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Construction of a semi-automatic contour of areal  
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Abstract—In this article, we formalize the problem of 

constructing a semi-automatic contour of areal objects on 

satellite hyperspectral images, and present a solution 

algorithm using PCA and Dijkstra's algorithm. The contour 

is considered as the boundary of the object, which can be used 

for its segmentation and classification. The semi-automatic 

contour assumes reference points set by the operator. The 

formalization of the algorithm has been completed. 
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I. INTRODUCTION  

Multispectral and hyperspectral photography occupies an 
important place in solving applied problems using image 
analysis. Hyperspectral images are multidimensional data 
containing information about the spectral characteristics of 
each pixel of the image. Multispectral remote sensing data 
obtained using satellite images allow us to study the 
characteristics of objects on the Earth's surface that do not 
appear in panchromatic mode or in images of individual 
channels. One of the main applied tasks in the field of images 
is object detection. The solution of this problem on 
multispectral images is limited to channels and variations of 
their arithmetic combinations. Nevertheless, the algorithms 
for segmentation and selection of objects in the image are 
guided by the contour. A contour is the boundary of an object 
that can be used for its segmentation and classification. We 
will consider the task of selecting objects with a contour. To 
simplify the task, in this article we will consider the selection 
in semi-automatic mode, based on the methods of contour 
selection on a bitmap image. 

II. DEFINITION OF INFORMATIVE ZONES OF SPECTRAL 

SPACE 

From a number of articles [18-20] it has been established 
that the most suitable segmentation methods are energy 
methods of active circuits. Most often, the contour is built on 
the basis of the brightness gradient of a halftone image, and to 
build a contour on a hyperspectral image there are many 
problems that are caused by the dimensionality of space. The 
solution to this problem is based on lowering the dimension of 
the hyperspectral image feature space. Lowering the 
dimension of the space reduces to the following subproblem: 
find a subspace of a given dimension, in an orthogonal 

projection on which the root-mean-square distance between 
each pair of points is maximal. It can be solved using PCA 
(Principal Component Method). First of all, it is necessary to 
determine the reflection coefficients of individual images of 
bands for different objects and get some idea about the 
selection of objects in images of different spectral bands. To 
do this, the hyperspectral image is represented as spectral 
channels as in Figure 1.  

 

Fig. 1. Example of nine spectral channels of a satellite image, Figure 6 - 

Pairwise relationship in the initial spectral ranges. 

In this case, the principal component method consists in 
the transformation of the axes, which occurs during its 
operation. The dot diagram shown in Figure 5 shows the 
correlation between the green and red stripe data. The original 
axes (X1, Y1) are now transformed into the axes of the main 
components (X2, Y2) defined by the eigenvectors of the 
covariance matrix of variables, and the data projected onto 
these new axes are the main components. It is important to 
note that the correlation that existed in the original data is 
eliminated after conversion to the space (X2, Y2). It should be 
noted that the variance of the main components along the X2 
axis is higher than the variance of the original data along the 
X1 and Y1 axes, which means a better representation of the 
surface features, while the variability of the main components 
along the Y2 axis is less significant, therefore contains 
relatively less information about the surface features. 

Before applying the principal component method, it is 
necessary to bring the data to a single format through 
standardization. The purpose of this is to make sure that 
variables are internally consistent with each other regardless 
of their type. Standardization is carried out by centering the 
variable by subtracting the average value, and then bringing 
them to a common scale by dividing the standard deviation. 
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Even if the images of spectral bands that are processed have 
the same range, standardization is not really necessary, but 
still its application guarantees a stable result. Variables that 
are two-dimensional arrays of images need to be transformed 
into a one-dimensional vector by smoothing to facilitate the 
calculation of the matrix. To do this, we create a variable 
matrix with a size of 935000 X 9 (the number of pixels in the 
spectral band, where X is the number of bands) and store these 
three-dimensional vectors in it. Now, by the method of 
principal components, the eigenvectors and the corresponding 
eigenvalues of the covariance matrix are calculated. At this 
stage, data is compressed and their dimension is reduced. If 
we look at the eigenvalues, we can see that the values are 
completely different. These values give us the order of 
significance of the eigenvectors or directions, i.e. the axis 
along the eigenvector with the largest eigenvalue is the most 
significant axis of the principal component, and so on. The 
next step is to arrange the eigenvectors by their eigenvalue, 
from largest to smallest, in order to rearrange the components 
in order of importance, as in Figure 2. 

 

Fig. 2. Pairwise relationship in the initial spectral ranges. 

It is necessary to project data in the directions of ordered 
eigenvectors, which, in turn, lead to the main components. 
Next, you need to check the components to check for 
redundancy reduction, as well as the extent to which data 
compression has been achieved. The dot graphs in Figure 7 
show the pairwise relationship in the original ranges, and 
compare the same with the pairwise relationship of the PC to 
check for dependencies.  

These paired graphs demonstrate the dependencies 
between variables that exist in the source data. They 
disappeared into the main components. thus, it is obvious that 
the principal component method was able to significantly 
reduce the dependence. The distribution graphs along the 
diagonal tell us that the principal component method also 
managed to extract deviations from the original data of high 
dimension, which may be associated with the possibility of 

compression. The informativeness of the new components is 
shown in Figure 4. 

These paired graphs demonstrate the dependencies 
between variables that exist in the source data. They 
disappeared into the main components. thus, it is obvious that 
the principal component method was able to significantly 
reduce the dependence. The distribution graphs along the 
diagonal tell us that the principal component method also 
managed to extract deviations from the original high-
dimensional data, which may be associated with the 
possibility of compression. The informativeness of the new 
components is shown in Figure 8.Next, it is necessary to return 
the original image shape to the one-dimensional components 
and normalize the main component in the range from 0 to 255, 
which coincides with the range of the original image, in order 
to make it possible to visualize the image, as in Figure 5. 

III. BUILDING A CONTOUR ON THE GRADIENT OF THE IMAGE 

In [23, 25], the authors use the following characteristics to 
calculate the local communication price: the modulus and 

 

Fig. 3. Pairwise relationship in rebuilt components. 

 

Fig. 4. Informativeness in images by new spectral components (plans) 

after the principal component method. 
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direction of the gradient, pixel intensity, the value of the 
second derivative, and other characteristics, including those 
calculated during training and training of the algorithm.  

  

a)                                               b) 

Fig. 6. Matrix of local weights and matrix of accumulated weights and 

direction map. 

Figure 6a shows a local matrix of weights of a weighted 
graph that characterizes the local properties of image pixels. 
After the operator specifies the seed point (highlighted in a 
circle in Figure 6a), a direction map is calculated (Figure 6b), 
with which the optimal path from any point in the image to the 
seed point is constructed. Each number in Figure 6b 
corresponds to the cost of the path from this point to the seed 
point. To calculate the direction map specifying the optimal 
path, a search in a four-connected area was used. Dijkstra's 
algorithm is used to determine the optimal path. The optimal 
path is calculated and displayed in real time on the display 
from the current cursor position to the seed point. If the image 
is very noisy or contains objects of complex shape, then 
several boundary segments may be needed to define a 
segmenting contour. If the resulting segment adequately 
describes a part of the boundary of the object, then a new seed 
point is indicated for the next selected boundary segment. 

 

Fig. 7. The first iteration of Dijkstra's algorithm, to demonstrate the 

interaction of graph nodes 

The initial node is the raw node with the lowest value 
(shown in gray), i.e. s. First, each adjacent vertex is weakened 
to the node of interest, updating their values to the minimum 
of their current value or the value of the node of interest plus 
the length of the connecting edge. 

Node s is now completed, and its neighbors a and b take 
on new values. The new node of interest is b, so we repeat the 
process of "weakening" the neighboring nodes of b and 
finalizing the value of the shortest path for b. After going 
through each node, we will eventually get a graph showing the 
shortest path length from the source to each node, as in Figure 
12. 

In general , the algorithm can be represented as: 

Input: w(p,q) is a function that sets the price of the 
transition from the node of the graph p to q; ps is the initial 
node; N(p) is a function that returns the neighbors of the node 
p. 

Output: MD directions map. 

Intermediate structures: AL − active list of nodes; E − 
array of processed nodes; S − array of total cost; Stmp − 
intermediate value of cost. 

As a result of the algorithm's operation, a contour can be 
constructed between any two given points in the image, which 
will take into account typological features as in Figure 8. 

 

Fig. 8. Determination of points on the gradient image and construction of a 

contour fragment using Dijkstra's algorithm. 

IV. USING THE TEMPLATE GENERAL SCHEME OF THE 

ALGORITHM 

Thus, the algorithm starts working based on the analysis 
of the hyperspectral image as in Figure 9. The principal 
component method makes it possible to obtain halftone 
images with the most pronounced properties in hyperspectral 
space. This image is used by Dijkstra's algorithm to determine 
a fragment of a contour enclosed between two points for a 
hyperspectral image. 

V. CONCLUSION 

In this article, we examined the algorithm for searching for 
hyperspectral boundaries in a multispectral image. The 
problem of image transformation in hyperspectral space has 
been studied, and a principal component method has been 
proposed to determine the informative zones of spectral space. 
This method allows you to identify the most significant 
components that can be used for further analysis. 

To find the optimal contour, we used Dijkstra's algorithm, 
which allows us to efficiently find the minimum path in the 

 

Fig. 5. Images of new spectral components (plans) after the principal 

component method. 
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graph. This algorithm allows us to determine the boundaries 
of objects in a hyperspectral image, which is an important step 
in its analysis.  

The general scheme of the algorithm was presented, 
combining all the above methods into a single system. This 
allows us to efficiently and accurately determine the 
boundaries of objects in multispectral images and conduct 
further data analysis. 
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Fig. 9. Diagram of the algorithm for constructing a contour on a hyperspectral image 


