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ON THE MATRIX EQUATION FOR A SPIN 2 PARTICLE 

IN PSEUDO-RIEMANNIAN SPACE-TIME 

 

After the study by Pauli and Fierz [1, 2], the theory of massive and 

massless fields with spin 2 has always attracted much attention [3–13]. 

Most of the studies were performed in the framework of 2-nd order differ- 

ential equations. It is known that many specific difficulties may be avoided 

if from the very beginning we start with 1-st order systems. Apparently, the 

first systematic study of the theory of spin 2 fields within the first order 

formalism was done by F. I. Fedorov [4]. It turns out that this description 
requires a field function with 3 independent components. This theory was 

re-discovered and improved by Regee [5]. In the present paper we develop 

the theory of the spin 2 field, in both massive and massless variants, start- 

ing from the matrix equation in Minkowski space-time and extending it to 

the generally covariant theory within the Tetrode-Weyl-Fock-Ivanenko tet- 

rad method. 

We start with the known system of the first order equations for a mas- 
sive spin 2 particle: 
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where the field variables are scalar, vector, symmetric 2-rank tensor, and 

3- rank skew-symmetric in two first indices tensor, m  i M . By excluding 

the vector and the 3-rank tensor, we obtain the 2-nd order equations with 

respect to the scalar and symmetric tensor: 
 

  0 ( M 2 )  0     a  0 k  0 (2) 

 

In massless case, the first order system reads 

(ab) 
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From (3) we derive the 2-nd order equations for the massless field: 
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Massless equations have a class of gauge solutions: 
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where Ll (x) stands for an arbitrary 4-vector. These special states do not 

contribute to physically observable quantities, like the energy-momentum 

tensor. The concomitant gauge components are as follows: 
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The system (1) can be re-written in equivalent block form 
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The corresponding matrix equation 
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is extended to the Riemannian space-time in accordance with the tetrad 

method. In a space-time with given metric, we fix a tetrad: 
 

dS 2  g (x)dx dx  g (x)  e  (x) g (x)   abe  (x)e  (x) (9) 

 

and then the generalized form gets written as follows 
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where the local matrices  (x) are determined with the use of the tetrad 
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and connection 
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where  (x)  J ab e (x) e (x) i  J ab stand for 
i i (a ) (b)   3 

the generators for the tensors k (mn) [mn]l . The equation (10) can be 

presented by using the Ricci rotation coefficients 
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In the massless case, the system slightly changes: 
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but its physical content is completely different. In particular, let us detail 

tetrad representation for the gauge solutions: 
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The concomitant gauge components are determined by the formulas 
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The covariant equation is symmetric under the local Lorentz group, in ac- 

cordance with the following relations 
 

(x)  S (x)(x) S (x)  (x)S 1 (x)    (x)

S (x)  (x) S 1(x)  S (x)
  

S 1(x)    (16) 

 x 


where the prime indicates that quantities are determined with the use of the 

primed tetrad related to initial one by the local Lorentz transformation 

(a ) 

(x)  La 
b (x) e (x)  With respect to the coordinate transformation, the 

field function  behaves as a scalar, x  x   (x)  (x)
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SPIN 1/2 PARTICLE WITH THE ANOMALOUS MAGNETIC 

AND ELECTRIC DIPOLE MOMENTS, 

THEORIES WITH ONE AND THREE MASS PARAMETERS 
 

In [1], staring from the general formalism by Gel’fand-Yaglom [2], it 

was introduced a P -asymmetric wave equation for a spin 1/2 particle with 

the anomalous magnetic moment (in fact, this theory describes the particle 

with electric dipole moment). In [1], this equation was studied in presence 

of external Coulomb field, but for simplicity additional interaction due to 

electric dipole moment was removed, so in [1] only possible manifestation 
of P -asymmetry was tested. Concerning the theory of the P -symmetric 

equation for a particle with anomalous magnetic moment see [3–8]; it is 

Petras [9] who first developed this theory within the general approach by 

Gel’fand-Yaglom. 

The present paper is organized as follows. In section II study solutions 

of equation for the P -asymmetric particle (referring to electric dipole mo- 

ment) in presence of external magnetic fields. It turns out that the energy 

spectra are the same as for P -symmetric particle (referring to anomalous 
magnetic moment). 

To clarify this coincidence, in section III we demonstrate that there ex- 

ists simple transformation relating these to models, by which one wave 

equation can be reduced to the form of other, correspondingly the function 

 transforms to new one  ; and expressions for operator of P -reflection 
are different in these two bases. 

In section IV, we extend this approach the model, in which both sec- 
tors, P -symmetric and P -asymmetric, are presented. The main result is 

the same: there exists simple transformation (more general than in the 

above) relating P -symmetric model and that with two sectors, and expres- 


