
Десятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 13 марта 2024 года

272

UDC 004.021:004.75

REQUIREMENTS TO METHODS OF GRAPH CLUSTERING AT THE AIM OF
SOLVING THE SHORTEST PATH PROBLEM

O.N. Karasik

Tech Lead at ISsoft Solutions (part of
Coherent Solutions) in Minsk, Belarus,

PhD in Technical Science
karasik.oleg.nikolaevich@gmail.com

А.А. Prihozhy

Professor at the Computer and System
Software Department,

Doctor of Technical Sciences,
Full Professor

Belarusian National Technical University
prihozhy@yahoo.com

O.N. Karasik
Tech Lead at ISsoft Solutions (part of Coherent Solutions) in Minsk, Belarus; PhD in Technical Science

(2019). Interested in parallel computing on multi-core and multi-processor systems.

A.A. Prihozhy
Full professor at the Computer and system software department of Belarusian national technical university,

doctor of science (1999) and full professor (2001). His research interests include programming and hardware
description languages, parallelizing compilers, and computer aided design techniques and tools for software and
hardware at logic, high and system levels, and for incompletely specified logical systems. He has over 300
publications in Eastern and Western Europe, USA and Canada. Such worldwide publishers as IEEE, Springer,
Kluwer Academic Publishers, World Scientific and others have published his works.

Abstract. In this paper we considered utilization of graph clustering results in scope of solving all-pairs
shortest path problem by means of blocked all-pairs shortest paths algorithm with unequally sized blocks. We
defined a set of requirements for the results of graph clustering based on the inner working of the blocked algorithm.
We have done an analysis of two existing, well-known graph clustering algorithms (Walktrap and Spinglass) to
verify if existing clustering algorithm can produce results consumable by blocked all-pairs shortest path algorithm
with unequally sized blocks. Our experiments show, that both algorithms can be used to produce compatible results,
however, in different contexts.

Keywords: All-pairs shortest path problem, blocked algorithms, graph clustering, unequally sized blocks.

Introduction. The problem of finding the shortest paths between vertices in a directed,
weighted graphs, has numerous applications in many real-life domains, like traffics, computer
networks, social networks, computer games, hardware benchmarking and so on [1–3]. The
shortest paths problem can be formulate differently depending of what shortest paths have to be
found: a problem of finding a shortest path between a pair of vertices (Single Pair Shortest Path),
a problem of finding all shortest paths between one vertex and the rest of the vertices (Single
Source Shortest Path or Single Sink Shortest Path) and a problem of finding all pairs of shortest
paths between all pairs of vertices in the graph (All Pairs Shortest Path). Computational
complexity of the shortest paths problem depends on multiple parameters such as size of the
graph (number of vertices), density of the graph (number of edges), edge weight (real or integer,

mailto:karasik.oleg.nikolaevich@gmail.com
mailto:prihozhy@yahoo.com


Десятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 13 марта 2024 года

273

positive or negative) and problem formulation. For each of the formulation and combination of
parameters there are classical algorithms [4–7] developed.

However, effective solution of the problem on large graphs with classical algorithms might
take a significant portion of time because they weren’t designed to run on modern, multi-core,
multi-processors, or heterogeneous systems. That is why, to reduce execution time modern
algorithms (or modernized versions of the classic algorithms) try to make use of hardware
parallelism on single chip, powerful accelerators, distributed systems and pre-computed ahead of
time information about or combination of those [8–10].

In our previous works we concentrated on improving solution of all-pairs shortest path
problem using blocked version of Floyd-Warshall algorithm [11] by exploiting parallelism, CPU
caching, data dependencies and novel algorithms to recalculate blocks [12–15]. In this paper we
are focused on defining requirements to use pre-computed information about target graph’s
clusters (clustering) to speed up execution.

Algorithms. In this section we provide a concise description of Floyd-Warshall [7] and
blocked Floyd-Warshall [11] algorithms to lay the foundation for further analysis.

Floyd-Warshall algorithm operates on a cost adjacency matrix � � × � , where � is the
number of vertices in a graph, and element ��,� contains a weight of the edge between vertices �
and � . The algorithm recalculates matrix � in � iterations, where every iteration consists of
picking the vertex � (essentially all vertex of matrix � are picked) and checking if any of the
paths between vertices � and � can be shortened through vertex � (see Figure 1).

int N = ...
...
function algorithm(matrix D)

for k = 0 to N do
for i = 0 to N do

for j = 0 to N do
D[i,j] = min(D[i,j], D[i,k] + D[k,j])

end
end

end
end function

Blocked Floyd-Warshall algorithm extends Floyd-Warshall algorithm by splitting the matrix �
into � × � blocks, effectively creating a matrix �[��] , where � ∗ � = � . The algorithm
recalculates matrix � in � iterations, where every iteration consists of three phases: calculating the a
single «diagonal» block, which has dependency on itself, 2 (� − 1) «cross» blocks, which have
dependency on themselves and the “diagonal” block and (� − 1)2 «peripheral» blocks, which have
dependency on the corresponding vertical and horizontal «cross» blocks (see Figure 2).

Figure 1. Pseudocode of original Floyd-Warshall algorithm



Десятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 13 марта 2024 года

274

Figure 2. Illustration of calculation phases of Blocked Floyd-Warshall algorithm on first two
iterations (steps)

All the blocks are calculated using the same procedure which always accepts three blocks
(see Figure 3).
int M = ...
int S = ...
...
function blocked_algorithm(block_matrix B)

for m = 0 to M do
proc(B[m,m], B[m,m], B[m,m]);
for i = 0 to m - 1 do

proc(B[i,m], B[i,m], B[m,m]); proc(B[m,i], B[m,m], B[m,i]);
end
for i = m + 1 to M - 1 do

proc(B[i,m], B[i,m], B[m,m]); proc(B[m,i], B[m,m], B[m,i]);
end
for i = 0 to m – 1 do

for j = 0 to m – 1 do proc(B[i,j], B[i,m], B[m,j]); end
for j = m + 1 to M – 1 do proc(B[i,j], B[i,m], B[m,j]); end

end
for i = m + 1 to M - 1 do

for j = 0 to m – 1 do proc(B[i,j], B[i,m], B[m,j]); end
for j = m + 1 to M – 1 do proc(B[i,j], B[i,m], B[m,j]); end

end
end

end function
function proc(B1, B2, B3)

for k = 0 to S do
for i = 0 to S do

for j = 0 to S do
B1[i,j] = min(B1[i,j], B2[i,k] + B3[k,j])

end
end

end
end function

Figure 3. Pseudocodes of blocked Floyd-Warshall algorithm (blocked_algorithm) and block
calculation procedure (proc).

The blocked version of the algorithms takes advantage of the CPU caching by improving
data localization during block recalculations i.e. no more than three blocks participate in
calculation, which makes it possible to fit all of them into CPU cache and reduce number of
main memory accesses.

Clustering. In this section we provide a concise description of the graph clustering to lay a
foundation for further analysis.

Graph clustering is an operation of grouping vertices of the graph into clusters (or
communities) by taking into consideration the structure of the graph (edge adjacency, distance or



Десятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 13 марта 2024 года

275

similarity between vertices, type of the graph and so on) in such a way that there should be many
edges within each cluster and few between the clusters [16]. In terms of directed graphs, which
are the main audience of the shortest path problem, graph clustering provides information about
highly inter-connected and sparsely-connected sub-graphs, bridge vertices (i.e. vertices which
constitute edges between clusters) and bridge edges (i.e. edges between clusters).
Depending on the graph, clustering algorithm and its parameters (or in cases when clustering
algorithm uses any kind of randomization, even a particular run) the clustering results can have
significant difference in number of clusters, number of vertices in clusters and number of bridge
vertices and edges. In Table 1 you can find clustering results of the small (80 vertex) randomly
generated, directed, connected graph using Walktrap [17] and Spinglass [18] clustering
algorithms and on the Figure 4 you can see a visualization of execution of Walktrap, with walks
set to 7, and Spinglass, with spins set to 7, algorithms.

Table 1. Results of the clustering of a randomly generated, directed, connected graph of 80
vertices and 94 edges using Walktrap and Spinglass clustering algorithms with different
sets of parameters.

Walktrap Spinglass
Walks Clusters Bridge

vertices
Bridge
edges

Spins Clusters Bridge
vertices

Bridge
edges

2 17 24 26 2 2 7 7
3 19 26 28 3 3 10 10
4 19 27 29 4 4 11 11
5 19 26 29 5 5 13 13
6 18 27 28 6 6 15 15
7 20 29 30 7 7 17 17

Table 1 demonstrates how results of graph clustering differ in number of clusters and
bridge vertices / edges between different algorithms and their parameters.

a) b)
Figure 4. Visualization of graph clustering of a randomly generated, directed, connected graph
of 80 vertices using Walktrap, with walks set to 7, (a) and Spinglass, with spins set to 7, (b)
algorithms. Red arrows represent bridge edges, filled shapes and vertex colors represent

clusters.

Analysis. In this section we perform an analysis of the results of execution of Walktrap
and Spinglass graph clustering algorithms to define requirements to methods of graph clustering
and input graphs based on how these results can be used to improve execution of blocked all-
pairs shortest paths algorithm.



Десятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 13 марта 2024 года

276

In appliance to blocked all-pairs shortest path algorithms the information from graph
clustering can potentially be used to improve algorithm’s performance. However, because of
how blocks are recalculated (see Figure 2) these optimizations (which might rely on advanced
knowledge of the graph’s layout) are possible if clusters are matched to blocks i.e. every cluster
is represented by a “diagonal” block. In classic variation of the blocked all-pairs shortest paths
algorithm (see Figure 3), all the blocks must be of same size. This is a very strict requirement,
which can hardly be matched by any of graph clustering algorithms. Luckily, this requirement
can be relaxed as demonstrated in [19] by using blocks of unequal sizes. With an ability to use
blocks of unequal sizes. Matching of clusters to “diagonal” blocks requires a rearrangement of
rows and columns of cost adjacency matrix (before splitting it to blocks) to align all vertices of
clusters around matrix diagonal. However, for the matching be successful and do not introduce a
degradation instead of optimization, clusters must satisfy the following requirements:

1 Clusters must not be too «small» or too «large»4. Having a significant number of
«small» clusters will result in a significant number of small blocks and CPU cache
underutilization. Having large block results in contrary will reduce effect of the CPU cache and
will result in a significant main memory pressure (as demonstrated in [20]).

2 Clusters must not be too interconnected. Having too many bridge vertices or bridge
edges renders the makes the whole purpose of using clusters useless.

To understand, if the above requirements can be fulfilled, by existing graph clustering
algorithm, we performed a set of experiments using two, well-known algorithms (Walktrap and
Spinglass) on three randomly generated, connected graphs with artificially generated clusters
(RCGWC). Information about all graphs is presented in Table 2. To verify how algorithms treat
artificially generated clusters, during the generation of the graphs, we have recorded the ranges
of vertices constituting to all clusters (see Table 3).

Table 2. Configuration of the experimental graphs, where RCG are randomly generated,
connected graphs of different density and RCGWC are randomly generated connected
graphs with artificially generated clusters.

Graph Vertices Edges Bridge Vertices Bridge Edges Clusters
RCGWC-1 1200 49192 223 298 12
RCGWC-2 1200 46923 408 572 10
RCGWC-3 1200 56567 743 1415 10

We have executed all algorithms on all the experimental graphs with parameters varying
from 2 to 12 walks and 2 to 12 spins for Walktrap and Spinglass algorithms respectively.

During the experiments, Walktrap algorithm has precisely identified all artificially
generated clusters in all experimental graphs independently of number of walks. This
demonstrates that results of graph clustering using Walktrap algorithm are very sensitive to
graph’s layout and can be utilized when the layout matches the requirements. The executing
time of the Walktrap algorithm varied from 0.3 to 1.5 seconds5 (depending on the number of
walks – more walks more time).

4 The «small» and «large» here are relative to the characteristics of the executing CPU cache memory, where small
is less than ¼ of Level 1 cache and “large” is more than ½ of Level 2 cache.
5 All clustering algorithms were executed on M1 Ultra Mac Studio using R language (igraph library).



Десятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 13 марта 2024 года

277

Table 3. Configuration of artificially generated clusters of all RCGWC graphs.

Cluster
RCGWC-1 RCGWC-2 RCGWC-3

Vertices Vertices
Range

Vertices Vertices
Range

Vertices Vertices
Range

1 77 0 – 76 122 0 – 121 116 0 – 115
2 170 77 – 246 154 122 – 275 134 116 – 249
3 84 247 – 330 111 276 – 386 58 250 – 307
4 55 331 – 385 166 387 – 552 61 308 – 368
5 64 386 – 449 146 553 – 698 167 369 – 535
6 143 450 – 592 161 699 – 859 56 536 – 591
7 53 593 – 645 115 860 – 974 155 592 – 746
8 143 646 – 788 49 975 – 1023 141 747 – 887
9 95 789 – 883 96 1024 – 1119 162 888 – 1049
10 109 884 – 992 80 1120 – 1199 150 1050 – 1199
11 120 993 – 1112
12 87 1113 – 1199

During experiments (see Table 4), Spinglass algorithm produced various results. In most
cases, the number of clusters was equal to number of spins (which is expected because of how
algorithm works). However, when algorithm was executed against RCGWC-2 and RCGWC-3
graphs, which have 10 artificial clusters each, with number of spins set to 11 and 12 it still
identified 10 clusters (not 11 or 12). Produces clusters only partially matched the structure of
artificially generated clusters but despise this they weren’t highly interconnected or of
significantly different sizes (see Table 5):

1 The number of bridge vertices varied:
 from 210 to 299 (where predefined was 223) for RCGWC-1
 from 270 to 425 (where predefined was 408) for RCGWC-2
 from 544 to 750 (where predefined was 743) for RCGWC-3

2 The number of bridge edges varied:
 from 327 to 496 (where predefined was 298) for RCGWC-1
 from 323 to 711 (where predefined was 572) for RCGWC-2
 from 889 to 1522 (where predefined was 1415) for RCGWC-3
In combination, results presented in Table 4 and Table 5 experimentally demonstrate that

results of graph clustering using Spinglass algorithm can be utilized with other parameters to
optimally split the cost-adjacency matrix into block even when the natural layout of the graph
doesn’t matches the requirements. The executing time of the Spinglass algorithm varied from 9
to 11 seconds (depending on the number of spins – more spins more time).

Table 4. Experimental results of the Spinglass algorithm executed on all RCGWC graphs
depicting number of clusters, number of bridge vertices and edges in relation to spins
parameter.

Spins
RCGWC-1 RCGWC-2 RCGWC-3

Clusters Bridge
Vertices

Bridge
Edges Clusters Bridge

Vertices
Bridge
Edges Clusters Bridge

Vertices
Bridge
Edges

2 2 224 353 2 270 323 2 544 889
3 3 210 327 3 360 506 3 618 1074
4 4 229 381 4 376 575 4 691 1288
5 5 253 448 5 392 584 5 697 1324



Десятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 13 марта 2024 года

278

End of table 4

Spins
RCGWC-1 RCGWC-2 RCGWC-3

Clusters Bridge
Vertices

Bridge
Edges Clusters Bridge

Vertices
Bridge
Edges Clusters Bridge

Vertices
Bridge
Edges

6 6 222 328 6 391 617 6 714 1349
7 7 299 497 7 405 622 7 724 1361
8 8 273 475 8 398 619 8 739 1433
9 9 268 473 9 414 711 8 747 1522
10 10 250 360 10 417 662 10 750 1492
11 11 272 421 10 416 634 10 747 1514
12 12 274 452 10 425 673 10 749 1516

Table 5. Experimental results of Spinglass algorithm on RCGWC-1 graph depicting number of
vertices in clusters in relation to spins parameter value.

Spins/Cluster 2 3 4 5 6 7 8 9 10 11 12
1 592 380 344 171 309 145 144 144 143 121 52
2 608 361 325 197 143 144 162 143 136 83 143
3 459 359 258 170 178 170 138 87 143 77
4 172 364 143 170 144 170 78 143 95
5 210 250 196 191 110 120 170 170
6 185 247 173 121 118 87 120
7 120 96 96 109 95 65
8 120 130 95 77 86
9 148 144 65 110
10 170 107 143
11 109 86
12 53

Conclusion. We have defined a set of requirements for methods of graph clustering and
produced clustering results to be useful for blocked all-pairs shortest paths algorithms. We
performed an experimental analysis of two, well-known graph clustering algorithms (Walktrap
and Spinglass) to verify if produced results match the requirements and can be used in blocked
all-pairs shortest paths with unequal block sizes, or this task requires a specialized clustering
algorithm which must be found or developed.

The experiments demonstrated that Walktrap algorithm can be used when natural layout of
the graph matches the requirements. Spinglass algorithm has demonstrated an ability to produce
variable results depending on the parameters. This shows that algorithm can be used even when
natural layout of the graph doesn’t match the requirements. Through these experiments we have
confirmed that existing methods of graph clustering can produce results compatible with defined
requirements, which makes implementation of the potential optimizations based on the
availability of clustering information a prospective direction for future research.

References
[1] Comparison of HPC Architectures for Computing All-Pairs Shortest Paths. Intel Xeon Phi KNL vs NVIDIA Pascal / M.

Costanzo [et al.]. – Springer, 2020. – P. 37–49.
[2] Anu, P. Finding All-Pairs Shortest Path for a Large-Scale Transportation Network Using Parallel Floyd-Warshall and

Parallel Dijkstra Algorithms / P. Anu, M. G. (Kumar) // Journal of Computing in Civil Engineering. – 2013. – Vol. 27, №. 3. –
P. 263–273.



Десятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 13 марта 2024 года

279

[3] Schrijver, A. On the history of the shortest path problem / A. Schrijver // Documenta Mathematica. – 2012. – Vol. 17,
№. 1. – P. 155–167.

[4] E. W. Dijkstra. A note on two problems in connexion with graphs / E. W. Dijkstra // Numerische Mathematik. – 1959. –
Vol. 1, №. 1. – P. 269–271.

[5] Bellman, R. On a routing problem / R. Bellman // Quarterly of applied mathematics. – 1958. – Vol. 16, №. 1. – P. 87–90.
[6] Johnson, D. B. Efficient algorithms for shortest paths in sparse networks / D. B. Johnson // Journal of the ACM

(JACM). – 1977. – Vol. 24, №. 1. – P. 1–13.
[7] Floyd, R. W. Algorithm 97: Shortest Path / R. W. Floyd // Communications of the ACM. – 1962. – Vol. 5, №. 6. –

P. 345-.
[8] Efficient multi-GPU computation of all-pairs shortest paths / H. Djidjev [et al.]. – IEEE, 2014. – P. 360–369.
[9] The all-pair shortest-path problem in shared-memory heterogeneous systems / H. Ortega-Arranz [et al.] // High-

Performance Computing on Complex Environments. – 2013. – P. 283–299.
[10] A scalable parallelization of all-pairs shortest path algorithm for a high performance cluster environment / T.

Srinivasan [et al.]. – IEEE, 2007. – P. 1–8.
[11] Venkataraman, G. A Blocked All-Pairs Shortest Paths Algorithm / G. Venkataraman, S. Sahni, S. Mukhopadhyaya //

Journal of Experimental Algorithmics (JEA). – 2003. – Vol. 8. – P. 857–874.
[12] Karasik, O. Tuning block-parallel all-pairs shortest path algorithm for efficient multi-core implementation / O. Karasik,

A. Prihozhy // System analysis and applied information science. – 2022. – №. 3. – P. 57–65.
[13] Karasik, O. Profiling of energy consumption by algorithms of shortest paths search in large dense graphs / O. Karasik,

A. Prihozhy // Big Data and Advanced Analytics: сб. материалов IX Междунар. науч.-практ. конф., Минск. – Минск: BSUIR,
2023. – P. 44–50.

[14] Prihozhy, A. Influence of shortest path algorithms on energy consumption of multi-core processors / A. Prihozhy, K.
Oleg // System analysis and applied information science. – 2023. – №. 2. – P. 4–12.

[15] Карасик, О. Н. Кооперативный многопоточный планировщик и блочно-параллельные алгоритмы решения
задач на многоядерных системах / О. Н. Карасик. – Белорусский государственный университет информатики и
радиоэлектроники, 2019.

[16] Schaeffer, S. E. Graph clustering / S. E. Schaeffer // Computer science review. – 2007. – Vol. 1, №. 1. – P. 27–64.
[17] Pons, P. Computing communities in large networks using random walks / P. Pons, M. Latapy. – Springer, 2005. –

P. 284–293.
[18] Reichardt, J. Statistical mechanics of community detection / J. Reichardt, S. Bornholdt // Physical review E. – 2006. –

Vol. 74, №. 1. – P. 016110.
[19] Prihozhy, A. New blocked all-pairs shortest paths algorithms operating on blocks of unequal sizes / A. Prihozhy, O.

Karasik // System analysis and applied information science. – 2023. – №. 4. – P. 4–13.
[20] Karasik, O. Parallel blocked all-pair shortest path algorithm: block size effect on cache operation in multi-core system /

O. Karasik, А. Prihozhy // BIG DATA and Advanced Analytics: сб. материалов VIII Междунар. науч.-практ. конф., Минск, 11-
12 мая 2022. – Минск: Бестпринт, 2022. – P. 28–38.

author’s contribution
Authors to make an equivalent contribution.

ТРЕБОВАНИЯ К МЕТОДАМ КЛАСТЕРИЗАЦИИ ГРАФОВ С ЦЕЛЬЮ
РЕШЕНИЯ ЗАДАЧИ О КРАТЧАЙШИХ ПУТЯХ

О.Н. Карасик
Ведущий инженер иностранного
производственного унитарного

предприятия «ИССОФТ СОЛЮШЕНЗ»
(ПВТ, г. Минск),

к.т.н.

А.А. Прихожий
Профессор кафедры «Программное

обеспечение информационных систем и
технологий» Белорусского
национального технического

университета, д.т.н., профессор

Аннотация. В данной статье рассматривается возможность использования результатов
кластеризации графа для решения задачи поиска всех кратчайших путей в графе при помощи
блочного алгоритма поиска кратчайших путей, использующего блоки неравного размера. В статье
определяются требования к результатам кластеризации графа на основании принципа работы
блочного алгоритма поиска кратчайших путей. Проводится исследование двух, широко-известных
алгоритмов кластеризации графа – Walktrap и Spinglass, с целью выяснения возможности
использования результатов их работы блочным алгоритмом. Экспериментальные исследования
показывают, что выбранные алгоритмы способны произвести результаты совместимые с
определенными в статье требованиями, однако совместимость этих результатов во многом
зависим от исходного графа и заданных параметров алгоритмов.

Ключевые слова: Кластеризация графа, блочные алгоритмы, поиск кратчайших путей,
блоки неравного размера.


	REQUIREMENTS TO METHODS OF GRAPH CLUSTERING AT THE
	ТРЕБОВАНИЯ К МЕТОДАМ КЛАСТЕРИЗАЦИИ ГРАФОВ С ЦЕЛЬЮ 

