
resonant value and is 0° at resonance. At frequencies more then fp, X, > Xc, and the
current lags the source voltage. As the frequency goes higher, the phase angle
approaches 90° (Fig. 8.6).

A

+90°f— — — — — — = = =

900 - — — — — — —

voltage and current are in phase
at resonant

Fig. 8.6. Phase difference versus frequency
8.8. The Quality Factor (Q) or Q-factor

Q-factor is a qualitative characteristic of merit for a resonant device such as
an R-L-C circuit. Q-factor is an abbreviation for quality factor and refers to the
‘goodness’ of a reactive component. The quality factor is also an indication of how
much energy is placed in storage (continual transfer from one reactive element to the
other) compared to that dissipated.

For any resonant circuit, Q-factor is defined as the ratio of reactive power to
average power:

Q_Q_I'X, _IPXe X, _ X (8.4)

"5 %P TR TR "R R

Hence
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V. Ve
Q=== R Ty v (8.5)

From formula (8.5) follows:

V, =V,Q=V,Q;
(8.6)
V. =V;Q=V, Q.

As Q-factor can have a value of several hundreds at resonance, so voltages V.
and Vc may be much greater than that of the supply voltage Vi,. For this reason,
Q-factor is often called the circuit magnification factor.

For series resonant circuits used in communication systems, Q-factor is usually
greater than 1. Resonance is usually of interest only in circuits of Q-factor greater
than about 10.

As follows from aforesaid one of practical application of series resonance
circuit is as the voltage amplifier.

Example 8.3
In the series circuit at resonance condition R = 10 Q; X_ = X¢c = 560 Q and
Vin = 15 V. Determine: Q-factor; V_ and Vc.
X, 560

Solution: Q=" =—==56; V, =V =V,Q=15-56=840 V.

8.9. VR, Vi, Vc Versus Frequency

Current, voltages across resistor, inductor and capacitor versus frequency.
Diagrams of Fig. 8.7 illustrates voltages across resistor, inductor and capacitor
against frequency for series resonant circuit. Observation shows that:

— the curve Vg(f) has the same shape as the curve I(f) and at resonant
frequency f, the value of Vris equal to Viy;

— the curve V. (f) changes from zero to its maximum at frequency after
resonance. After reaching its peak value the voltage V. will drop toward Viy;

— the curve V¢(f) changes from value equal to Vi, at zero frequency. Its peak
value will occur at a frequency just before resonance. After reaching its maximum the
voltage Vc will drop in magnitude to zero.
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Fig. 8.7. Versus frequency

8.10. Characteristic Reactance

The value of inductive and capacitive reactance at resonant frequency is called
characteristic reactance and is indicated by letter p and has unit of Ohm (Q)

p=X_=X¢.

Let substitute the formula for w, to the expressions of inductive and capacitive
reactance and obtain the following

1 \/LC L
*eToc ¢ N\c

- @ (8.7)

= (8.8)
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8.11. Bandwidth

Fig. 8.8 shows the range of frequencies at which the current is not greater than
0,707 of the maximum current. This definite range of frequencies is called the
bandwidth (abbreviated BW).

The BW is the range of frequencies for which the current is equal or greater
than 0,707 of its maximum value at resonance.

The frequencies corresponding to 0,707 of the maximum current are called
critical frequencies, cut off frequencies, or half — power frequencies and indicated as
fl and fz.

IA
Imax' ______
0,707t ———> | -2
|
| [ |
B I
on
1 : |
ff f, f

Fig. 8.8. Resonant current curve and bandwidth
The BW is the difference between f, and f;:
BW=f,—f. (8.9)

Ideally the resonant frequency is located in the center between f; and f,. So it
can be calculated as follows:

f+ 1, (8.10)

The BW is an important characteristic of a resonant circuit. A series resonance
circuit that has a narrow BW is the circuit with large Q-factor.
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Example 8.4

A certain series resonant circuit has a maximum current of 100 mA at f, and
cut of frequency f; = 8 kHz and f, = 12 kHz.

Find: the value of current at this critical frequencies; BW; fo.

Solution:

The current at the critical frequencies:

It = 12 = 0,707 Imax = 70,7 MA,;
BW=f,-fi=12-8=4kHz,
_f+f, 1248
==t

f, =10 kHz.

8.12. Selectivity

The curve in Fig. 8.9 is called selectivity curve.

|A
Imax' ______
0,707~ | -
| : |
L
. | .
0 f, f, f, f

Fig. 8.9. The selectivity curve

This term is derived from the fact that only frequencies around fo will permit
significant amounts of power to be dissipated by the circuit (examine the selectivity
curve of Fig. 8.9).

Selectivity is the ability of a resonant circuit to respond to a signal of certain
frequency and discriminate against all other.

The response becomes progressively weaker as the frequency departs from the
resonant frequency. Discrimination against other signals becomes more pronounced
as circuit losses are reduced, in other words, as the Q-factor is increased.
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Thus

IS a measure of the circuit selectivity in terms of the points on each side of resonance
where the circuit current has fallen to 0,707 of its maximum value reached at
resonance.

The higher the Q-factor, the narrower the bandwidth and the more selective is
the circuit.

SUMMARY:

— at series resonance, the inductive and capacitive reactances are equal in
magnitude;

— the impedance of a series R-L-C circuit is purely resistive at resonance;

— in a series R-L-C circuit the current is maximum and in phase with input
voltage at resonance;

— the voltages V. and V¢ are equal in magnitude and 180° out of phase,
therefore they cancel each other;

— the bandwidth of a series resonant circuit is the range of frequencies for
which the current is 0,707 of I Or greater;

— a higher Q-factor produces a narrower bandwidth.

SELF-ASSESSMENT TEST:

1. What is the condition for series resonance?

2. State the formula for resonant frequency.

3. Is the impedance minimum or maximum at series resonance?

4. Why is the current maximum at resonance?

5. State the relation between Vg, Vi, Vc, Via at series resonance and plot their
graphs: Vr(f), VL(f), Vc(f).

6. Explain the behavior of reactance X, X¢, X; and Z versus frequency and plot
their graphs.

7. State the formula for bandwidth.

8. Explain how the Q-factor affects the bandwidth.
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8.13. Parallel Resonance. Resonance at an Ideal Parallel Circuit

Fig. 8.10 illustrates an ideal parallel resonant circuit and the phasor diagram for
resonant state. In an ideal case resistors are not present at both inductive and
capacitive branches. In other words, an inductor and a capacitor are considered as
pure elements. Resonant condition for ideal parallel circuit is the same as for series
one: X. = Xc.

150 Ica
I o |He
= =' | >
v L3S TC v
\& T
L -

"
-
—

t—.‘

Fig. 8.10. An ideal parallel circuit and phasor diagram at resonance

Hence the resonant frequency is the same as in the series case

1
f, = ;
21JLC
: (8.11)
T
° JLC

Conclusion:

— when the parallel resonance occurs, the two branch currents Ic and I, are
equal in magnitude and 180°out of phase with each other;

— S0 the total input current is equal to zero;

— at resonance current circulates within the closed L—C loop only;

— the case of Iy = 0 means that the total impedance of ideal parallel circuit is
infinitely large at resonance. And the circuit’s behavior is as an open circuit.

8.14. An Almost Ideal Parallel Circuit

Consider admittance Versus Frequency. Fig. 8.11 shows an almost ideal
circuit, since one of the parallel branches contains the pure resistive element.
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Fig. 8.11. An almost ideal parallel circuit

The admittance of each parallel branch is determined as following:
— resistive conductance:

g= L
R )
— inductive admittance:
p —— -
X, oL
— capacitive admittance:
b. = _l = joC
_JXC

The total circuit admittance:
. i ) 1
Y=0+ J(bc _bL): g+ J((DC__)-
oL

According to resonance definition, the circuit is in resonance when phase angle
between input voltage and current is equal to zero. It has place when the imaginary
part of the total circuit admittance is zero:

mC—i:O or wC:i.
ol ol
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Hence the total circuit admittance is minimum and equal to the resistive
conductance

Y= g :% IS min. (8.12)

Formula (8.12) represents the condition for parallel resonance in an almost
ideal circuit.

The condition of minimum admittance means the maximum of total impedance and
consequently the minimum of the total input current of parallel circuit at the resonance

Z===R IS max;

t

=VY is min.

NI< «Qlkr

A
bc , ;_)1

g____

- i -
|]_)z = bch ‘bc- > Zl‘

circuit is | circuit is

PR L
mductrvc*l capacitive

Fig. 8.12. Inductive, capacitive and the total circuit admittance versus frequency

Fig. 8.12 shows graphs of bc, by, g and Y versus frequency. At the point of fo,
bc and by are equal in magnitude and Y = g (the resonant circuit behaves itself as a
resistor element).
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8.15. A Practical Parallel Resonant Circuit. Condition of Resonance

Fig. 8.13 illustrates the case of practical network that includes a real coil of
inductance (R; — L) in parallel with capacitance and resistance (R, — C).

Consider an admittance of each parallel branch:

— admittance of branch 1:

Y'_i_ 1 _Rl_jXL_ Rl i XL .
1=—= Y D2 Y 2 152 20
Z: R+ X R +X[ R +X{ R+ X!

— admittance of branch 2:

ool 1 ReiXe R X
5 R-iXe RI+XZ RI+XZ RI+X:
I,
g
Ry R
-
L T
]

Fig. 8.13. The practical parallel resonance network

The total circuit admittance:

R

1 —_—

XL RZ XC
RZ+ X/

+ + ] =
RE+ X2 RI+X2 R4 X?

Y.1+Y.2= j

__R R
R+ X2 RE4X?
L 2 C

XL XC )

_J(Rf+x5_R§+x§
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For resonant condition the imaginary part of the total network admittance must
be equal to zero, hence

X, X ~0
RE+ X2 RE+XZ
or
X, X, (8.13)

RI+ X2 RZ+XZ

Expression (8.13) is the condition of parallel resonance at practical network.
At resonance

1
ol  ~ oC (8.14)
R12+((Dr|_)2 R2+(i)2’
> *e.C

r

where o,— is the resonant angular velocity of parallel practical network.
Rearranging of (8.14) gives

(8.15)

where wo and p — are resonant angular velocity of ideal network and characteristic
reactance accordantly.
And resonant frequency

¢ _ 9 R/ —p? (8.16)
" 2n\|RZ-p*’
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8.16. Q-factor and Bandwidth in a Parallel Network

As was mentioned in section 8.12 currents circulate within the parallel
branches of a parallel resonant circuit: the current leavs the capacitor and produces
the magnetic field of the inductance, then it collapsis and rechargs the capacitor, and
so on. These currents are higher than the input current.

The Q-factor of a parallel resonant circuit is the ratio of the current circulating
in the parallel branches of the circuit to the supply current, i. e. in a parallel circuit,
Q-factor is a measure of the current magnification:

| .
Q:f:f' (8.17)

Currents in parallel branches (I, and I,) may be several hundreds of times
greater than the supply current at resonance. The formula of Q-factor for parallel
circuit is the same as for series one.

The expression used for calculating of BW in the series circuit also applied to
parallel circuit:

where f; and f, — are cut off frequencies and are defined by the condition that the
output voltage is 0,707 times the maximum value.

8.17. V, I, lc, It Versus Frequency
Fig. 8.14 shows that currents in parallel branches are more higher than supply

current and are equal in magnitude at resonance. The total current reaches to its
minimum value at resonant frequency.
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Fig. 8.14. The currents in parallel branches and voltage versus frequency

8.18. Phase Angle Versus Frequency

At low frequencies (Fig. 8.15), the capacitive reactance is quite high, and the
inductive reactance is low. Since the elements are in parallel, the total impedance at
low frequencies will therefore be inductive.

At high frequencies, the reverse is true, and the network is capacitive. At
resonance ( f;), the network appears resistive.

q)l

+90°

—90°|
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Example 8.5

Given: 1= 45 mA; R =750 Q; C =4 uF; L =8 mH. Find: a) the resonant
frequencies: wo and fo; b) Vin; €) Ix, I, Ic; d) Q factor; ) BW.

INR L
I(D I‘/MDR:C L

\J

Solution:
a) As the circuit of Figure above is the almost ideal network the resonant
frequencies wg and fo are determined by expressions (8.15):

1 1

= = =5,6-10° rad/s;
JLC  8.10°.4.10°°

Wy

3
f o9 20107 _g91 5 1,

° om 21

b) In parallel circuit Vi, = Vr = V¢ = Vi, hence
Vin=1-R=45-750-10°=337 V.

c) At resonance:  Jz =1 = 4,5 mA;

Vin _ Vi _ 3317561 ma,
Z, jX_ 56-10°.8-10%e!

L=
L

lc =75’ mA.

d)o=R ™ 157
X 448

&) BW=1o 2897 _5ao 1y
Q 7
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Example 8.6

Given: the coil of inductor and capacitor are connected in parallel; V=18 V;
Rc. =40 Q; L. =0,45 H; C = 20 uF. Find: a) the resonant frequency f; b) Q-factor.

1, Re Ipg
2
V . j— LC

Solution:
a) For the circuit of Figure above we will use formula (8.16):

- - ~51,13 Hz.
2n/LC | L 2m0,45-20.10°
C
2nf L 1445
b) Q== -T2 36,
) Q=" =0

C

Alternatively, Q-factor at resonance is a current magnification (for a parallel
circuit) equal to I¢/lg:

ol _VeC _18-0,00642
L, 0,032

The same result was obtained above.

SUMMARY:

— at parallel resonance, the admittances of inductive and capacitive branches
are equal in magnitude;

— the total impedance of an ideal parallel resonant circuit is infinite quantity at
resonance;

— 50 the input current in an ideal circuit is zero at resonance;

— the total impedance of a practical parallel resonant circuit is resistive and
has its maximum value at resonance;
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— so the input current in a practical resonant circuit is minimum at f = f,;

— the bandwidth and Q-factor of a parallel resonant circuit are determined
using the same expressions as for series circuit;

— in a parallel circuit the Q-factor is a measure of current magnification,
whereas in a series circuit it is a measure of voltage magnification.

SELF-ASSESSMENT TEST:

1. What is the condition for parallel resonance: a) in an ideal parallel circuit;
b) in a practical parallel network?

2. State the formula for resonant frequency: a) in an ideal parallel circuit; b) in
a practical parallel network?

3. Are currents in parallel branches of an ideal resonant circuit cancel each
other?

4. Is the impedance minimum or maximum at parallel resonance?

5. Why is the input current equal to zero in an ideal parallel circuit at f = f,?

6. What is the difference between fy and f; in the case of parallel resonance?

7. Why is the current minimum at parallel resonance in a practical circuit?

8. State the relation between I, Iy, Ic, Vi, at parallel resonance and plot their
graphs: Vin(f), 1.(f), Ic(f), ().

9. Explain the behavior of admittances by, bc, b and Y versus frequency and
plot their graphs.

10. State the formula for Q-factor and bandwidth.

9. AC CIRCUIT. TASKS

Task Nel
1.1. Determine the periodic time for the following frequencies:
a) 10 Hz; b) 250 Hz; ¢) 80 kHz.
1.2. Calculate the frequency for the following periodic times:
a) 2ms; b) 50 us; ¢) 0.04s.
Answer: 1.1: a)0,1s; b) 4 ms;c) 12,5 us.

1.2: a) 0,5 kHz; b) 20 kHz; c) 25 Hz.

Task No2

Two sinusoidal alternating quantities are represented by:

a) i(t) = 0,17sin(ot — 35°) A; b) v(t) = 54sin(3wt + 45°) V, where o = 200 rad/sec;
2.1. Comment on the relative magnitudes and frequencies of these quantities.
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2.2. Determine the frequency of quantity «b» and its instantaneous value at
t = 0: v(0).
2.3. State the period of quantity «b».
2.4. State its phase shifts.
2.5. State the phase relationship of «by» with respect to «a».
2.6. Determine RMS value for current and voltage.
Answer: 2.1: a) I, = 0,17 A, ® = 200 rad/sec; b) Vi = 54 V, ® = 600 rad/sec.
2.2: £=95,54 Hz; v(0) = 38,18 V.
2.3: T=0,01s.
2.4: yi=-35° yy, = 45°,
2.5 ¢ =y, —vyi=80°.
26:1=0,12A,V=383V.

Task Ne3
3.1. The current through a 3,7 Q resistor is indicated. Find the sinusoidal
expression for the voltage v(t) if i(t) = 2,5sin(314t — 110°) A;
3.2. The current through a 3,7 kQ resistor is indicated. Find the sinusoidal
expression for the voltage v(t) if i(t) = 0.025sin(314t + 60°) A.
Answer: 3.1: vg (t) = 9,25sin(314t— 110°) V;,
3.2: Vg (t) = 92,5sin(314t + 60°) V.

Task Ne4
The voltage across a 0.5 H coil is provided. Find the sinusoidal expressions for
the current across the coil:
4.1. v (t) = 165sin(100t — 37°) A;
4.2. v (t) = 95sin(100t + 115°) A.
Answer: 4.1:i(t) = 3,3sin(314t — 127°) A,
4.2:1(t) = 1,9sin(314t + 25°) A.

Task Ne5
The current through a 55 pF capacitor is given. Find the sinusoidal
expressions for the voltage across the capacitor:
5.1.i(t) = 0,54sin(7272t + 55°) A;
5.2.i(t) = 1,27sin(7272t + 10°) A.
Answer: 5.1: vg (t) = 9,25sin(314t — 110°) V;
5.2: g (t) = 92,5sin(314t + 60°) V.
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Task N6
Solve tasks Ne3-5 using complex algebra. Draw phasor representation for
complex voltages and currents.

Task Ne7

A coil of inductor with R =10 Q and L= 0,05 H is connected to voltage source,
RMS of thatis V =120 V and f = 50 Hz.

Define: a) the total complex impedance of the coil; b) the complex current
through the coil; c) phase difference between voltage and current; d) active, reactive
and apparent power; e) draw phasor diagram.

Answer: a) Z = 18,6e ° Q; b) [ = 6,45e PA; ¢c) ¢ = 57°; d) P = 416 W,
Q =653 V-Ar,S=773 V-A.

Task Ne8

The series connection of resistor R = 120 Q and capacitor C = 30 pF is
supplied by voltage source v(t) = 311sin314t V.

Define: a) the total complex circuit impedance; b) RMS voltage’s and current’s
values; ¢) phase difference between voltage and current; d) active and reactive power;
e) draw phasor diagram.

Answer: a) Z=160e *° Q; b) V=220V, 1 = 1,37 A;c) o =—41°;d) P =226 W,
Q=-210 V-Ar.

Task N9

A series circuit consists of a resistor, an inductor and a capacitor: R = 3 Q,
L =8 mH, C =15 uF. A voltage source V = 20 V, f = 500 Hz supplies that circuit.

Find: a) the complex current through the circuit; b) voltage through each
element; c) active power; d) draw phasor diagram.

Answer: a) [ = 4e 5°A; b) VR =12V, V. =101V, Vc=85V;c) P =48 W.

Task Ne10
Current through the series connection of resistor R = 12 Q, inductor X_ =20 Q
and capacitor Xc = 24 Q is equal to i(t) = 0,04sin314t A. Using complex algebra
define voltage across each element and total input voltage. Write down each voltage
as a function of time. Draw phasor diagram.
Answer: vg(t) = 0,48sin314t V; v, (t) = 0,8sin(314t + 90°) V;
ve(t) = 0,8sin(314t — 90°)V; Vinput(t) = 0,506sin(314t — 18,44°) V.
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Task M1l
Given: El =100 V, Ez =100e 530° V, Zl = Zg =50 + j30 Q, Z3: 100 Q.
Determine all currents using the method of superposition and active power,

delivered in the circuit.

64
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Answer: I; = 0,693e I°A; [,= 0,45e “#°A; [;=0,77e 12V'A; P = 93,2 W.

Task Mel12
Given: E=40V,R; =200Q,R,=160 Q, R3 =120 Q, R, =80 Q, Xc =60 Q.
Determine current of ammeter using Thevenin’s Theorem.

Do e [

Answer: I, =56 mA.

Task No13

Given: E=55V;R=5Q;R. =6 Q; L=10mH; C =1 uF.
Find the following quantities for the circuit of Figure below:
a) total impedance at resonance;

b) current at resonance;

c) resonant frequency expressed as o (rad/sec);

d) voltages: V. and Vc;

e) active and reactive powers: P, Qc and Qy;

f) Q-factor of the circuit.
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Answer: Z=11Q: I=5 A; o = 10 000 rad/sec; V= 100e " V: V¢ = 100e ¥ V:
P =275 W: Q. = Qc = 2500 VAr; Q-factor = 9,1.

Task Nel4

The series resonant circuit with Rgeii = 16 Q and L = 158 uH is at resonance
at frequency fo =1 MHz, Vi, =1,8 V.

Define the following quantities for that circuit:

a) the capacitance of this resonant circuit;

b) current at resonance;

¢) voltages: Viand V;

d) active power: P.

Answer: C = 160 pF; I =50 mA; V.=V =49,6 V; P =40 mW.

Task Nel5

The series circuit consists of a coil of inductance (Rcoi, Leoi) @and capacitor.
The supply voltage Vi, =35 V.

Define the voltage across the coil of inductor, if the capacitor voltage is equal
to 120 V.

Answer: Vi =125 V.

Task N216

For the series resonant CircuitR—L—-C: R=2Q , X, =Xc =10 Q

Find:

a) I, Vg, Vi, and V¢ at resonance, if supply voltage Vi, =10 V.

b) What is the Q-factor of the circuit?

c) If the resonant frequency is 5000 Hz, find the bandwidth.

d) What is the power dissipated in the circuit at the half-power frequencies (HPF)?
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Answer: | =5 A; Vk=10 V; V. = Vc =50V, Q-factor = 5; BW = 1000;
Pupr =25 W.

Task Nel7

The bandwidth of a series resonant circuit is 45 Hz; the resonant frequency is
1500 Hz.

Find:

a) the value of Q-factors;

b) the value of X, at resonance if R = 7,5 Q;

c) the inductance L and capacitance C of the circuit.

Answer: Q-factor = 33,3; X, =250 Q; L =26 mH; C = 0,42 uF.

Task N218

A series R-L-C circuit has a series resonant frequency of 16000 Hz. The circuit
resistance is 15 Q and inductive reactance X,_ = 900 Q.

Find:

a) the bandwidth;

b) the cut off frequencies.

Answer: BW = 266,7 Hz; f; = 15866,65 Hz and f, = 16133,35 Hz.

Task Ne19

Given:R=16Q; L =16 mH; C=0,42 uF; V;y=10 V.
Determine the following quantities for the circuit of Figure above:
a) the resonant frequency fo;

b) currents I, I, lc.

1%
lm

Vin RD L3 T

L

Answer: ®g =5000 rad/s; 1=0,625A; 1. =1,25A,Ic=1,25A.
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Task Ne20

The coil of inductance (Rcoii — Leoii) Of Figure below is connected with
capacitance C in parallel: Reoit = 11,2 Q ; Leoit =4 mH; C=2,5 uF.

Determine for that circuit:

a) the resonant frequency f;

b) the total impedance at resonance;

c) draw the phasor diagram at resonance.

L | I
Re
Vm C =
Le

Answer: f, =9600 Hz; Z; = 143 Q.
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