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ON THE MATRIX EQUATION FOR A SPIN 2 PARTICLE
IN PSEUDO-RIEMANNIAN SPACE-TIME

After the study by Pauli and Fierz [1, 2], the theory of massive and
massless fields with spin 2 has always attracted much attention [3-13].
Most of the studies were performed in the framework of 2-nd order differ-
ential equations. It is known that many specific difficulties may be avoided
if from the very beginning we start with 1-st order systems. Apparently, the
first systematic study of the theory of spin 2 fields within the first order
formalism was done by F. I. Fedorov [4]. It turns out that this description
requires a field function with 3 independent components. This theory was
re-discovered and improved by Regee [5]. In the present paper we develop
the theory of the spin 2 field, in both massive and massless variants, start-
ing from the matrix equation in Minkowski space-time and extending it to
the generally covariant theory within the Tetrode-Weyl-Fock-Ivanenko tet-
rad method.

We start with the known system of the first order equations for a mas-
sive spin 2 particle:
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where the field variables are scalar, vector, symmetric 2-rank tensor, and
3-rank skew-symmetric in two first indices tensor, m=iM . By excluding

the vector and the 3-rank tensor, we obtain the 2-nd order equations with
respect to the scalar and symmetric tensor:
©=0, (+M)D @) =0 Py =Ppay> P% =0, D, =0.  (2)

In massless case, the first order system reads
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From (3) we derive the 2-nd order equations for the massless field:
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Massless equations have a class of gauge solutions:

1
®=0L, ¢ =0L+o6L -_g L, (5)

| (ab) a b b a 2 ab |

where L, (x) stands for an arbitrary 4-vector. These special states do not

contribute to physically observable quantities, like the energy-momentum
tensor. The concomitant gauge components are as follows:
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The system (1) can be re-written in equivalent block form
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The corresponding matrix equation

(rai—m)‘}’(x):o, W={H;H;H H} (8)
aXa 1 2 3
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is extended to the Riemannian space-time in accordance with the tetrad
method. In a space-time with given metric, we fix a tetrad:

ds? = d.p ()dXx* dx?, Jup (X) = aya (X), Gyp (X) :1”|"J‘be(‘,ﬂ)OL (X)€ 8 (X), (9)

and then the generalized form gets written as follows
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where the local matrices I'* (x) are determined with the use of the tetrad
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and connection X_(X) is defined by relations
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where X (x)=J2eP (x)e X), i a Stand for
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the generators for the tensors @k, P (mn),Pmnyi. The equation (10) can be
presented by using the Ricci rotation coefficients

I_F°|(e°‘ (X) 0 +1Jaby \—mW‘P(x):O. (13)
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In block form, eq. (13) reads
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In the massless case, the system slightly changes:
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but its physical content is completely different. In particular, let us detail
tetrad representation for the gauge solutions:

®=V_ LX) = @®=e99 L +e* |
* 1 “T9  (@al o
& =VL+VL- 0 XV AP
( (@B) a B\ B o o ap p 1
—— © 4 g “ 0 AN - O.
@(ab) Ky[ca]b +Y[cb]a ‘L +e(a) aoc A(b) +e(b) a (a) igab_ (14)

The concomitant gauge components are determined by the formulas
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The covariant equation is symmetric under the local Lorentz group, in ac-
cordance with the following relations

Y'(x) = SX)W(x), Sx)I'“ gx)S T(x) =T “(Xx),
S(X)Z (X)STIX)+S(X)— Six)=yx",

(16)
o aXOL o

where the prime indicates that quantities are determined with the use of the
primed tetrad related to initial one by the local Lorentz transformation
eqy () =L, " (x) eF, (x). With respect to the coordinate transformation, the
field function W behaves as a scalar, x* —->x %, ¥(x) = ¥'(x).
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