ИНТЕГРАЦИЯ НЕЙРОННЫХ СЕТЕЙ В СОВРЕМЕННЫЕ СИСТЕМЫ УПРАВЛЕНИЯ БЕСПИЛОТНЫМИ АВТОМОБИЛЯМИ

Ахапкина А. М., Способ С. П.

Кафедра связи, Белорусский государственный университет информатики и радиоэлектороники Минск, Республика Беларусь

E-mail: {anastasia.akhapkina2018}@gmail.com

В данной статье описаны довольно широкое применение нейросетевых технологий в современных системах управления беспилотным автомобилем, задачей которого является безопасное транспортное передвижение на дорогах общего пользования, избегая различных препятствий, а также соблюдение правил дорожного движения. В статье обосновывается актуальность и практичность использования нейронных сетей в данной системе управления.

Введение

Современный мир – это эра информационных технологий и высокой доступности информации. В последние два десятилетия наблюдается стремительное развитие информационных структур и их интеграция в повседневную жизнь человека. Сегодня невозможно представить себе обыденный день без использования информационных технологий, будь то в виде виртуальных ассистентов, смарт-домов или автономных автомобилей. Эти передовые технологии, называемые искусственным интеллектом (ИИ), значительно упрощают выполнение разнообразных периодических задач, которые ранее требовали сложных алгоритмических решений и большого количества времени [1].

Один из наиболее перспективных методов искусственного интеллекта, который заменяет труд человека и обеспечивает обработку информации схожей с работой человеческого мозга, - это использование нейронных сетей. Нейронные сети представляют собой математическую модель, а также программное или аппаратное воплощение этой модели, основанную на принципах организации и функционирования биологических нейронных сетей, которые присущи живым организмам [2]. В большинстве случаев нейронные сети реализуются в виде компьютерных программ или технологических решений.

Основная часть

Одним из важнейших аспектов управления беспилотными транспортными средствами является необходимость точно знать окружающую среду и препятствия, которые могут возникнуть на пути. Эти препятствия могут представлять собой движущиеся автомобили, здания, пешеходов на пешеходных переходах и различные объекты. Для обеспечения безопасного движения беспилотных транспортных средств разрабатываются алгоритмы, основанные на системах автономного вождения. Одним из ключевых элементов в этих алгоритмах являются сверточные нейронные сети, которые специализируются на распознавании объектов на дороге в реальном времени [3].

Для обеспечения правильной навигации беспилотного автомобиля также необходимо знать расстояние до заранее запрограммированной цели. Эта информация является фундаментальной для корректной работы нейронной сети. Беспилотные автомобили оснащены разнообразными датчиками и сенсорами, которые непрерывно собирают данные и передают их в нейронную сеть. Эти данные включают в себя информацию о расположении препятствий в пространстве. Нейронная сеть в свою очередь определяет не только направление движения, но и соответствующие ускорения или замедления.

Процесс обучения нейронной сети играет важную роль в обеспечении верного и безопасного движения автомобиля. Нейронная сеть обучается на основе входных и выходных данных. Входы представляют собой информацию о расположении препятствий, а выходы определяют управление движением автомобиля.

Для обеспечения безопасного и эффективного автономного движения автомобиля необходимо начать с обучения и настройки искусственных нейронных сетей. Электронные средства транспорта оборудованы комплексными информационными системами, включающими множество датчиков и сенсоров, которые непрерывно взаимодействуют с нейронной сетью и предоставляют данные для анализа.

Исходя из этой информации, можно определить параметры и структуру нейронной сети, включая количество входов и соответствующих им выходов. Входные данные могут включать информацию о местоположении препятствий вокруг автомобиля, в то время как выходные данные могут управлять направлением движения и скоростью.

Успешность функционирования автономного автомобиля зависит от того, как эффективно обучена нейронная сеть. Неправильное обучение может привести к нежелательным действиям или даже авариям. Для гарантированной безопасности и надежности, обучение нейронных сетей должно быть внимательно спланировано и настроено. Примерные параметры обучения нейронной сети могут быть найдены в соответствующей таблице (см. рисунок 1) [4].

Входные		сигналы	Выходные сигналы	
Относительное рас	стояние до преград			
По левую сторону	По центру	По правую сторону	Ускорение	Направление
Нет преград	Нет преград	Нет преград	Ускорение вперед	Прямо
Четверть пути	Нет преград	Объект близко	Не большой разгон	Чуть левее
Задевание объекта	Объект близко	Задевание объекта	Движение назад	Налево

Рис. 1 – Матрица расположения препятствий относительно автомобиля и ответ нейронной сети

Другим эффективным подходом к управлению автономным автомобилем является использование контроллера на основе нейронных сетей, который способен адаптироваться к различным внешним воздействиям, таким как окружающие препятствия. Этот контроллер принимает входные сигналы о состоянии системы и воздействиях на нее, а затем выдает соответствующие управляющие сигналы для механических устройств (см. рисунок 2) [5].

Рис. 2 – Схема нейроконтроллера

II. Заключение

Использование нейронных сетей в автономных автомобилях предоставляет ряд преимуществ и недостатков. С одной стороны, автома-

тизация управления автомобилем может значительно улучшить качество жизни людей, освобождая их от монотонной работы водителей такси и грузоперевозчиков. Правильно настроенные нейросетевые технологии могут снизить количество дорожно-транспортных происшествий и, как следствие, спасти жизни. Кроме того, это может привести к экономии времени и снижению затрат на оплату труда водителей, перевозящих пассажиров и грузы, а также к сокращению рабочих мест, связанных с водительской профессией. Следует отметить, что автономные автомобили, управляемые искусственными нейронными сетями, могут иметь более высокую стоимость изза сложности электронных систем и датчиков, необходимых для обеспечения безопасности и надежности. Кроме того, нейронные сети не всегда способны адекватно реагировать на критические ситуации, которые могут возникнуть на дорогах. Поэтому разработчики должны продолжать работу над совершенствованием этой технологии, чтобы обеспечить безопасность и надежность автономных автомобилей в самых разнообразных условиях.

Список литературы

- Цаунит А.Н. Перспективы развития и применения нейронных сетей / А.Н. Цаунит. – Текст: непосредственный // Молодой ученый. – 2021. – №23 (365).
- Галушкин А.И. Нейронные сети: основы теории. / А.И. Галушкин. М.: РиС, 2015. 496 с.
- 3. Сверточная нейронная сеть [Электронный ресурс]: Википедия. Свободная экцикплопедия.
- M.T. Hagan, H.B. Demuth and M.H. Beale, Neural Network Design, PWS Publishing, Boston, MA, 1995
- Осипов Г.С. Оптимизация одноканальных систем массового обслуживания с неогрниченной очередью// Бюллетень науки и практики. 2016. №9(10)