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Abstract—This paper presents a new dataset for hand ac-
tion detection for manipulating (assembling and dismantling)
mechanical devices and an action detection model based on
Transformers. An entry in this dataset is a first-person-view
video segment that shows hands performing an action. These
hands may utilize a tool and act on an object of the device. These
actions were categorized into 12 classes for simple representation.
The deep learning model extracts features from each frame
in a video, adds position embedding, and feeds the obtained
feature vectors to a Transformer Encoder. The output vector goes
through a fully connected network to obtain the final class. We
have implemented our model and trained it using the presented
dataset. We experimentally evaluate the learning and obtain
encouraging results.

Index Terms—Hand recognition, action recognition, action
recognition dataset

I. INTRODUCTION

Modern life relies heavily on mechanical and electrical
devices, encompassing everything from household appliances,
automobiles, and aircraft to machinery, industrial setups, and
power plants. These essential components of our daily lives
are subject to failure, demanding consistent maintenance that
usually requires professional workers. Nevertheless, the short-
age of skilled labor increases maintenance and repair expenses,
resulting in extended service delays. Furthermore, this scarcity
often opens the door for less qualified and experienced tech-
nicians to take on repair tasks, potentially leading to higher
costs and prolonged repair duration.

Several conventional guidance methods employ a combina-
tion of virtual, mixed, or Augmented Reality (AR) interfaces
to assist in the operation of machinery. These approaches
eliminate the need for users to carry physical manuals while
performing maintenance or repair tasks, instead displaying
instructions within the real-world work environment. However,
these techniques are primarily utilized in high-end industries,
such as automotive and aerospace, as they cater to expert
users and rely on clearly defined environments and predefined
workflows. Creating these predefined workflows can be costly,
involving a deep understanding of the procedure, skilled
engineers, and the manual creation of guiding illustrations
and animations by artists and engineers. Consequently, AR
has remained inaccessible and prohibitively expensive for
low-end enterprises like small businesses, garages, and repair
workshops. One approach to overcome this limitation is au-
tomatically creating assembly and disassembly workflows for

mechanical devices from video segments. These workflows
are then employed to assist inexperienced users in executing
these workflows through an augmented reality interface. De-
tecting and analyzing hand action is an essential first step for
automatically creating such workflows.

Human Action Recognition (HAR) automatically identifies
and classifies human actions or activities from visual data, such
as videos or image sequences. This paper deals with human
actions that involve only the hands (of a human body) and
may include additional objects. In some sense, this is similar
to hand gestures.

This paper presents the VML-Working-Hands, a novel
dataset designed for recognizing hand actions, and a deep
learning model trained on this dataset to identify these actions.
The dataset focuses on capturing the process of assembling
and dismantling mechanical devices. Each video segment in
the dataset portrays a single action and encompasses multiple
frames before and after the action.

The action recognition model is based on the Transformers
architecture, similar to ViT [1], as it only uses the encoder part.
We create a saliency map encompassing the working hands,
the applied tool/s, and the manipulated device part for each
frame. An input frame is multiplied by its corresponding mask
to guide a Convolutional Neural Network (CNN) to extract
representative features from the region of interest, see Figure 2.
The sequence of CNN features, computed from the series of
frames that define the action, is fed to a Transformer model.
The model’s output goes through a fully connected network
that determines the action.

The rest of this paper is organized as follows. The fol-
lowing section overviews related work, Section II. Next, we
present our new dataset, VML-Working-Hands, and discuss
our hand action recognition model in the Sections IV and III,
respectively. Section V reviews our implementation details and
experimental results. Finally, we draw some conclusions and
directions for future work, Section VI.

II. RELATED WORK

Wearable cameras, mounted on the head or chest, enable the
examination of hands from a standpoint that offers a firsthand
outlook on the surroundings. This realm of study within
computer vision is recognized as egocentric or first-person
vision (FPV). Egocentric vision offers advantages over third-
person vision, capturing the user’s perspective, minimizing
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obstructions, and aligning with actions. However, FPV’s chal-
lenge is the camera’s mobility, causing quality and distinction
issues due to rapid movements and lighting changes.

Understanding daily activities in an egocentric context em-
phasizes the importance of object-hand interactions for action
recognition. Next, we briefly overview closely related work
on hand localization, hand pose estimation, and action and
interaction.

A. Hand Localization

Hand localization algorithms aim to estimate the accurate
position of the hand within the image [2]. While numerous
hand-detection, pose-estimation, and segmentation algorithms
have been developed for third-person vision [3], [4], the
egocentric point of view poses unique challenges that hin-
der a straightforward adaptation of these methods. Betan-
court et al. [5] introduced a method utilizing HOG features and
an SVM classifier for frame-level hand presence prediction,
effectively reducing false positives. Zhao et al. [6] detect hands
in each frame by leveraging the typical hand interaction cycle,
which includes a preparatory phase, interaction, and hands
exiting the frame. Based on this cycle, they introduced an
ego-saliency metric to estimate the likelihood of hands being
present in a frame. Bambach et al. [7] proposed a probabilistic
approach combining spatial biases and appearance models to
generate region proposals. Using classification, they generated
2,500 regions per frame and applied GrabCut [8] to obtain
hand segmentation masks within bounding boxes for compre-
hensive coverage. zhu2016two

Zhu et al. [9] applied structured random forest to create hand
probability maps at the pixel level. These maps were then fed
into a multitask CNN to locate the hand’s bounding box, shape
within the box, and wrist/palm positions. Cartas et al. [10] used
skin region segmentation to propose regions and determine
if they correspond to one or two arms. Jian [11] employed
a Hand Localization Network (HALNet) based on ResNet50,
trained on synthetic data, to predict the hand’s center position.
Then, they cropped a Region of Interest (ROI) around this
point, adjusting for its distance from the camera. General
object detection approaches such as YOLO (You Only Look
Once) [12] were applied to localize hands in FPV [13].

B. Hand Pose Estimation

Hand pose estimation identifies hand components repre-
sented as 2D joints or semantic sub-regions. It usually focuses
on regions of interest (ROIs) previously detected through either
a hand detection or segmentation algorithm.

Liang et al. [14] employed a conditional regression forest
(CRF) to estimate hand pose from binary hand masks, consid-
ering different camera distances. They adopted a segmentation
step to improve joint localization by dividing the binary
silhouette into twelve semantic hand regions using a random
forest and binary context descriptors. Zhu et al. [15] et al.
[40] employed a structured forest for hand segmentation into
thumb, fingers, palm, and forearm regions, adapting the exist-

ing structured regression forest framework for this multiclass
segmentation challenge.

Some approaches adapted CNN architectures for hu-
man pose estimation, such as OpenPose [16], to handle
hand pose estimation, including localizing hand joints [16].
Tekin et al. [17] employed an FCN to simultaneously estimate
the 3D poses of both the hand and an object. The FCN gener-
ated a 3D grid for each frame, and the 3D hand joint positions
were determined by combining the predicted locations within
this grid.

C. Action and Interaction

Betancourt et al. [18] explore the popular processing steps
for developing hand-based applications and suggest a hierar-
chical structure that optimally switches between each level to
reduce the computational cost and improve its performance.

Actions and interaction approaches could be classified into
two main classes: those relying solely on hands as the predic-
tion cue and those utilizing a combination of object and hand
cues for prediction.

Singh et al. [19] proposed a CNN-based method for rec-
ognizing actions. They feed hand segmentation, head motion
information, and a saliency map to 2-stream architecture,
combining 2D and 3D CNNs for feature extraction. They apply
SVM to predict action from these features. Urabe et al. [20]
identifies cooking actions by analyzing the hand region, using
2D and 3D CNNs to create appearance and motion maps.
Combining these outputs through class-score fusion yielded
better results than using each stream alone. Tang et al. [21]
enhanced action recognition using a multi-stream deep neural
network (MDNN) using optical flow and depth maps. They in-
cluded a hand stream consisting of a CNN with the hand mask
as input. They improved the recognition rate by combining
the hand stream features with the MDNN through weighted
fusion.

Ma et al. [22] used a multi-stream approach, with one
stream for object recognition and another for action prediction,
combining object labels and action verbs for interaction recog-
nition. Zhou et al. [23] employed hand segmentation, object
features, and optical flow to localize and recognize active
objects, then used non-linear SVMs to recognize interactions.
Both approaches highlight the value of combining object and
hand cues for improved recognition.

III. DATASET 1

We capture first-person perspective videos showing hands
engaged in various activities, with a particular emphasis on
tasks related to assembling and dismantling mechanical de-
vices; see sample examples in Figure 1. Our dataset catego-
rizes these activities into 12 distinct hand-action categories, as
outlined in Table I. Each category encompasses a compilation
of specific actions, the potential tools utilized for these actions,
and the number of hands typically involved in executing these
tasks.

1The dataset is intended to be public, and we will include the link in the
final version of the paper once it is accepted.
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Fig. 1. Sample images illustrating the elements of the collected dataset.

We presented the dataset concisely in Table I according to
categories to avoid a long list of actions. A typical action
appears in various permutations, depending on the number of
hands and the applied tools. For example, the pull action in
the Tug category was observed with one hand and two hands.
It is performed with bare hand/s (no tool) or pliers.

Category Action Hand Tool Video
Screw in, out 1,2 Screwdriver, spanner,

wrench, Allen wrench,
E.Screwdriver

569

Hammering Hammering 1 hammer, mallet 250
Tug Push, Pull 1,2 ∅, pliers 220
Cut Cut

Wire/Sheet
1,2 ∅, pliers, saw 200

Plug Plug,
Unplug

1,2 ∅, pliers 76

OpenClose Open,
Close

1 ∅, pliers 111

Click Click 1 ∅ 36
Measure Measure 1,2 Roller, Tap. Caliper 24
Cover Cover, Un-

cover
1,2 ∅ 151

Attach Attach, De-
tach

1,2 ∅, hammer, pliers 273

Lift Lift 1 ∅, pliers 95
Piping Open,

Close
1,2 wrench, pliers 265

TABLE I
DATASET SUMMARY: THE HAND COLUMN INDICATES THE POSSIBLE

NUMBER OF HANDS USED TO PERFORM THE ACTIONS IN THIS CATEGORY,
THE TOOL COLUMN INCLUDES THE LIST OF POSSIBLE TOOLS, AND THE

VIDEO COLUMN SHOWS THE NUMBER OF VIDEO SAMPLES IN THIS
CATEGORY.

We assign a label to each video segment and generate
a saliency mask for every frame within these segments,
highlighting the regions of interest. Our initial step involves
segmenting the hands, the applied tools, and the components
of the device, which are part of this action. These compo-
nents are usually in close proximity to the working hands.
Furthermore, we aim to incorporate the nearby background
in our analysis. To achieve this, we calculate the bounding
ellipse, denoted as E , encompassing the detected hands, tools,
and components relevant to the action definition. This ellipse,
E , serves as the foundation for constructing a saliency mask,
with values within E receiving full attention (1.0), while those
outside exhibit Gaussian fading. This configuration enables our

Transformer Encoder

FCNSK

Gen.
Mask

Feature 
Extractor (FE)

Input Video

Feature Vector +
Position Embedding 

FE

V33

FE

V11

FE

V22

FE

Vkk*0

FC

Action

Fig. 2. The Action Recognition Architecture: The video frames are passed
through a feature extraction model (FE) on the left. Then, a position order
is added to each vector and passed to a Transformer model. The output goes
through a fully connected network (FC) to determine the action label.

learning model to prioritize the hand pose and the constituent
elements influencing the action.

IV. HAND ACTION RECOGNITION

Action detection identifies when a specific action or activity
begins and ends within a video segment, action classification
assigns a label or category to the recognized action, such
as screwing, moving, or pushing, and an action localization
determines the position of the hands performing the action in
the image space.

Following the taxonomy of Tekin et al. [17], an action
is characterized as a single verb, e.g., push, whereas an
interaction is described as a verb-noun pairing, e.g., pushing
a button.

Detecting hand or manual action involves localizing the
working hands, the applied tools, and the manipulated part
of the device. Let us refer to these elements as the action
components. The action components allow for narrowing down
the analysis to specific regions of interest (ROIs), excluding
irrelevant background data. The pose of the hands, which
includes the relative location of the joints, is crucial to
interpreting hand actions.

To analyze a video segment, i.e., a sequence of frames, of
hands performing an action, such as screw a bolt, we start by
localizing the hands, the applied tool/s, and the manipulated
part of the device, i.e., the action components, which usually
nearby. The nearby background usually includes features that
may play a role in determining the action. Therefore, we define
the region of the action, R, as the bounding ellipse of the
components of the action. The region R defines the saliency
mask, which has one within the R and Gaussian fading values
outside. This setting allows the learning model to focus on the
hand pose and the components that determine the action. The
model is based on the Transformers architecture, similar to
ViT [1], as it only uses the encoder part.

We extract features from each frame using our Feature Ex-
traction (FE) module, which combines Convolutional Neural
Network (CNN) features from the frame and skeletal features
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(a) (b)

(c) (d)
Fig. 3. Action Components:(a) The input frame, (b) The detected action
components; the yellow color indicates the left and right hand, the orange
and red bound the used tool and manipulated part, (c) The action region
marked with a blue ellipse, and (d) The saliency mask.

from the working hands, as shown in Figure 2(right). To
compute the skeletal features, the FE module localizes the
hands, identifies them (left and right), and determines the
skeleton of each hand, including the relative joint position.
The skeletons of the two hands are concatenated and encoded
in a skeletal (SK) vector. Absent hand represented by zero
in skeletal vector. Note that we assume one person performs
the action; thus, at most, two hands appear in the frame. In
addition, the FE module detects the tool and the manipulated
part. It is not always possible to detect the manipulated part,
as it can be a small screw or nut. Therefore, we assume it is
near the head of the applied tool, as shown in Figure 3(b).
Upon detecting the three action components, we compute the
region of the action and the saliency mask, as illustrated in
Figure 3(d). The mask is multiplied by the frame to reduce
the influence of irrelevant background on the learning process.
We passed the product of the mask and the frame to a CNN
model for feature extraction, as illustrated in Figure 2(right).

The learning model accepts a sequence of video frames and
utilizes the FE module to capture features from each one. The
resulting series of feature vectors is enclosed by start and end
symbols. A position embedding is added to each vector, which
is fed to a standard Transformer Encoder. The output from the
Transformer model passed through a Fully Connected (FC)
network to discern the action, as illustrated in Figure 2(left).
We adopt the standard learnable 1D position embedding, as
we have not detected notable improvements in performance
by employing more sophisticated position embedding.

In our current setting, the hand localization and skeleton
(joints) detection models are pre-trained and frozen during the
model training. We start with pre-trained CNN models of the
FE, but unlike the previous models, they are not kept static
(frozen). Instead, we allow them to be updated during training.
We train our model end-to-end using the dataset presented in
Section III.

 

model's effectiveness. Ultimately, the confusion matrix guided our decision-making process 
for model refinement and highlighted areas where further improvements could be made. 
 

 

 
 
 
- Examples:  

 

Fig. 4. The confusion matrix for sample action recognition, as seen, the
performance of our model is good.

V. RESULTS

We have implemented our model in Python, leveraging the
PyTorch library [24]. Our feature extractor module applies
YOLO [12] to detect and localize the working hands. It uti-
lizes MediaPipe [25] to detect hand landmarks (skeleton) and
computes CNN features using VGG19 [26]. It is challenging
to determine the object to which the action is applied. To
overcome this, we use the region the tool acts on as the
manipulated object’s hint.

The VGG19 model to extract feature was pre-trained but
was not frozen during the training of the entire model, end-
to-end. We subdivide our dataset into 70% for training, 10%
for testing, and 10% for validation.

We have applied video augmentation that includes changing
illumination and color, blurring at various levels, rotation
by small angles, and horizontal sheer by small angles. We
managed to reach 300 videos for each label, where each video
is represented by 100-500 frames.

We train the model end-to-end for 300 epochs, contin-
uously improving its representations and honing its ability
to distinguish between different hand actions. We evaluated
our model’s performance using accuracy, precision, and recall
metrics. The outcomes were encouraging. The model exhibited
good accuracy in recognizing hand actions, with precision and
recall scores indicating its adeptness in accurately categorizing
positive instances, see Figure 4. These results demonstrate
the efficacy of our approach and emphasize its potential
for practical applications where precise detection of manual
operations holds great significance.

The confusion matrix of the detection results provides
another view of the performance of our model. It is a valuable
tool for visualizing and systematically evaluating the model’s
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predictions compared to the actual hand action labels. In
addition, it provides an overview of the model’s strengths
and areas where it encountered difficulties. This in-depth
analysis enabled us to pinpoint specific categories that were
frequently misclassified, providing deeper insights into the
model’s behavior. Figure 4 provides the confusion matrix for
a subset of the evaluated hand-actions; the detection accuracy
is promising.

VI. CONCLUSION

We have introduced a novel dataset designed to detect
hand actions involved in manipulating mechanical devices,
encompassing tasks such as assembling and dismantling. In
addition, we describe a novel action detection model that
leverages Transformer-based architecture. Within this dataset,
each entry corresponds to a first-person-view video segment
capturing hands engaged in specific actions, which may in-
volve using tools and manipulating device components. To
simplify representation, these actions have been categorized
into 12 distinct classes.

The deep learning model employed in this study extracts
features from individual frames within the video segments,
incorporating position embedding, and subsequently inputs
these feature vectors into a Transformer Encoder. The resulting
output vector undergoes further processing through a fully
connected network to produce the final classification. Our
model has been implemented and trained using the provided
dataset, and we have conducted experimental evaluations,
yielding promising results.

The scope of future work includes extending the dataset
and including information concerning the applied tool into the
input of the model.
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