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Abstract—Graph generation, the process of creating 

meaningful graphs, plays a vital role in various domains, 

including social network analysis, bioinformatics, 

recommendation systems, and network modeling. This article 

provides three graph generation models and also proposes the 

idea of constructing a scene graph using graph generation 

models. The where different models graph generation has been 

used for purposes such as social network analysis for community 

discovery, bioinformatics for protein interaction networks, 

recommendation systems for personalized recommendations, 

and network modeling for simulating real-world scenarios. In 

such models, the hidden state matrix of generated objects was 

used as a feature matrix. This article sets the goal of building a 

model with the ability to generate various types of graphs, 

without being tied to a specific area of application, that is, a 

matrix describing the structural characteristics of graphs will 

be used as a feature matrix. 

This paper develops three methods for generating graph 

structures with given properties using generative neural 

networks. 

The developed methods are tested on the set of Hamiltonian 

graphs. A comparative analysis of the quality of the generated 

graph structures is performed. A method of scene graph 

construction using the developed methods is proposed. 

Keywords—graph neural networks, generative neural 

networks, scene graph. 

I. INTRODUCTION  

Modern tasks make extensive use of graph structures, 
which allow us to represent relationships between elements of 
some set. Graphs are used in many fields, and their use is 
particularly useful for building a model of what is happening 
in an image. Such a graph structure is called a scene graph. 

In this paper, three developed methods for generating 
graph structures with given properties are discussed. Based on 
these models, a method for constructing a scene graph is 
developed, which can be useful for the task of image 
description. In addition, the developed models can be applied 
to the development of self-driving cars. 

Furthermore, the developed methods are integrated into a 
comprehensive approach for constructing scene graphs, which 
can be utilized for image description tasks. Given an input 
image, the proposed method generates a scene graph that 
captures the objects present, their relationships, and additional 
contextual information. This enables the automatic generation 
of descriptive captions or textual representations of visual 
scenes, facilitating tasks such as image understanding, 
retrieval, and summarization. 

Beyond image description applications, the developed 
graph generation models have broader implications in the field 
of computer vision. For instance, in the context of self-driving 

cars, scene understanding plays a crucial role in perceiving 
and navigating the surrounding environment. By utilizing 
scene graphs, autonomous vehicles can better comprehend the 
relationships between objects on the road, pedestrians, and 
traffic signs, ultimately enhancing their ability to make 
informed decisions in complex driving scenarios. 

In summary, this paper presents three methods for 
generating graph structures with given properties. In addition 
this paper proposes a way to apply these generative graph 
models to construct a scene graph.  The presented method 
leverage object detection, deep learning, and probabilistic 
modeling techniques to construct scene graphs. The proposed 
approach can contribute to advancements in image description 
and other computer vision applications, with potential 
implications for autonomous driving systems 

II. GENERATIVE ADVERSARIAL NEURAL NETWORK FOR 

GRAPH GENERATION. 

A. Generative adversarial neural network based on linear 

layers. 

The proposed model generates new graph structures from 
the adjacency matrices of the graphs represented in the 
dataset. Linear layers are used to determine the required graph 
propertie. 

The architecture of the built model is shown below. 

As a result, the model generates a matrix of size n x n, 
where n is the number of vertices in the generated graph. At 
the intersection of the i-th row and j-th column in this matrix 
there is a number from the segment [0, 1] denoting the 
probability that there is an edge between the i-th and j-th 
vertex in the graph. Here is an example of probability matrices 
generated in this way, represented as square images. In these 
images, the white color (i, j) of a cell means a high probability 
that there is an edge between the i-th and j-th vertices of the 
graph, and the black color means a low probability. 

TABLE I.  GENERATOR ARCHITECTURE 

Layers 
Input Shape -> Output 

Shape 
Layers Information 

Input 
Layer 

(100)->(400) 

Linear 

BatchNorm 

LeakyReLU 

Hidden 

Layer 

 

(400)->(200) 

Linear 

BatchNorm 

LeakyReLU 

(200)->(400) 

Linear 

BatchNorm 

LeakyReLU 

Output 

Layer 

(400)->(64) Linear 

(64)->(1, 8, 8) Reshape 
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Fig. 1. Probability matrices obtained using a generative network 

The following are examples of graphs obtained by 
generating with this model trained 50 epochs on a dataset 
consisting of Hamiltonian graphs. 

 

Fig. 2. Graphs obtained using a generative network 

B. Graph convolution 

The models proposed below utilize graph convolution. 
This section gives a brief description of this operation and 

provides some as that will be used to implement the graph 
convolution layer. 

The idea of a graph convolution is that for each vertex of 
a graph it accumulates the features of all vertices adjacent to 
it. The graph convolution layer takes an adjacency matrix A, 
of size n x n, and a feature matrix X of size n x k, where k = 
= 1 + n + l. And returns some matrix Y obtained by the 
formula 

 ˆ ˆ( ),  where .Y relu A X W A A D=   = −  () 

Here A is the graph adjacency matrix, D is a diagonal 
matrix with the degrees of the graph vertices on the diagonal, 
X is the feature matrix of the graph vertices, W is some 
trainable parameters. 

C. Graph autoencoder based on graph convolutions. 

In order to preserve the structural features of the graph, the 
use of graph convolutions has been proposed. To train this 
autoencoder, graph adjacency matrices as well as feature 
matrices containing vector representation of each vertex of the 
graph are used. The architecture of the encoder and decoder is 
summarized in the table below. 

TABLE III. ENCODER ARCHITECTURE 

Layers 
Input Shape -> 

Output Shape 
Layers Information 

Input Layer 

(1, n, m) ->  
(1, n, m/4) 

(GraphConvLayer, ReLU)x2 

OutputLayer 

 

(1, n, m/4)->(1, n, 

m) 
(GraphConvLayer, ReLU)x3 

TABLE IV.  DECODER ARCHITECTURE 

Layers 
Input Shape -> Output 

Shape 
Layers Information 

Input Layer (1, n, m) -> (1, 1, n*m) Linear 
ReLU 

Hidden Layer 

 

(1, 1, n*m)-> 

(1, 1, ⌊
3

2
∗ 𝑛 ∗ 𝑚⌋) 

Linear 

ReLU 

Output Layer 

 
(1, 1, ⌊

3

2
∗ 𝑛 ∗ 𝑚⌋)-> 

(1, 1, n) 

Linear 

ReLU 

Here n denotes the number of graph vertices, m is the 
dimension of the graph vertex embedding. 

The encoder consists of two consecutive graph 
convolutional layers with ReLU activation function and 
collapses the graph into a hidden feature representation. The 
decoder in turn consists of three fully connected layers with 
ReLU activation function and translates the feature 
representation of the graph into a probability vector p of size 
1 x n. We then obtain the probability matrix P by multiplying 
this vector by itself. By applying the sigmoid activation 

TABLE II. DISCRIMANTOR ARCHITECTURE 

Layers 
Input Shape -> Output 

Shape 
Layers Information 

Input 

Layer 

(1, 8, 8)->(64) Reshape 

(64)->(512) 

Linear 

LeakyReLU 

Dropout 

Hidden 

Layer 
(512)->(512) 

Linear 

LeakyReLU 

Dropout 

Output 

Layer 
(512)->(1) Linear 
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function, threshold function, we get the generated graph 
adjacency matrix. 

 .TP p p=   () 

As input, the encoder receives the source graph adjacency 
matrix and the vertex feature matrix. 

Will train the obtained model for 20 epochs. As an 
optimizer will use Adam optimizer, set 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 =
10−3. The results of the model trained on the dataset of 
Hamiltonian graphs are shown below. 

 

Fig. 3. Graphs obtained after 20 epochs of training the graph autoencoder 

D. Generative adversarial neural network based on graph 

convolutions. 

This model extracts graph features using graph 
convolutions. To train this generative adversarial network, 
graph adjacency matrices are used, as well as feature matrices 
containing a vector representation of each vertex in the graph. 

An autoencoder is used to obtain the graph feature matrix. 
The autoencoder takes the graph adjacency matrix, collapses 
it into a latent space using an encoder, and reconstructs the 
graph adjacency matrix from the latent representation using a 
decoder. The matrix of the form, where d is the column of 
degrees of the graph vertices, A is the graph adjacency matrix, 
L is the latent representation of the graph adjacency matrix, is 
used as the feature matrix. 

The architecture of the model is shown below. 

Will train the obtained model for 20 epochs. Will use 
Adam optimizer as an optimizer. For the first 10 epochs will 
set 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 = 10−3. During the last 10 epochs will 
linearly decrease 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 to 0. 

After 20 epochs of training on the dataset of Hamiltonian 
graphs, the model will generate the following graphs. 

 

Fig. 4. Graphs obtained after 20 epochs of training the graph GAN 

  

TABLE V. GENERATOR ARCHITECTURE 

Layers 
Input Shape -> Output 

Shape 
Layers Information 

Input Layer (1, 8, 18)->(144) Reshape 

Hidden Layer 

 

 

(144)->(144) 

Linear 

ReLU 

Linear 

ReLU 

Linear 

ReLU 

(144)->(1, 8, 18) Reshape 

Decoder 

 

 

 
 

 

(144)->(128) 
Linear 

LeakyReLU 

(128)->(112) 
Linear 

LeakyReLU 

(112)->(96) 
Linear 

LeakyReLU 

(96)->(80) 
Linear 

LeakyReLU 

(80)->(64) 
Linear 

LeakyReLU 

(64)->(1, 8, 8) Reshape 

Output Layer 
[(1, 8), (1, 8, 8), (1, 8, 18)] 

->(1, 8, 27) 
Concatenate 

TABLE VI. DISCRIMINATOR ARCHITECTURE 

Layers 
Input Shape -> Output 

Shape 
Layers Information 

Conv Layer 
[(1, 8, 8), (1, 8, 27)]-> 

(1, 8, 27) 

GraphConvLayer 

GraphConvLayer 

GraphConvLayer 

Classification 

Layer 

 

(1, 8, 27)->(216) Reshape 

 



315 

III. GRAPH-BASED GENERATIVE NEURAL NETWORKS IN 

COMPUTER VISION TASKS FOR SCENE GRAPH CONSTRUCTION 

 

Fig. 5. The principle of scene graph construction 

The proposed graph generative neural network 
architectures can be used to generate scene graphs to describe 
the actions taking place in the image. The new model will 
consist of two structural parts: a convolutional neural network 
to select objects in the image and a graph neural network to 
construct the scene graph. The graph part of the complex 
model will be represented by a generator of one of the above 
mentioned generative adversarial neural networks or a 
decoder of the above mentioned graph autoencoder. 

 

Fig. 6. Model structure for scene graph construction 

Figure 5 shows the working principle of this model. The 
convolutional neural network takes an image as input and 
returns a matrix X of size k x n, which corresponds to the 
feature matrix of the scene graph. The graph neural network 
uses the feature matrix to construct the adjacency matrix of the 
scene graph of size n x n x l. Here n is the number of vertices 
in the scene graph, k is the length of the feature vector of the 
graph vertex, l is the length of the feature vector of the graph 
edge. 

The proposed model takes an image as input and returns 
two matrices: matrix X and matrix A. X is a feature matrix 
whose rows correspond to feature vectors of objects detected 
in the image. A is the adjacency matrix, whose elements 
correspond to the vectors of features of the ways of interaction 
between pairs of objects detected in the image. The methods 
of generating scene graphs from images are not discussed in 
more detail in this paper. 

IV. CONCLUSION 

The were developed and tested. three models for 
generating graph structures with given properties. The results 
of generating Hamiltonian graphs where shown in the paper. 
A model based on the proposed generative graph neural 
networks for generating scene graphs from an image was also 
developed. Graph convolution was implemented and used in 
the development of graph neural network architectures. 
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