
312

Generating Graphs With Specified Properties And Their Use

For Constructing Scene Graphs From Images

Aliaksei Himbitski

Faculty of Applied Mathematics and

Computer Science

Belarusian State University

Minsk, Belarus

alekseygimbickiy@gmail.com

Vitali Himbitski

Faculty of Applied Mathematics and

Computer Science

Belarusian State University

Minsk, Belarus

gimbitskyvitaly@gmail.com

Vassili Kovalev

Biomedical image analysis department

United Institute of Informatics

Problems

Minsk, Belarus

vassili.kovalev@gmail.com

Abstract—Graph generation, the process of creating

meaningful graphs, plays a vital role in various domains,

including social network analysis, bioinformatics,

recommendation systems, and network modeling. This article

provides three graph generation models and also proposes the

idea of constructing a scene graph using graph generation

models. The where different models graph generation has been

used for purposes such as social network analysis for community

discovery, bioinformatics for protein interaction networks,

recommendation systems for personalized recommendations,

and network modeling for simulating real-world scenarios. In

such models, the hidden state matrix of generated objects was

used as a feature matrix. This article sets the goal of building a

model with the ability to generate various types of graphs,

without being tied to a specific area of application, that is, a

matrix describing the structural characteristics of graphs will

be used as a feature matrix.

This paper develops three methods for generating graph

structures with given properties using generative neural

networks.

The developed methods are tested on the set of Hamiltonian

graphs. A comparative analysis of the quality of the generated

graph structures is performed. A method of scene graph

construction using the developed methods is proposed.

Keywords—graph neural networks, generative neural

networks, scene graph.

I. INTRODUCTION

Modern tasks make extensive use of graph structures,
which allow us to represent relationships between elements of
some set. Graphs are used in many fields, and their use is
particularly useful for building a model of what is happening
in an image. Such a graph structure is called a scene graph.

In this paper, three developed methods for generating
graph structures with given properties are discussed. Based on
these models, a method for constructing a scene graph is
developed, which can be useful for the task of image
description. In addition, the developed models can be applied
to the development of self-driving cars.

Furthermore, the developed methods are integrated into a
comprehensive approach for constructing scene graphs, which
can be utilized for image description tasks. Given an input
image, the proposed method generates a scene graph that
captures the objects present, their relationships, and additional
contextual information. This enables the automatic generation
of descriptive captions or textual representations of visual
scenes, facilitating tasks such as image understanding,
retrieval, and summarization.

Beyond image description applications, the developed
graph generation models have broader implications in the field
of computer vision. For instance, in the context of self-driving

cars, scene understanding plays a crucial role in perceiving
and navigating the surrounding environment. By utilizing
scene graphs, autonomous vehicles can better comprehend the
relationships between objects on the road, pedestrians, and
traffic signs, ultimately enhancing their ability to make
informed decisions in complex driving scenarios.

In summary, this paper presents three methods for
generating graph structures with given properties. In addition
this paper proposes a way to apply these generative graph
models to construct a scene graph. The presented method
leverage object detection, deep learning, and probabilistic
modeling techniques to construct scene graphs. The proposed
approach can contribute to advancements in image description
and other computer vision applications, with potential
implications for autonomous driving systems

II. GENERATIVE ADVERSARIAL NEURAL NETWORK FOR

GRAPH GENERATION.

A. Generative adversarial neural network based on linear

layers.

The proposed model generates new graph structures from
the adjacency matrices of the graphs represented in the
dataset. Linear layers are used to determine the required graph
propertie.

The architecture of the built model is shown below.

As a result, the model generates a matrix of size n x n,
where n is the number of vertices in the generated graph. At
the intersection of the i-th row and j-th column in this matrix
there is a number from the segment [0, 1] denoting the
probability that there is an edge between the i-th and j-th
vertex in the graph. Here is an example of probability matrices
generated in this way, represented as square images. In these
images, the white color (i, j) of a cell means a high probability
that there is an edge between the i-th and j-th vertices of the
graph, and the black color means a low probability.

TABLE I. GENERATOR ARCHITECTURE

Layers
Input Shape -> Output

Shape
Layers Information

Input
Layer

(100)->(400)

Linear

BatchNorm

LeakyReLU

Hidden

Layer

(400)->(200)

Linear

BatchNorm

LeakyReLU

(200)->(400)

Linear

BatchNorm

LeakyReLU

Output

Layer

(400)->(64) Linear

(64)->(1, 8, 8) Reshape

313

Fig. 1. Probability matrices obtained using a generative network

The following are examples of graphs obtained by
generating with this model trained 50 epochs on a dataset
consisting of Hamiltonian graphs.

Fig. 2. Graphs obtained using a generative network

B. Graph convolution

The models proposed below utilize graph convolution.
This section gives a brief description of this operation and

provides some as that will be used to implement the graph
convolution layer.

The idea of a graph convolution is that for each vertex of
a graph it accumulates the features of all vertices adjacent to
it. The graph convolution layer takes an adjacency matrix A,
of size n x n, and a feature matrix X of size n x k, where k =
= 1 + n + l. And returns some matrix Y obtained by the
formula

 ˆ ˆ(), where .Y relu A X W A A D= = − ()

Here A is the graph adjacency matrix, D is a diagonal
matrix with the degrees of the graph vertices on the diagonal,
X is the feature matrix of the graph vertices, W is some
trainable parameters.

C. Graph autoencoder based on graph convolutions.

In order to preserve the structural features of the graph, the
use of graph convolutions has been proposed. To train this
autoencoder, graph adjacency matrices as well as feature
matrices containing vector representation of each vertex of the
graph are used. The architecture of the encoder and decoder is
summarized in the table below.

TABLE III. ENCODER ARCHITECTURE

Layers
Input Shape ->

Output Shape
Layers Information

Input Layer

(1, n, m) ->
(1, n, m/4)

(GraphConvLayer, ReLU)x2

OutputLayer

(1, n, m/4)->(1, n,

m)
(GraphConvLayer, ReLU)x3

TABLE IV. DECODER ARCHITECTURE

Layers
Input Shape -> Output

Shape
Layers Information

Input Layer (1, n, m) -> (1, 1, n*m) Linear
ReLU

Hidden Layer

(1, 1, n*m)->

(1, 1, ⌊
3

2
∗ 𝑛 ∗ 𝑚⌋)

Linear

ReLU

Output Layer

(1, 1, ⌊

3

2
∗ 𝑛 ∗ 𝑚⌋)->

(1, 1, n)

Linear

ReLU

Here n denotes the number of graph vertices, m is the
dimension of the graph vertex embedding.

The encoder consists of two consecutive graph
convolutional layers with ReLU activation function and
collapses the graph into a hidden feature representation. The
decoder in turn consists of three fully connected layers with
ReLU activation function and translates the feature
representation of the graph into a probability vector p of size
1 x n. We then obtain the probability matrix P by multiplying
this vector by itself. By applying the sigmoid activation

TABLE II. DISCRIMANTOR ARCHITECTURE

Layers
Input Shape -> Output

Shape
Layers Information

Input

Layer

(1, 8, 8)->(64) Reshape

(64)->(512)

Linear

LeakyReLU

Dropout

Hidden

Layer
(512)->(512)

Linear

LeakyReLU

Dropout

Output

Layer
(512)->(1) Linear

314

function, threshold function, we get the generated graph
adjacency matrix.

 .TP p p= ()

As input, the encoder receives the source graph adjacency
matrix and the vertex feature matrix.

Will train the obtained model for 20 epochs. As an
optimizer will use Adam optimizer, set 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 =
10−3. The results of the model trained on the dataset of
Hamiltonian graphs are shown below.

Fig. 3. Graphs obtained after 20 epochs of training the graph autoencoder

D. Generative adversarial neural network based on graph

convolutions.

This model extracts graph features using graph
convolutions. To train this generative adversarial network,
graph adjacency matrices are used, as well as feature matrices
containing a vector representation of each vertex in the graph.

An autoencoder is used to obtain the graph feature matrix.
The autoencoder takes the graph adjacency matrix, collapses
it into a latent space using an encoder, and reconstructs the
graph adjacency matrix from the latent representation using a
decoder. The matrix of the form, where d is the column of
degrees of the graph vertices, A is the graph adjacency matrix,
L is the latent representation of the graph adjacency matrix, is
used as the feature matrix.

The architecture of the model is shown below.

Will train the obtained model for 20 epochs. Will use
Adam optimizer as an optimizer. For the first 10 epochs will
set 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 = 10−3. During the last 10 epochs will
linearly decrease 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 to 0.

After 20 epochs of training on the dataset of Hamiltonian
graphs, the model will generate the following graphs.

Fig. 4. Graphs obtained after 20 epochs of training the graph GAN

TABLE V. GENERATOR ARCHITECTURE

Layers
Input Shape -> Output

Shape
Layers Information

Input Layer (1, 8, 18)->(144) Reshape

Hidden Layer

(144)->(144)

Linear

ReLU

Linear

ReLU

Linear

ReLU

(144)->(1, 8, 18) Reshape

Decoder

(144)->(128)
Linear

LeakyReLU

(128)->(112)
Linear

LeakyReLU

(112)->(96)
Linear

LeakyReLU

(96)->(80)
Linear

LeakyReLU

(80)->(64)
Linear

LeakyReLU

(64)->(1, 8, 8) Reshape

Output Layer
[(1, 8), (1, 8, 8), (1, 8, 18)]

->(1, 8, 27)
Concatenate

TABLE VI. DISCRIMINATOR ARCHITECTURE

Layers
Input Shape -> Output

Shape
Layers Information

Conv Layer
[(1, 8, 8), (1, 8, 27)]->

(1, 8, 27)

GraphConvLayer

GraphConvLayer

GraphConvLayer

Classification

Layer

(1, 8, 27)->(216) Reshape

315

III. GRAPH-BASED GENERATIVE NEURAL NETWORKS IN

COMPUTER VISION TASKS FOR SCENE GRAPH CONSTRUCTION

Fig. 5. The principle of scene graph construction

The proposed graph generative neural network
architectures can be used to generate scene graphs to describe
the actions taking place in the image. The new model will
consist of two structural parts: a convolutional neural network
to select objects in the image and a graph neural network to
construct the scene graph. The graph part of the complex
model will be represented by a generator of one of the above
mentioned generative adversarial neural networks or a
decoder of the above mentioned graph autoencoder.

Fig. 6. Model structure for scene graph construction

Figure 5 shows the working principle of this model. The
convolutional neural network takes an image as input and
returns a matrix X of size k x n, which corresponds to the
feature matrix of the scene graph. The graph neural network
uses the feature matrix to construct the adjacency matrix of the
scene graph of size n x n x l. Here n is the number of vertices
in the scene graph, k is the length of the feature vector of the
graph vertex, l is the length of the feature vector of the graph
edge.

The proposed model takes an image as input and returns
two matrices: matrix X and matrix A. X is a feature matrix
whose rows correspond to feature vectors of objects detected
in the image. A is the adjacency matrix, whose elements
correspond to the vectors of features of the ways of interaction
between pairs of objects detected in the image. The methods
of generating scene graphs from images are not discussed in
more detail in this paper.

IV. CONCLUSION

The were developed and tested. three models for
generating graph structures with given properties. The results
of generating Hamiltonian graphs where shown in the paper.
A model based on the proposed generative graph neural
networks for generating scene graphs from an image was also
developed. Graph convolution was implemented and used in
the development of graph neural network architectures.

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.
(references)

[2] Lingfei Wu, Peng Cui, Jian Pei and Liang Zhao, “Graph Neural
Networks Foundations, Frontiers, and Applications,” Springer
Singapore, 2022 .

[3] Feature Extraction for Graphs. The Most Useful Graph Features for
Machine Learning Models [Electronic resource], URL:
https://towardsdatascience.com/feature-extraction-for-graphs-
625f4c5fb8cd

[4] An Introduction to Graph Neural Network(GNN) For Analysing
Structured Data [Electronic resource], URL:
https://towardsdatascience.com/an-introduction-to-graph-neural-
network-gnn-for-analysing-structured-data-afce79f4cfdc

[5] Zhiyuan Liu and Jie Zhou, “Introduction to Graph Neural Networks.
Synthesis Lectures on Artificial Intelligence and Machine Learning,”
Morgan & Claypool Publishers, 2020.

https://towardsdatascience.com/feature-extraction-for-graphs-625f4c5fb8cd
https://towardsdatascience.com/feature-extraction-for-graphs-625f4c5fb8cd
https://towardsdatascience.com/an-introduction-to-graph-neural-network-gnn-for-analysing-structured-data-afce79f4cfdc
https://towardsdatascience.com/an-introduction-to-graph-neural-network-gnn-for-analysing-structured-data-afce79f4cfdc

