Hecsimas Mexcoynapoonas nayuno-npakmuyeckas kongpepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8vlcoxoeo yposuay, Munck, Pecnyonuxa benapyco, 13 mapma 2024 2o00a

UDC 004.021:004.75

BLOCKED ALGORITHM OF SHORTEST PATHS SEARCH IN SPARSE
GRAPHS PARTITIONED INTO UNEQUALLY SIZED CLUSTERS

= z =T
O.N. Karasik

A.A. Prihozhy

Professor at the Computer and System Software Tech Lead at I1Ssoft Solutions (part of

Department, Doctor of Technical Sciences, Coherent Solutions) in Minsk, Belarus,
Full Professor PhD in Technical Science

Belarusian National Technical University karasik.oleg.nikolaevich@gmail.com

prihozhy@yahoo.com

A.A. Prihozhy

Full professor at the Computer and system software department of Belarusian national technical university,
doctor of science (1999) and full professor (2001). His research interests include programming and hardware
description languages, parallelizing compilers, and computer aided design techniques and tools for software and
hardware at logic, high and system levels, and for incompletely specified logical systems. He has over 300
publications in Eastern and Western Europe, USA and Canada. Such worldwide publishers as IEEE, Springer,
Kluwer Academic Publishers, World Scientific and others have published his works.

O.N. Karasik
Tech Lead at ISsoft Solutions (part of Coherent Solutions) in Minsk, Belarus;, PhD in Technical Science
(2019). Interested in parallel computing on multi-core and multi-processor systems.

Abstract. In this paper we consider the problem of searching shortest paths between all pairs of vertices of a
directed weighted sparse graph which is partitioned into clusters by finding dense weakly connected subgraphs. We
address this problem by developing new block-based algorithms that describe the shortest paths by matrices of
blocks of unequal sizes corresponding to the sizes of the graph clusters. These algorithms extend the capabilities of
known existing algorithms using blocks of equal size (such as the blocked algorithms of Floyd-Warshall family) with
respect to adequate graph modeling of real networks of different purposes, and with respect to efficient use of
parallelism and computational resources of multiprocessor systems and multi-core processors. The blocked
algorithm of finding shortest paths in sparse large size graphs partitioned into clusters that is proposed in this paper
reduces, on the one hand, the amount of memory used, and, on the other hand, reduces the number of block
recalculations. Diagonal blocks describe shortest paths within clusters, non-diagonal compact blocks describe non
numerous weighted arcs connecting clusters. Shortest paths between vertices of different clusters are computed in
real time. The memory consumption is reduced compared to the Floyd-Warshall algorithm to a number of times
equal to the number of clusters. In order to reduce the number of block recalculations, a new operation is introduced
to accurately compute the shortest path between vertices of one cluster, passing through the vertices and edges of
another cluster, as well as through the edges connecting the clusters. Applying this operation alone allows us to find
solutions that introduce a small error (a few percent) in the lengths of the shortest paths when the weights of edges
between clusters are small, and allows us to find exact solutions when the weights of these edges are increased.
Accurate solutions can be obtained for sparse graphs modeling road, computer, and other networks.

Keywords: sparse graph, cluster, APSP problem, blocked algorithm, unequally sized blocks, heterogeneous
System.

Introduction. The problem of finding shortest and longest paths for all pairs of vertices in
a large sparse weighted graph [1 — 6] has many application domains. Recently the emergence of

262

mailto:prihozhy@yahoo.com
mailto:karasik.oleg.nikolaevich@gmail.com

Hecsimas Meoxcoynapoonas nayuno-npakmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8vlcoxoeo yposuay, Munck, Pecnyonuxa benapyco, 13 mapma 2024 200a

heterogeneous parallel computing systems [7 — 9] has increased interest in this problem. Many
competitive algorithms are developed for various types of graphs and for different formulations
of the problem: between two vertices; between the source (sink) and each other vertex (single
source and single sink — SSSP); between each pair of vertices (all pairs shortest paths— APSP); to
meet the requirement that all graph vertices must be listed on the path, etc.

The paper considers the APSP problem and algorithms [10, 11] of solving it. Two families
of the APSP algorithms exist: 1) based on the Dijkstra SSSP-algorithm [1]; 2) based on the
Floyd-Warshall APSP-algorithm [2]. The first family includes the Dijkstra algorithm [1], the
Bellman-Ford algorithm [12], the Johnson algorithm [13], the Harish and Narayanan algorithm
[14], and others [15]. The second family includes among others the Floyd-Warshall (F'W)
algorithm [2], the blocked Floyd-Warshall algorithm (BFW) proposed in [7, 10, 11] by Katz,
Venkataraman and others, the graph extension-based algorithm (GEA) and the heterogeneous
blocked APSP algorithm (HBAPSP) both proposed by Prihozhy and Karasik in [16 — 18]. The
algorithms can be parallelised by OpenMP [19]. The results as follows have been obtained based
on the idea of using blocks: a recursive blocked FW algorithm [10]; efficient usage of GPUs [7 —
9]; solving sparse graph scaling problem [20]; optimization of data allocation in hierarchical
memory [21]; improving cache performance for APSP [11, 17, 22]; a cooperative threaded
algorithm [23, 24]; selection of the optimal block-size [25]; reducing energy consumption [26];
search for shortest paths using dataflow networks of actors [27, 28]. In work [5], a method of
inferring new blocked algorithms which divide the input graph into unequal subgraphs and
divide the matrix of shortest path distances into blocks of unequal sizes has been proposed.

The key contribution of the paper is a fast and memory efficient blocked algorithm of
computing the shortest paths within unequally sized clusters of a large sparse graph and
computing the shortest paths between vertices of different clusters in real time.

Blocked all-pairs shortest paths algorithm for unequally sized blocks. Let G = (V, E)
be a simple directed graph with real edge-weights consisting of a set V, |V] = N of vertices
numbered 1 through N and a set £ of edges. Let W be a cost adjacency matrix for G. So,
w(i, i) =0, 1 <i< N; w(i,j) is the cost (weight) of edge (7, j) if (i, j) € E and w(i, j) =0 if i #
and (i, j) ¢ E. Let djj be a length of shortest path from vertex i to vertex j, and D be a matrix of
distances between all pairs of vertices 7, j € V, i #j. Let P be a matrix whose element pj; is a
vertex that is previous for vertex j in a path from i to j. The objective of an APSP-algorithm is to
compute the D and P matrices for a given graph G.

In work [5], we have proposed to decompose the graph G into subgraphs (clusters) and
decompose the matrix B into blocks of unequal sizes defined by vector S = (S1...5m) (Figure 1,a).
While M blocks are square on the principal diagonal of B (block Biji has the Vi x V; size), all other
blocks are rectangular in general case (block Bj; has the Vi x Vjsize for i, j = 1...M, i #j). All
blocks in row i have the height of V;, and all blocks in column j have the width of Vj. Matrix P of
previous vertices in the shortest paths has the same structure.

At the aim of processing unequaly sized clusters, we extended the known blocked Floyd-
Warshall algorithm BFW to the all-pairs shortest path algorithm BFWUS [5], which can handle a
block-matrix B of unequally sized blocks. BFWUS is described by Algorithm 1. In a loop along
m that performs M iterations, it recalculates each of M? blocks of matrix B, therefore, it carries
out M? recalculations in total. In terms of vertex count, the time complexity of BFWUS is N°* and
the memory complexity is N? since each block has the layout (Figure 1,b) of matrix of shortest
path distances (DiM).

Figure 2 illustrates the operation of BFWUS and depicts the order of calculating blocks.

263

Hecsimas Mexcoynapoonas nayuno-npakmuyeckas kongpepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8vlcoxoeo yposuay, Munck, Pecnyonuxa benapyco, 13 mapma 2024 2o00a

a) b)
Figure 1. Blocked matrix B of shortest paths distances: a) diagonal blocks are square and non-
diagonal blocks are rectangular; b) BFWUS represents all blocks by matrix of shortest path
distances (DiM)

Algorithm 1: Blocked APSP algorithm accounting for blocks of unequal
sizes (BFWUS)

Input: A number N of vertices in input graph
Input: A matrix W[NxN] of graph edge weights
Input: A vector S = (S1...5m) of sizes of vertex subsets
Input: A number M of blocks per row (column)
Output: A blocked matrix B[MxM] of path distances
Output: A blocked matrix P[MxM] of previous vertices in shortest paths
fori j < 1toNdo
if W(i, j) # o then PM(j, j) < i else P™(i, j) < undefined
B[MxM] < W[NxN] P[MxM] < P"[NxN]
for m < 1 to M do
USBC (S, B, P, m, m, m) // DO
for v« 1to Mdo
if v m then
USBC (S, B, P, v, m, m) /1 Cl1
USBC (S, B, P, m, m, v) /1 C2
for v« 1toMdo
if v #m then
for u < 1toMdo
if u # m then
USBC (S, B, P, v, m, u) // P3
return B, P

Algorithm 2 describes a block-calculation procedure USBC which has a feature of processing
blocks of unequal sizes. The algorithm inputs are metrices B and P which describe blocks of
sizes defined by vector S. Indices v, m and u choose in matrix B three blocks Byu, Byvm and Bmu of
which two or three can be identical. The indices choose similar blocks in matrix P. The sizes of
blocks are Sv x Su, Sv X Sm and Sm x Su respectively. USBC consists of three nested loops. It
makes Sm-Sy-Su attempts to update the values of elements of blocks By, and Py,. The order of
loops is essential. The loop along & must be the outer, it cannot be reordered with other loops.

264

Hecsimas Meoxcoynapoonas nayuno-npakmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8vlcoxoeo yposuay, Munck, Pecnyonuxa benapyco, 13 mapma 2024 200a

The key difference USBC against Floyd-Warshall is that the non-diagonal blocks are rectangles
but squares.

Step 1 Step 2
m @2 @2 (2 P3 (@] P3 P3
@1 P3 P3 P3 G2 C2
Cl P3 P3 P3 P3 Cl P3 P3
Gl B3 P3 B3 P3 Cl1 P3 P3

Figure 2. 1llustration of BFWUS operation: cross moves from top-left to bottom-right corner of
blocked matrix B; first, block DO is calculated through itself; second, blocks C1 and C2 are
calculated through DO; third, blocks P3 are calculated through C1 and C2

Algorithm 2: Calculation of unequally sized blocks (USBC)

Input: A vector S of sizes of graph vertex subsets
Input: A blocked matrix B[MxM] of path distances
Input: A blocked matrix P[MxM] of previous vertices in shortest paths
Input: Indices v, m and u of vertex subsets
Output: Recalculated block By, of matrix B
Output: Recalculated block Py of matrix P
for k < 1 to Sm do
fori<— 1toSydo
forj < 1to Sy do
sum <— Bym(i, k) + Bmu(k,)
if Byvu(i, j) > sum then
Buu(i, j) <= sum
PVau(ivj) <~ Pm»u(kvj)
return B, P

Computation of shortest paths between vertices within two clusters through neighbor
cluster and interconnecting edges. In case of matrix B[2x2], the BEFWUS algorithm calculates
two diagonal and two non-diagonal blocks in the following way:

B11[S1xS1] < B11[S1xS1] ® B11[S1xS1] (1)
B21[S2xS1] < B21[S2xS1] ® B11[S1xS1] (2)
B12[S1xS2] < B11[S1xS1] ® B12[S1xS2] 3)
B2[S2xS2] < B21[S2xS1] ® B12[S1xS2] 4)
B22[S2xS2] < B22[S2xS2] ® B2a[S2xS2] 5)
B12[S1xS2] <~ B12[S1xS2] ® B22[S2xS2] (6)
B21[S2xS1] < B22[S2xS2] ® B21[S2xS1] (7
Bi1[S1xS1] <= B12[S1xS2] ® B21[S2xS1]. ®)

265

Hecsimas Mexcoynapoonas nayuno-npakmuyeckas kongpepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8vlcoxoeo yposuay, Munck, Pecnyonuxa benapyco, 13 mapma 2024 2o00a

Equations (1) — (4) calculate block B2» through block Bii. First, diagonal block Bii is
calculated through itself using (1). Operator ® denotes a matrix MIN-PLUS multiplication
operation. Then blocks B and Bi» are calculated through Bii using (2) and (3). After that,
diagonal block B»; is calculated through blocks B2i and Bz using (4). Equations (5) — (8) perform
similar operations in opposite direction, i.e. from block B2 to block Bi1. It is important that three
operations are needed to calculate B2, through By, i.e. (2), (3) and (4). Similarly, three operations
are needed to calculate B1; through B2, i.e. (6), (7) and (8). To accomplish it, two intermediate
blocks are additionally calculated, i.e. B»1 and Biz. For large sparse graphs, BFWUS requires a
huge amount of memory space and processor time. For very large graphs it is unjustified and
practically unacceptable.

We propose a new method of computing B> through Bi; (and similarly Bii through B»y).
The method allows to account for features of sparse graphs with clustered vertices, to reduce the
amount of consumed memory space, to decrease the number of matrix MIN-PLUS operations
executed over blocks.

Let two clusters Clustii and Clust, divide the vertex set V' of graph G into two subsets Vi
and V2 of unequal sizes S1 and S (Figure 3,a). The vertices of clusters Clusti1 and Clust, are
connected by edges from Coni> and Conzi. As a result, we obtain a matrix B consisting of four
blocks (Figure 3,b). Blocks Bi1 and B initially describe the internal weighted edges of the
clusters, and then describe the shortest path lengths between vertices of set V1 and between
vertices of set V2. Sparse blocks Wi, and W>; describe weighted edges connecting vertices of V)
to vertices of > and vice versa respectively. Figure 3,c shows that blocks Bi1 and B2 are placed
in memory as matrices of distances (DiM) using row-major memory layout, and blocks Wi, and
Wa, are placed as adjacent lists (4jL).

v, V2

Chlbtll COIlln Vl

Clust,, v,

Figure 3. Dividing graph to clusters: a) diagonal blocks are clusters and non-diagonal blocks
describe connections between clusters; b) blocks B11 and B2> describe shortest path lengths and
blocks W12 and W>:1 describe weighted edges; c¢) diagonal blocks are represented by matrix of
distances (DiM) and non-diagonal blocks are represented by adjacent lists (4jL)

Our method of computing block Bz through block Bii and vice versa consists in
performing the following five operations:

B11 < Diagonal(B11))]

B2y « BlockThroughBlock(B2, Wai, Bi1, Wi2) (10)
B2y « Diagonal(Ba») (11)
Bi1 « BlockThroughBlock(Bi1, W12, B2z, Wa1) (12)
Bi1 « Diagonal (B11) (13)

Operation Diagonal (Bii) calculates the shortest paths between all vertices of block Bi; the
paths can traverse through edges within Bj and outside it. The operation can be performed using
(1) or can preferably be implemented by the fast GEA algorithm proposed in [16, 17].

266

Hecsimas Meoxcoynapoonas nayuno-npakmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8vlcoxoeo yposuay, Munck, Pecnyonuxa benapyco, 13 mapma 2024 200a

New operation BlockThroughBlock(B;j, Wi, Bii, Wj) calculates the shortest paths between
vertices of block Bj. It traverses through edges of block W, then through vertices and edges of
block Bii and finally through edges of block Wj. Since the edges of blocks Wj; and W;; are not
numerous in the sparse graph, the BlockThroughBlock operation is fast. When W; or Wj; is empty,
BlockThroughBlock is not executed at all. Moreover, the shortest paths of these blocks do not
need to be stored in memory, only edge descriptions are needed to store. This is a big advantage
of our method which yields accurate solutions. The shortest paths between vertices of different
clusters are calculated in real time. It is easier to compute the shortest paths between clusters
after computing shortest paths within clusters.

Approximate fast algorithm of computing all-pairs shortest paths in clusters of sparse
graph. We have developed an approximate APSP algorithm operating on graph clusters
(AAPSPC) aiming at reduction of the consumed memory space and CPU time. Figure 4,a shows
the content of matrix B and Figure 4,b depicts the matrix representation and placement in
memory. Clusters are placed in the matrix principal diagonal, and interconnections of clusters are
represented by graph edges (blocks of matrix W) allocated outside of principal diagonal. Clusters
are represented by matrices of shortest path distances (DiM). Blocks of matrix W are represented
as adjacent lists (AjL).

a) b)
Figure 4. Matrix B of shortest paths distances in clusters: a) diagonal blocks B; are clusters and
non-diagonal blocks Wj; represent edges connecting clusters; b) each cluster is represented by
distances matrix (DiM) and each non-diagonal block is represented by adjacent list (4jL)

Algorithm 4 specifies 44APSPC. Its input data are the vertex subsets corresponding to
clusters, and their sizes. Matrices B = W and P describing initial states of shortest paths in
clusters are also input data. The algorithm output data are the completely calculated diagonal
blocks of matrices B and P.

The algorithm consists of two loop nests of depth two. The first nest traverses the diagonal
blocks from the left-top to right bottom corner of the matrices and calculates the shortest paths of
each succeeding block through previous blocks. The second nest does the same work in reverse
order. Totally M diagonal blocks are calculated. The overall number of the diagonal block
recalculations 44 PSPC performs is

()= - +D. (14)

It is almost M times smaller than the number M? of block recalculations BFWUS performs.

Function Diagonal*(S, B, P, d) is implemented using operation Diagonal(Baa). Function
BlockThroughBlock*(S, B, P, d, p) is implemented using operation BlockThroughBlock(Baa, Wap,
Bppa VVPd)

267

Hecsimas Mexcoynapoonas nayuno-npakmuyeckas kongpepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8vlcoxoeo yposuay, Munck, Pecnyonuxa benapyco, 13 mapma 2024 2o00a

Algorithm 4: Computing all-pairs shortest paths in clusters of sparse
graphs (4APSPC)

Input: Subsets V = (V;, ... Vm) of set V of graph clustered vertices
Input: A vector S = (Si, ... Sm) of sizes of graph vertex subsets
Input: A blocked matrix B[MxM] representing graph
Input: A blocked matrix P[MxM] of previous vertices in shortest paths
Output: Recalculated matrix B[MxM]
Output: Recalculated matrix P[MxM]
for d < 1 to M do
Diagonal (S, B, P, d)
if d > 1 then
for p— 1tod—1do
BlockThroughBlock*(S, B, P, d, p)
for d < M down to 1 do
Diagonal (S, B, P, d)
if d > 1 then
for p<—d—1 down to 1 do
BlockThroughBlock*(S, B, P, p, d)
return B, P

The calculation of shortest paths between vertices of different clusters is carried out in real
time through the earlier computing of shortest paths between vertices within clusters.

Let’s estimate the volume of storage needed for allocation of matrix B in algorithms
BFWUS and AAPSPC. BFWUS uses the DiM representation of all blocks, Therefore,
storage(BFWUS) = N?. The amount of storage consumed by AAPSPC can be estimated as

()= ()+ (), (15)
()= ol (16)

where c¢ is a cluster; M is the number of clusters; S. is the number of vertices in cluster c;
storage(Edges) is the size of all non-diagonal blocks Wij describing interconnect edges. For
sparse graphs, storage(Edges) is not huge.

Let’s consider the bounding case when all clusters have the same size Sc = N/ M. Then the
amount of storage they need for placement is

2

(=@ =¥ a7

It is M times smaller than BFWUS needs. If the clusters are of unequal sizes, the gain is
reduced. We conclude that AAPSPC consumes a much smaller amount of memory compared to
BFWUS in case of sparse graphs. It is a very big advantage in the case of searching for the
shortest paths in very large sparse graphs.

At the same time, AAPSPC has a drawback: it considers only shortest paths that go from
one cluster to another (maybe iteratively) and return to the former cluster. It accounts for not all
paths passing through several clusters before returning to the source . It is important to know
what inaccuracies arise in calculating the shortest path distances due to these restrictions. We
have done experiments with A4 PSPC with respect to the inaccuracies.

268

Hecsimas Meoxcoynapoonas nayuno-npakmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8vlcoxoeo yposuay, Munck, Pecnyonuxa benapyco, 13 mapma 2024 200a

For instance, we provide results obtained on a directed weighted graph consisting of 4
clusters, 128 vertices and 1502 edges with the average weight of 55.54. Figure 5 shows that the
inaccuracies in computing the shortest path lengths are small and vary in the range 1.1778 %
down to 0.0 % depending on the weights of edges that connect clusters. The inaccuracies
disappear at the average weight of 23 which is 41.4 % compared to the average weight of edge
within clusters. 44PSPC yields an accurate shortest path distances between all pairs of vertices
in all clusters for all interconnect edge weights larger than 41.4 %.

1.00
0.80 "
0.60

0.40 .

0.20 e N

0.00 -9 99999

0.00 5.00 10.00 1500 2000 2500 3000 3500 4000 45.00

Figure 5. Inaccuracy (vertical axis, %) in computation of shortest path distances vs. share
(horizontal axis, %) of average weight of edge between clusters in average weight of edge within
clusters

Right reordering of clusters in matrix B can decrease the required number of block
recalculations or / and reduce the inaccuracies in computations of shortest paths. Incorporating
Dijkstra algorithm [1] or any algorithm of Dijkstra’s family in 44PSPC is the way of avoiding
the inaccuracies in shortest paths computation and obtaining accurate solutions.

Conclusion. The paper solves the all-pairs shortest paths problem on sparse graphs
partitioned into clusters by finding dense weakly connected subgraphs. The approach we propose
is based on recently published blocked algorithms which divide the graph into unequally sized
subgraphs. We have developed an operation of computing the shortest paths between vertices of
one cluster passing through vertices and edges of neighbor cluster, and through edges connecting
the clusters. This allowed us to develop a fast and memory efficient approximate algorithm that
first computes the shortest paths between vertices within each cluster and then computes shortest
paths between vertices of different clusters in real time. The algorithm gives accurate solutions
for road, computer and other networks in which the weights of edges connecting clusters are
typically at least as large as the weights of edges within clusters.

References

[1] Dijkstra E. W. A note on two problems in connexion with graphs. Numerische Mathematik, 1959, vol. 1,
no. 1, pp. 269-271.

[2] Floyd R.W. Algorithm 97: Shortest path. Communications of the ACM, 1962, no. 5 (6), p. 345.

[3] Glabowski M., Musznicki B., Nowak P. and Zwierzykowski P. Review and Performance Analysis of
Shortest Path Problem Solving Algorithms. International Journal on Advances in Software, 2014, vol. 7,
no. 1&2, pp. 20 — 30.

[4] Madkour A., Aref W. G., Rehman F. U., Rahman M. A., Basalamah S. A Survey of Shortest-Path
Algorithms. ArXiv: 1705.02044v1 [cs.DS], 4 May 2017, 26 p.

269

Hecsimas Mexcoynapoonas nayuno-npakmuyeckas kongpepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8vlcoxoeo yposuay, Munck, Pecnyonuxa benapyco, 13 mapma 2024 2o00a

[5] Prihozhy, A., Karasik, O. New blocked all-pairs shortest paths algorithms operating on blocks of
unequal sizes. System analysis and applied information science. —2023. — Ne. 4. — P. 4-13.

[6] Rahman A.-H. Ab, Prihozhy A., Mattavelli M. Pipeline synthesis and optimization of FPGA-based
video
processing applications with CAL. EURASIP Journal on Image and Video Processing, vol. 2011:19, pp. 1-
28.

[7] Katz G. J., Kider J. T. All-pairs shortest-paths for large graphs on the GPU. GH’08: Proceedings of the
23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware. ACM, 2008, pp. 47-55.

[8] Ortega-Arranz H., Torres Y., Llanos D. R, and Escribano A. G. The all-pair shortest-path problem in
shared-memory heterogeneous systems. High-Performance Computing on Complex Environments, 2013,
pp. 283-299.

[9] Djidjev H., Thulasidasan S., Chapuis G., Andonov R. and Lavenier D. Efficient multi-GPU
computation of all-pairs shortest paths. IEEE 28th International Parallel and Distributed Processing
Symposium. IEEE, 2014, pp. 360-369.

[10] Venkataraman G., Sahni S., Mukhopadhyaya S. A Blocked All-Pairs Shortest Paths Algorithm. Journal
of Experimental Algorithmics (JEA), 2003, vol 8, pp. 857 — 874.

[11] Park J. S., Penner M., and Prasanna V. K. Optimizing graph algorithms for improved cache
performance. IEEE Trans. on Parallel and Distributed Systems, 2004, no. 15 (9), pp.769 — 782.

[12] Bellman R. E. On a routing problem. Quarterly of Applied Mathematics, 1958, vol. 16, no. 1, pp. 87-90.

[13] Johnson D. B. Efficient Algorithms for Shortest Paths in Sparse Networks. J. ACM, 1977, vol. 24 no. 1,
pp. 1 —13.

[14] Harish P., Narayanan P. J. Accelerating large graph algorithms on the GPU using CUDA. International
conference on high-performance computing. Springer, 2007, pp. 197-208.

[15] Meyer U. and Sanders P. A-stepping: a parallelizable shortest path algorithm. Journal of Algorithms, vol.
49, no. 1, 2003, pp. 114-152.

[16] Prihozhy A. A., Karasik O. N. Heterogeneous blocked all-pairs shortest paths algorithm. System
analysis and applied information science, 2017, no. 3, pp. 68 — 75. (In Russian).

[17] Prihozhy A.A., Karasik O.N. Inference of shortest path algorithms with spatial and temporal locality for
big data processing. [Big Data and Advanced Analytics: proceedings of VIII international conference].
Minsk, Bestprint Publ., 2022, pp. 56 — 66.

[18] Prihozhy A. A., Karasik O. N. Advanced heterogeneous block-parallel all-pairs shortest path algorithm.
Proceedings of BSTU, issue 3, Physics and Mathematics. Informatics, 2023, no. 1 (266), pp. 77-83. DOI:
10.52065/2520-6141-2023-266-1-13.

[19] Albalawi E., Thulasiraman P., Thulasiram R. Task Level Parallelization of All Pair Shortest Path
Algorithm in OpenMP 3.0. 2" International Conference on Advances in Computer Science and
Engineering (CSE 2013). Los Angeles, CA, July 1 — 2, 2013, pp. 109 — 112.

[20] Yang S, Liu X, Wang Y., He X, Tan G. Fast All-Pairs Shortest Paths Algorithm in Large Sparse
Graph. ICS '23: Proceedings of the 37th International Conference on Supercomputing, 2023, pp. 277-288.

[21] Prihozhy A. A. Simulation of direct mapped, k-way and fully associative cache on all-pairs shortest
paths algorithms. System analysis and applied information science, 2019, no. 4, pp. 10 — 18.

[22] Prihozhy A. A. Optimization of data allocation in hierarchical memory for blocked shortest paths
algorithms. System analysis and applied information science, 2021, no. 3, pp. 40 — 50.

[23] Prihozhy A.A., Karasik O.N. Cooperative block-parallel algorithms for task execution on multi-core
system. System analysis and applied information science, 2015, no. 2, pp. 10-18.

[24] Karasik O. N., Prihozhy A. A. Threaded block-parallel algorithm for finding the shortest paths on graph.
Doklady BGUIR, 2018, no. 2, pp. 77 — 84. (In Russian).

[25] Karasik O. N., Prihozhy A. A. Tuning block-parallel all-pairs shortest path algorithm for efficient multi-
core implementation. System analysis and applied information science, 2022, no. 3, pp. 57 — 65.

[26] Prihozhy A.A., Karasik O.N. Influence of shortest path algorithms on energy consumption of multi-core
processors. System analysis and applied information science, 2023, no. 2, pp. 4-12.

[27] Prihozhy A. A. Generation of shortest path search dataflow networks of actors for parallel multicore
implementation. Informatics, 2023, vol. 20, no. 2, pp. 65—84.

[28] Ilpuxoxwuit, A.A. KoonepatuBHas MOENh ONTHMHU3ALUHN BHIIOJIHEHUS MOTOKOB HAa MHOTOSICPHON
cucrteme / A.A. Ipuxoxuii, O.H. Kapacuk / CuctreMHblii aHanu3 U npukiagHas napopmaruka. — 2014, —
Ne 4. - C. 13-20

author’s contribution
Authors to make an equivalent contribution.

270

https://dblp.org/pid/83/4080.html
https://dblp.org/pid/31/4400.html
https://dblp.org/pid/69/1798.html
https://dblp.org/pid/80/2272.html
https://dl.acm.org/doi/proceedings/10.1145/3577193

Hecsimas Meoxcoynapoonas nayuno-npakmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8vlcoxoeo yposuay, Munck, Pecnyonuxa benapyco, 13 mapma 2024 200a

BJIOYHBIN AJITOPUTM MIOUCKA KPATUAUIIUX IIYTEN B
PA3PEKEHHBIX T'PA®AX, PASBUTHIX HA KJIACTEPBI HEPABHOI'O

PASMEPA
A.A. Ipuxosrcui O.H. Kapacuk
IIpogpeccop xagheoput «llpoepammmuoe Beoywuii unoswcenep unocmpantozo
obecneuenue UHDOPMAYUOHHBIX CUCTEM U NPOU3B00CMBEHHO20 YHUMAPHOZO
mexnonozuily benopycckozo nayuonanvrnozo npeonpusmus «MUCCODT COJIFOLLIEH3»
MexHu4ecko2o yHugepcumemad, 0.m.H., (I1IBT, 2. Munck),
npogeccop K.M.H.

AnHoTauus. B nanHO# crathe paccMaTpuBaeTcs 3afaya IMOMCKa KpaTdallliuxX MyTed MeXIy BCEMH Napamu
BEPILINH OPUEHTHPOBAHHOTO B3BEIICHHOTO Pa3pekeHHOTO rpada, KOTOPHI pa30oUT Ha KIACTEPHI ITyTEM HAXOXKICHHUS
IDIOTHBIX CI1a0O0CBS3HBIX moarpados. MBI pemaeM 3Ty 3amady, pa3padaTeiBasi HOBEIE OJOYHBIC aTOPUTMBI, KOTOPEIE
OIMCHIBAIOT KpaTJalIiie MyTH MaTpHUIaMH OJOKOB HEPaBHBIX Pa3MEpOB, COOTBETCTBYIOUINX pa3MepaM KIIACTepOB
rpada. DTy anropuTMBbI PACIIUPSIOT BO3MOXKHOCTH U3BECTHBIX CYLIECTBYIOIIUX aJITOPUTMOB, HCIOJIB3YIOLIUX OJIOKH
OJIMHAKOBOTO pa3Mmepa (TakuxX Kak OnouHbli anroputm Droiiga-Yopiiemia) B 4acTH aJeKBaTHOI'O MOJETHPOBAHHS
rpadoB peasbHBIX CeTeH Pa3IMYHOTO Ha3HAUSHHUS, a TAKIKE B 4aCTH AP ()EKTHBHOTO MCIOIB30BaHKS Napajlienu3Ma 1
BBIYHCIIUTEIBHBIX PECYPCOB MHOTOIPOLECCOPHBIX CUCTEM M MHOTOSIEPHBIX IpoueccopoB. Ilpemnaraecmelii B
JAHHO#M cTaThe OJIOUHBIN aNrOPUTM IOHCKA KpaTdalliuxX MyTed B pa3pexeHHBbIX rpadax OoJbIIOro pasmepa,
pa3OUTHIX Ha KIacTephl, MO3BOJISIET, C OJHOW CTOPOHBI, COKPATUTh OOBEM HCIONB3yeMOM MaMsTH, a C JAPYrod —
YMEHBIIUTh KOJMYECTBO IMepecdeToB ONOKoB. JlnaroHaibHbIC OJOKM ONHMCHIBAIOT KpaT4alIine IyTH BHYTPH
KIJIaCTEePOB, HEAWArOHAJIBHBIC OJIOKH OIMUCHIBAIOT HEMHOTOYHCIICHHBIC B3BCIICHHBIC TYTH, COCTUHSIONINE KIacTePHI.
Kparuaifmmie myTH MeXIy BepUOIMHAMH pa3HBIX KJIACTEPOB BBIUMCIAIOTCS B pealbHOM BpeMmeHu. [lorpebienue
MaMATH [0 CPAaBHEHUIO ¢ ajroputMamu cemeiictBa ®noiina-Yopiiemia yMeHbIIAETCS B YHUCIO pa3, paBHOE
KOITMYECTBY KiIacTepoB. UTOOB YMEHBIIUTH KOJIMYECTBO IEPECUCTOB OJIOKOB, HAMH TPEIOKCHA HOBas OIIEpaIlus,
TO3BOJISIIOIIAs TOYHO BBIYUCIUTH KpaTdailliue MyTH MEKAY BEpLIIMHAMH OJHOTO KJAcTepa, MPOXOASIIUE Yepe3
BEpIIMHBI M pedpa Ipyroro Kiacrepa, a Takke uepe3 pedpa, CoeAuHSIoNMe KiacTepsl. [IpuMeHeHne TOIBKO 3TOM
Olepaly MO3BOJISIET IOCTPOMTH AITOPUTMBI, KOTOPHIE HAaXOASAT pEIIeHHs, BHOCSIIUE HEOOJNBIIYI0 OIIMOKY
(HeCKOJBKO TPOLCHTOB) B JUIMHBI KpaT4aiIIMX IyTeil MpH MalbIX Becax pedep Mexay KiacTepaMH, U I03BOJISIET
HaxOIUTh TOYHBIC PEILCHUS NPH YBEJIWYEHHU BECOB 3THX pebep. TouHble peuieHuss MOryT OBITH MOJIyYEeHBI IS
pa3peKeHHBIX IpadoB, MOAEIUPYIOLIUX JOPOKHbIE, KOMITBIOTEPHBIE U IPYTHE CETH.

KuroueBrble ciioBa: pa3pexeHHbIH rpad), Kiactep, KpaTyaiiiuyie myTH, OJIOYHbIH alropuT™, OJIOKH HEPaBHOTO
paszMepa, pa3HOpOJIHAs CUCTEMA.

271

