Д.Ю. Гульпа, мл. науч. сотр.; И.И. Кузьмар, канд. техн. наук; Л.К. Кушнер, ст. науч. сотр.; Г.А. Бразаускас, студ. БГУИР, (г. Минск, Беларусь)

КИНЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОЦЕССОВ ФОРМИРОВАНИЯ ПОКРЫТИЙ НА ОСНОВЕ ОЛОВА

Электрохимические покрытия сплавами на основе олова используют в современной электронной промышленности при производстве печатных плат, различных электрических контактных соединений [1]. Переход на бессвинцовые технологии повышает интерес к альтернативным сплавам на основе олова, таким как *Sn-Cu*, *Sn-Ag*, *Sn-Bi*, *Sn-Ag-Cu* и др. Исследованы кинетические характеристики процессов формирования покрытий оловом, сплавами олово-медь и оловосеребро.

Электроосаждение проводили из электролита, содержащего 196 г/л H_2SO_4 , 43 г/л $SnSO_4$, 15,2 г/л $CS(NH_2)_2$, 8 г/л неонала $A\Phi 9-10$, 1 г/л гидрохинона [2]. Для получения сплава олово-медь в электролит дополнительно вводили $CuSO_4 \cdot 5H_2O$ (электролит N 0 1 - 10 г/л, электролит N 0 2 - 5 г/л), а сплава олово-серебро - 2,5 г/л $AgNO_3$.

Электрохимические процессы, происходящие на границе электрод-электролит, исследованы методом вольтамперометрии с использованием импульсного потенциостата-гальваностата «ElinsP-45X». Потенциал рабочего электрода измеряли относительно хлорсеребряного электрода сравнения и пересчитывали относительно стандартной водородной шкалы. Скорость развертки потенциала 5 мВ/с.

Стационарный потенциал независимо от состава электролитов и условий электролиза составлял $0,400\pm0,005$ В. На рисунке 1а представлены вольт-амперные характеристики процесса электроосаждения покрытий на основе олова. Установлено, что зависимость потенциала катода от плотности тока подчиняется уравнениям смешанной кинетики. В составе электролитов присутствуют поверхностно-активные вещества, которые образуют пассивирующую пленку на поверхности катода. На поляризационных кривых есть «плато», когда происходит рост потенциала электрода при значениях тока, близких к предельному. Введение в электролит солей меди и серебра повышает значение предельного тока от $2,8\cdot A/\text{дм}^2$ для оловянных покрытий до $4,0 \text{ A/cm}^2$ покрытий сплавом олово-медь и $7,9 \text{ A/дм}^2$ покрытий сплавом олово-

серебро (рисунок 1а и таблица 1). Соль серебра в электролите приводит к деполяризации катодного процесса.

Для понимания природы электродных реакций в условиях нестационарного электролиза изучены особенности кривых потенциал - плотность тока и результаты исследований представлены на рисунках 1б и 1в.

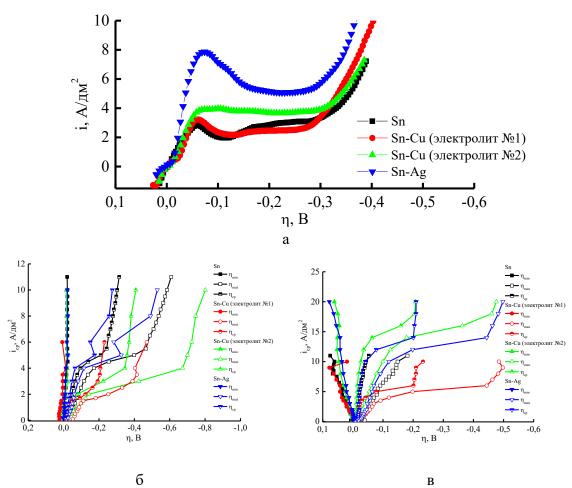


Рисунок 1 — Вольт-амперные характеристики процесса формирования покрытий на основе олова, полученные при различных режимах электролиза: а — постоянный ток (ПТ), б — импульсный ток (ИТ), в — реверсированный ток (РТ)

Методика исследований отличалась от обычной. В управляющей программе ES8 к импульсному потенциостату-гальваностату «ElinsP-45X» в режиме «Импульсная произвольная развертка» задавали амплитудные значения прямого и обратного токов и их длительности.

Таблица 1 – Предельный катодный ток при формировании покрытий оловом и сплавами олово-медь и олово-серебро

n chilabamii oliobo megb ii oliobo cepeopo					
Покрытие	Режим электроосаждения	Предельный ток, А/дм ²			
	ПТ	2,8			
Sn	ИТ	4,4			
	PT	4,5			
Sn-Cu (электролит №1)	ПТ	3,25			
	ИТ	1,5			
	PT	5,0			
Sn-Cu (электролит №2)	ПТ	4,0			
	ИТ	2,0			
	PT	14,0			
Sn-Ag	ПТ	7,9			
	ИТ	4,0			
	PT	12,1			

Получили семейство кривых E(I) для заданных токов, по которым с учетом значений стационарного потенциала рассчитали минимальное значение потенциала η_{min} , максимальное η_{max} и среднее η_{cp} для каждого цикла. Полученные распределения также подчиняются уравнениям смешанной кинетики.

При осаждении на реверсированном режиме предельный ток увеличивается в 1,53-3,5 раза в зависимости от типа покрытий.

Значения тока обмена и коэффициента переноса рассчитаны с использованием графического представления уравнений Тафеля [3].

Таблица 2 – Кинетические характеристики процесса формирования покрытий на основе олова на различных режимах электролиза

				pennimum strenti potinisu	
Покрытие	Режим оса- ждения	Постоянные Тафеля		Ток обмена, $j_0 \cdot 10^{-4}$	Коэффициент
		a	b	A/cm^2	переноса, α
Sn	ПТ	0,129	0,056	49,53	0,518
	ИТ	0,145	0,058	31,76	0,500
	PT	0,163	0,060	18,43	0,487
Sn-Cu (электролит №1)	ПТ	0,134	0,056	40,95	0,519
	ИТ	0,171	0,062	17,23	0,470
	PT	0,185	0,066	15,85	0,441
Sn-Cu (электролит №2)	ПТ	0,120	0,052	48,93	0,561
	ИТ	0,136	0,055	33,5	0,529
	PT	0,120	0,055	67,64	0,527
Sn-Ag	ПТ	0,105	0,050	80,16	0,582
	ИТ	0,123	0,054	52,72	0,540
	PT	0,132	0,060	60,58	0,488

Результаты расчетов представлены в таблице 2. Коэффициент переноса близок к 0,5 и для всех типов покрытий снижается при переходе к нестационарному электролизу.

На импульсном токе ток обмена уменьшается по сравнению с использованием постоянного тока при формировании всех типов покрытий.

Установленные кинетические закономерности позволили установить механизм формирования покрытий на основе олова при различных условиях электроосаждения.

ЛИТЕРАТУРА

- 1. Контактно-барьерные структуры субмикронной электроники / А. П. Достанко [и др.]; под ред. акад. НАН Беларуси А. П. Достанко и д-ра техн. наук В. Л. Ланина Минск: Бестпринт, 2021. 270 с.
- 2. Гульпа, Д. Ю. Нестационарный электролиз сплава олово-медь / Д. Ю. Гульпа, И. И. Кузьмар, Л. К. Кушнер // Доклады БГУИР. 2022. Т. 20, № 8. С. 21–27. http://dx.doi.org/10.35596/17297648-2022-20-8-21-27.
- 3. Феттер К. Электрохимическая кинетика. М., Химия. 1967. $856\ c.$