Министерство образования Республики Беларусь Учреждение образования Белорусский государственный университет информатики и радиоэлектроники

УДК 537.9,537.31,537.521.7

Шманай Егор Евгеньевич

Взаимосвязь структуры алмазоподобных (DLC) наноразмерных слоев с их электрическими свойствами

АВТОРЕФЕРАТ

на соискание степени магистра по специальности 1-41 80 01 «Микро- и наноэлектроника»

Шманай Е.Е
Научный руководитель
Федотова Юлия Александровна
доктор физмат. наук, профессор

Работа выполнена в лаборатории «Физика перспективных материалов» Научноисследовательского учреждение «Институт ядерных проблем» Белорусского государственного университета

Научный руководитель

Федотова Юлия Александровна

доктор физико-математечких наук, профессор научно-исследовательского учреждение «Институт ядерных проблем» Белорусского государственного университета

Рецензент

Галузо Валерий Евгеньевич

кандидат технических наук, доцент кафедры проектирования информационно-компьютерных систем учреждения образования «Белорусский государственный университет информатики и радоэлектроники»

Защита магистерской диссертации состоится «24» января 2023 г. года в 9:00 часов на заседании Государственной комиссии по защите магистерских диссертаций в учреждении образования «Белорусский государственный университет информатики и радиоэлектроники» по адресу: 220013, г.Минск, ул. П.Бровки, 6, 1 уч. корп., ауд. 114, тел.: 293-89-26, *e-mail*: kafme@bsuir.by.

С магистерской диссертацией можно ознакомиться в библиотеке учреждения образования «Белорусский государственный университет информатики и радиоэлектроники».

ВВЕДЕНИЕ

Прогресс в современной физике элементарных частиц во многом обусловлен функциональными характеристиками детекторов, к числу которых относятся газоразрядные электронные умножители (ГЭУ). Актуальной задачей является повышение устойчивости ГЭУ к пробоям, возникающим в газовой среде вследствие флуктуации электронной плотности в лавине и напряжённости электрического поля. Для ограничения тока разряда можно использовать резистивные покрытия, которые, с одной стороны, будут препятствовать развитию пробоя, а с другой стороны, будут отводить избыточный заряд из электронной лавины. В качестве такого резистивного материала может быть использован алмазоподобный углерод.

Алмазоподобные покрытия (DLC) представляют собой разновидность аморфного углерода, в которой присутствует как sp^2 -, так и sp^3 -гибридизация. Айзенберг и Чабот, в первых работах провели серию экспериментов по осаждению DLC покрытий с использованием пучка ионов углерода и подтвердили образование алмазоподобного аморфного углерода, что и положило начало исследования DLC.

Данный материал отличается высокой твердостью и износостойкостью, низким коэффициентом трения, высокими изолирующими свойствами, хорошей химической стабильностью, а также высокой проницаемостью для инфракрасного излучения, что исследовано на достаточно высоком уровне. Вместе с тем, электрические характеристики *DLC* исследованы чрезвычайно мало.

Электрическое сопротивление является основным свойством материала при рассмотрении его различных применений в области сенсорики, электронных устройств, включая и ГЭУ. В соответствии со структурой DLC его электрические характеристики DLC могут варьироваться от значений, характерных для полупроводника до свойств изолятора с широкой запрещенной зоной. Они, очевидно, определяются примесями, легирующими элементами, типом гибридизации (sp^2 и/или sp^3 -гибридизацией), структурой и иными дефектами, которые возникают в процессе роста. На стойкость покрытий также влияют параметры технологического процесса осаждения DLC, а именно: энергия и угол падения ионов, температура подложки и скорость осаждения.

Во время работы ГЭУ, первичные электроны, рожденные ионизирующем излучением в газовом промежутке перед ГЭУ, дрейфуют вдоль силовых линий и фокусируются в отверстия, в которых под действием сильного электрического поля развиваются электронные лавины. Таким образом, каждое отверстие

представляет собой независимый пропорциональный счетчик. DLC в данном детекторе играет роль собирающего электрода (коллектора) через который протекает ток между отверстиями и DLC. Умноженные электроны, которые образуют лавину, а также ионизирующее излучение, которым создается первичная ионизация, вызывают деградацию DLC.

Все выше написанные явления так или иначе влияют на работу ГЭУ, что сказывается на его важнейших характеристиках, а именно: коэффициент усиления и энергетическое разрешение.

Таким образом, выявление взаимосвязи структуры и химического состояния осаждаемых *DLC* покрытий с соответствующими характеристиками электросопротивления позволят оптимизировать режимы их получения с целью увеличения ресурса эксплуатации ГЭУ и иных функциональных характеристик данных устройств.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы магистерской диссертации.

Выявление взаимосвязи структуры и химического состояния осаждаемых DLC покрытий с соответствующими характеристиками электросопротивления позволят оптимизировать режимы их получения с целью увеличения ресурса эксплуатации ГЭУ и иных функциональных характеристик данных устройств.

Цель исследования.

Установить корреляцию между электросопротивлением R покрытия DLC, толщиной и коэффициентом усиления в ГЭУ; структурные особенности.

Объект исследования.

Наноразмерные плёнки DLC, осажденные на подложки кремния марки КДБ-8 площадью 2×2 см², стеклотекстолита на основе Al_2O_3 площадью 10×10 см² и полимера ABS площадью 2×2 см².

Предмет исследования.

Структурные особенности и зависимость поперечного электросопротивления плёнок DLC от их толщины, взаимосвязь электросопротивления DLC на коэффициент усиления газовых электронных умножителей (ГЭУ).

Область исследования.

Содержание диссертационной работы соответствует образовательному стандарту высшего образования второй ступени (магистратуры) специальности 1-41 80 01 «Микро- и наноэлектроника».

Практическое применение.

Основным качественным применением *DLC* является препятствие развития дуговой стадии пробоя путем локального снижения напряжения в области газового усиления. Создание резистивного покрытия, которое бы обеспечивало отведение электрического заряда за время, меньшее, чем обратная величина частоты следования электронных лавин, что позволит улучшить временное разрешение детектора.

Создание материала с оптимальным значением электросопротивления на собирающем электроде (DLC) умножителя позволит получать большие коэффициенты усиления частиц, вследствие повышение номинального предпробойного напряжения (увеличение напряженности поля).

Теоретическая и методологическая основа исследования.

В основу магистерской диссертиции лежат результаты известных исследования белорусских и зарубежных ученых в области изучения структурных оссобеностей аморфных наноразмерных алмазоподобных покрытий.

Обработка полученных данных производилась с использование программного обеспечения «OriginPro», объемного моделирования структуры – «Sharp3D».

Научная новизна.

Магистерская диссертация основана на потребности по улучшению газовых электронных умножителей колодезного типа для последующей замены вместо проволочных детекторов.

Основные положения, выносимые на защиту.

- 1. Увеличении толщины DLC покрытия с 22 до 70 нм приводит к уменьшению значений удельного электросопротивления с $1,75\cdot10^{10}$ до $2,4\cdot10^9$ Ом·м, что обусловлено уменьшением содержания sp^3 -гибридизованных электронных орбиталей с 13,50% до 7,30%.
- 2. Увеличение значения удельного электросопротивления DLC покрытий позволяет повысить временную стабильность работы ГЭУ, включая высокий коэффициент усиления $(7,8\cdot10^3)$, расширенный диапазон рабочих напряжений (50 В) при пониженном активном (рабочем) токе -0,54 мкА.

Теоретическая и практическая значимость.

Использование уже заданного значения толщины и удельного электросопротивления позволит ускорять производство коллекторных электродов для газовых электронных умножителей.

Апробация результатов исследования.

Результаты исследования были неоднократно представлены на Electronic Systems and Technologies: collection of materials of the 58th Scientific Conference of Postgraduates, Undergraduates and students of BSUIR, Minsk, April 18-22,

2022; Углеродные наноструктуры, тонкие пленки и композиты: синтез, физико-химические свойства и применения: VI Белорус.- Рос. семинар-конф., Минск, 2–5 нояб. 2022 г.; XXI International Conference Foundations Advances in Nonlinear Science: IX Intern. Conf. FANS ANPh, Minsk, 26 September-1 October, 2022.

Публикации.

Основные положение работы и результаты диссертации изложены в трех опубликованных работах (авторский объем 3,0 п.л).

Структура и объем работы.

Структура диссертационной работы обусловлена целью, задачами и логикой исследования. Работа состоит из введения, пяти глав и заключения, библиографического списка и приложения. Общий объем диссертации — 65 страниц. Работа содержит 2 таблицы, 55 рисунков. Библиографический список включает 48 наименований.

Для достижения целей работы были поставлены следующие задачи.

- 1. При помощи спектроскопии комбинационного рассеивания света установить взаимосвязь sp^3 -гибридизованных электронных орбиталей от толщины покрытия и частоты электродугового испарителя;
 - 2. Определить возможную модель электропереноса;
- 3. Определить зависимость удельного электросопротивления от толщины DLC покрытия;
- 4. Определить оптимальную толщину *DLC* покрытия для стабильности функционирования газовых электронных умножителей.

Краткое содержание работы.

Магистерская диссертация состоит из введения, пяти глав, заключения и списка используемых источников.

В первой главе представлен литературный обзор по исследованию структурных особенностей тонких пленок *DLC*, а также применение их в качестве коллекторного электрода в газовых электронных умножителях колодезного типа.

Во второй главе приводится краткое описания метода синтеза DLC покрытия и экспериментальных методик их исследования.

В третье главе приведены результаты калибровки толщины DLC покрытия на кремнии от количества импульсов при синтезе пленок и изменение sp^3 -гибридизованных электронных орбиталей от толщины покрытия (подложка — кремний) и частоты электродугового испарителя (подложка — ситалл).

В четвертой главе представлены результаты измерения вольт-амперных характеристик структуры W//DLC//Si//W при комнатной температуре и проведено численное определение сечения токового канала и зависимости

удельного электросопротивления от толщины DLC покрытий.

В последней главе исследованы газовые электронные умножители с различной толщиной DLC покрытия на коллекторном электроде в интегральном и индукционном режиме работы.

ЗАКЛЮЧЕНИЕ

Толщина полученных DLC покрытий с ростом количества импульсов электродугового испарителя в процессе синтеза от 500 до 1500 увеличивается от $d\sim22$ до ~70 нм, что подтверждается независимыми методами эллипсометрии и СЭМ.

По результатам спектроскопии КРС определено, что при увеличении толщины d DLC пленки от 22 до 70 нм, положение G-пика монотонно смещается от 1546 до 1562 см $^{-1}$, а процентное содержание sp^3 -гибридизованных электронных орбиталей уменьшается с 13,5% до 9,75%. При увеличении частоты электродугового испарителя в процессе синтеза от 3 Γ ц до 7 Γ ц положение G-пика смещается по экспоненциальному закону от 1560 до 1567 см $^{-1}$, а процентное содержание sp^3 -гибридизованных электронных орбиталей уменьшается от 9,35% до 7,3%.

Для структуры W//DLC//Si//W определена высота потенциального барьера, которая равна порядка ~ 0.8 эВ при комнатной температуре, что очень близко к барьеру Шоттки для контактов W//Si.

Перестроение ВАХ в двойных логарифмических координатах $ln(j/AT^2) - E^{1/2}$ привело к двум линейным участкам с разными наклонами: 1 в области низких E и 2 при более высоких E, что указывает на возможность описания моделью тока, ограниченного объемным зарядом (идеальная модель Мотта-Гурни).

Из численного определения зависимости удельного электросопротивления от толщины вытекает тенденция уменьшения значения ρ для DLC от $1,75\cdot 10^{10}$ до $2,4\cdot 10^9$ Ом·м.

Коэффициент усиления для детекторов с различными толщинами покрытий изменяется в диапазоне от $3.5 \cdot 10^3$ до $7.8 \cdot 10^3$. Прототип детектора с резистивным покрытием толщиной 94 нм характеризуется наибольшим диапазоном рабочих напряжений (50 B) при небольшом активном токе ~ 0.54 мкA, коэффициентом усиления ($7.8 \cdot 10^3$), временной стабильностью функционирования и считается оптимальным.

СПИСОК ПУБЛИКАЦИЙ СОИСКАТЕЛЯ

Статьи в рецензируемых журналах

- 1. Влияние толщины на удельное электросопротивление тонких покрытий из алмазоподобного углерода на кремнии / И. А. Зур, Е. Е. Шманай, Ю. А. Федотова, А. А. Харченко, С. А. Мовчан // Физика твердого тела, 2023, Т. 65, № 1, с. 49.
- 2. Optimization of electrical conductivity of the anodic DLC coating of the charged particle detector // I. A. Zur, A. S. Fedotov, A. A. Kharchanka, Y. E. Shmanay, J. A. Fedotova, and S. A. Movchan / PrePrint (Nonlinear Phenomena in Complex Systems) 2023.
- 3. Erosion mechanisms of DLC coatings deposited on polyimide and silicon oxide substrates exposed to a pulsed gas discharge // I. Zur, Y. Shmanay, J. Fedotova, G. Remney, V. Uglov, S. Movchan / PrePrint (Surf. Coat. Technol) 2023.

Статьи в сборниках материалов конференций

4. Shmanay, Y. E. Influence of diamond-like structure of nanosized layers on their electrical conductivity / Y. E. Shmanay // Electronic Systems and Technologies: collection of materials of the 58th Scientific Conference of Postgraduates, Undergraduates and students of BSUIR, Minsk, April 18-22, 2022 / Belarusian State University of Informatics and Radioelectronics; editorial Board: D. V. Likhachevsky [et al.]. – Minsk, 2022. – pp. 921-924.

Тезисы докладов на научных конференциях

- 5. Эрозия DLC-покрытий GEM-детекторов при воздействии поверхностного разряда атмосферного давления / И.А. Зур, Е.Е. Шманай, Г.Е. Ремнёв, Ю.А. Федотова // Углеродные наноструктуры, тонкие пленки и композиты: синтез, физико-химические свойства и применения : VI Белорус.-Рос. семинар-конф., Минск, 2–5 нояб. 2022 г. : тез. докл. / Белорус. гос. ун-т ; редкол.: С. А. Максименко (гл.ред.) [и др.]. Минск : БГУ, 2022. С. 33.
- 6. Optimisation of electrical propiertis of resestive coating of anode GEM detector/ Zur, I., E. Shmanay // XXI International Conference Foundations Advances in Nonlinear Science: IX Intern. Conf. FANS ANPh, Minsk, 26 September-1 October, 2022.