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ARTICLE INFO ABSTRACT

The Industrial Internet of Things (IIoT) infrastructure is inherently complex, often involving a multitude of
sensors and devices. Ensuring the secure operation and maintenance of these systems is increasingly critical,
making anomaly detection a vital tool for guaranteeing the success of IIoT deployments. In light of the
distinctive features of the IIoT, graph-based anomaly detection emerges as a method with great potential.
However, traditional graph neural networks, such as Graph Convolutional Networks (GCNs) and Graph
Attention Networks (GATs), have certain limitations and significant room for improvement. Moreover, previous
anomaly detection methods based on graph neural networks have focused only on capturing dependencies in
the spatial dimension, lacking the ability to capture dynamics in the temporal dimension. To address these
shortcomings, we propose an anomaly detection method based on Spatio-Temporal Gated Attention Networks
(STGaAN). STGaAN learns a graph structure representing the dependencies among sensors and then utilizes
gated graph attention networks and temporal convolutional networks to grasp the spatio-temporal connections
in time series data of sensors. Furthermore, STGaAN optimizes the results jointly based on both reconstruction
and prediction loss functions. Experiments on public datasets indicate that STGaAN performs better than other
advanced baselines. We also visualize the learned graph structures to provide insights into the effectiveness
of graph-level anomaly detection.
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1. Introduction billion liters of water loss daily due to leaks, resulting in significant

economic losses [3].

Many traditional industries, such as energy, healthcare, manufactur-
ing, and water treatment, are undergoing digital transformation, with
the Industrial Internet of Things (IIoT) playing a significant role [1].

In IIoT, anomaly detection refers to the process of using IoT devices

and sensors to collect data in industrial environments, then analyzing

The IIoT connects sensors, switches, and other IoT devices through
networks, enabling data acquisition, processing, and automatic con-
trol, thereby enhancing production efficiency and economic benefits in
industrial environments [2].

However, with the advancement of digital transformation, the num-
ber of devices and sensors in IIoT systems has rapidly increased, leading
to a rise in overall system complexity. Traditional industrial systems,
which had lower complexity and lacked security considerations, now
face significant challenges in terms of security and stability in the
Industry 4.0 era. For instance, water companies experience nearly 3

and monitoring this data to identify abnormal situations. On one hand,
with the advent of IIoT, sensors and IoT devices are exposed to public
networks without adequate security protection, making them vulner-
able targets for malicious attacks [4]. On the other hand, anomaly
detection also aids in the real-time or early detection of potential
issues, preventing situations that could lead to significant economic
losses [5]. Therefore, efficient anomaly detection is crucial for ensuring
the security of IloT.
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In real-world large-scale IloT systems, numerous interconnected
devices continuously collect large amount of time-series data via sen-
sors [6]. These sensor data often exhibit complex and nonlinear in-
terdependencies. Anomaly detection is commonly regarded as an un-
supervised learning task due to the scarcity of labeled anomaly data
in historical records, as well as the unpredictable and highly diverse
characteristics exhibited by anomalies. In recent years, deep learning
techniques, such as Autoencoders (AE) [7], have made significant
advancements in detecting anomalies in high-dimensional data by uti-
lizing reconstruction errors for anomaly scoring. Additionally, methods
based on Recurrent Neural Networks (RNNs) [8] and Generative Ad-
versarial Networks (GANs) [9] have demonstrated promising results in
anomaly detection. Sometimes, deep learning can be combined with
edge computing to provide more reliable performance [10]. However,
most of these methods often lack explicit consideration of the structural
connections among sensors, especially in cases with complex and highly
nonlinear relationships, limiting their ability to detect and interpret
anomalous events effectively.

Usually, interconnected devices influence each other. Introducing
graph neural networks into anomaly detection in IIoT is a very promis-
ing method for detecting anomalies in various domains such as trans-
portation, energy, factories, and dynamic networks. Graph Neural Net-
works (GNNs) [11] are rapidly evolving models for handling complex
patterns in graph-structured data and hold great potential for anomaly
detection in IIoT. If we regard a device as a node, the state of it
is influenced by the states of its neighboring nodes. In GNNs, each
node aggregates the features of its neighboring nodes to form its
own feature representation. Different GNN variants consider different
numbers of neighboring nodes in the feature aggregation process.
For instance, Graph Convolutional Networks (GCNs) [12] consider
the one-step adjacent neighbors of the node, while Graph Attention
Networks (GATs) [13] use an attention mechanism to assign different
weights to adjacent nodes during aggregation. However, these tradi-
tional GNNs have certain limitations and still have significant room for
improvement. Moreover, previous anomaly detection methods based on
graph neural networks have focused only on capturing dependencies
in the spatial dimension, lacking the ability to capture dynamics in the
temporal dimension.

In this work, we propose a new method called STGaAN, which
captures the spatial and temporal dependencies of sensor time series to
detect anomalies. The key achievements of our research are outlined as
follows:

» We introduce STGaAN, a Spatio-Temporal Graph Attention Net-
work that incorporates a multi-head attention mechanism along
with a compact convolutional sub-network. This sub-network
calculates a soft gate for each attention head, controlling its
importance.

We jointly optimize the reconstruction module based on the
variational autoencoder and the prediction module based on Mul-
tilayer Perceptron (MLP) to leverage both strengths.

2. Related work
2.1. Anomaly detection in IloT

Anomalies in IIoT can encompass various problems related to equip-
ment, sensors, production processes, or entire systems. The applications
of anomaly detection in the industrial sector span across manufactur-
ing, energy, water treatment, transportation, and more, contributing
to improved production efficiency, cost reduction, equipment safety
assurance, and the prevention of potential downtime or losses. Ex-
isting anomaly detection models can be divided into two paradigms:
prediction-based and reconstruction-based models [14].

Prediction-based models leverage prediction errors as indicators for
anomaly detection. Predictions generated by an LSTM network can
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be interpreted using an unsupervised and non-parametric thresholding
approach called LSTMNDT [15], thereby establishing an automated
anomaly detection system to monitor the telemetry data transmit-
ted from spacecraft. The Deep Autoencoding Gaussian Mixture Model
(DAGMM) [16] is a deep learning approach for anomaly detection.
It can jointly analyze the data distribution and identify anomalous
patterns within the data by integrating an autoencoder with a Gaus-
sian mixture model. DAGMM exhibits excellent anomaly detection
performance, particularly for high-dimensional and complex datasets.
In [17], the authors investigate how data augmentation can be applied
to address these challenges and improve detection performance in an
anomaly detection task using IoT datasets. However, prediction-based
models attempt to deterministically predict the actual value of the next
timestamp, which makes them highly sensitive to the randomness of
time series data.

The reconstruction-based model acquires the representation of the
entire time series by reconstructing the initial input using latent vari-
ables. The Mixed Anomaly Detection Generative Adversarial Network
(MAD-GAN) [9] utilizes the capabilities of Generative Adversarial Net-
works (GANs) to model normal data and detect anomalies by gener-
ating synthetic data. By training GANs to capture the underlying data
distribution, MAD-GAN can identify deviations from expected patterns,
demonstrating high performance in anomaly detection tasks. The Long
Short-Term Memory Variational Autoencoder (LSTM-VAE) [18] com-
bines the Long Short-Term Memory (LSTM) neural network with the
Variational Autoencoder (VAE). It can capture the latent distribution
in data, identify abnormal patterns, and is particularly suitable for
anomaly detection tasks in sequential data. Federated learning could
be utilized for cooperative learning [19]. An intelligent unsupervised
learning approach is used to identify anomalous data by MEUs and
help to identify anomalous nodes in [20]. However, reconstruction-
based models may perform inadequately when dealing with sudden
perturbations in time series, especially when these perturbations still
conform to a normal distribution.

2.2. Graph neural networks

As GNNs have been used to improve resource usage prediction in
IIoT, such as exploring spatial and temporal information within the
cellular traffic data [21], GCNs is a significant milestone in the devel-
opment of GNNs. Graph and node classification tasks can benefit from
GCN’s efficient parameter sharing and representation learning capabil-
ities, which are achieved by layer-by-layer aggregation of information
from neighboring nodes. GATs employ self-attention mechanisms to
weight the contributions of neighboring nodes, allowing different nodes
to have varying influences on the target node, thereby enhancing
representation learning performance.

Furthermore, researchers have considered features in the temporal
dimension. Spatio-Temporal Graph Convolution (ST-GCN) is a GNN
method designed specifically for handling spatio-temporal graph data,
primarily applied in tasks such as video action recognition and traf-
fic flow prediction. ST-GCNs (Spatio-Temporal Graph Convolutional
Networks) [22] extend traditional GCNs to model the spatio-temporal
relationships between nodes. They consider historical data across time
steps and utilize convolutional operations to capture dynamic spatio-
temporal patterns, which leads to improved accuracy in traffic flow pre-
diction. Diffusion Convolutional Recurrent Neural Networks (DCRNNs)
[23] combine diffusion convolution with recurrent neural networks.
They employ diffusion convolutional layers to capture spatial structures
in traffic networks and use recurrent neural networks to model tempo-
ral information, resulting in more accurate traffic flow predictions.

The training of GNN is inseparable from the graph structure. How-
ever, predefined graph structures often either do not exist or are not
optimal, necessitating the use of graph structure learning to identify
the best graph structure. In the field of traffic flow prediction, Graph
WaveNets [24] first proposes using two learnable embedding matrices
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to automatically construct an adaptive graph based on the input traffic
data. In the domain of anomaly detection, GTA [25] employs a con-
nection learning strategy to learn the graph structure, directly learning
bidirectional links between sensors using the Gumbel-softmax sampling
method.

Besides the aforementioned works, not only correlations between
data streams, but also the enormous real-time data stream and variable
data distribution are considered in a novel method (referred to as
DLSHiForest) [26], which is based on Locality-Sensitive Hashing and
the time window technique. This method is proposed to solve these
problems while achieving accurate and efficient detection. In previous
studies, anomaly detection using GAT only employed a single-head
attention mechanism, resulting in limited model expressiveness and
generalization ability, and lacking resistance to noise and outliers in the
input. Additionally, previous methods only model the spatial dimension
of sensors and neglect the time dimension, potentially resulting in
the loss of important features. Drawing inspiration from the field of
traffic flow prediction, we introduce modeling of the time dimension
for sensors in our model to prevent the loss of crucial features.

3. The proposed solution: Spatiotemporal gated graph attention
network

3.1. Sensor network and data collection

In a large IloT system, data required for anomaly detection is
collected from a sensor network composed of various types of sensors. It
is crucial to consider the requirements for data security levels, network
energy consumption, and delays occurring during data collection and
transmission. To address these concerns, we adopt an RPL protocol with
appropriate clustering to construct the sensor network [27].

In the RPL protocol, the DIO message contains the distance, version
number, rank, and an objective function that is used to calculate the
rank. In the RPL protocol, in upstream routing, the root node initiates
the construction of DODAG by sending the first DIO message. All nodes,
upon receiving a DIO message, select the root as their preferred parent
and then calculate their own rank according to the chosen objective
function. Each node then transmits its DIO message, which includes the
updated rank, to all neighboring nodes. Upon receiving a DIO message,
each node compares its own rank with the received one. If the received
rank is higher, the message is disregarded. Conversely, if the received
rank is lower, the node increments its distance by one and updates
its routing table with the identifier of the sending node. In our study,
we enhance the ranking calculation formula by incorporating residual
energy considerations for selecting the primary cluster node as depicted
in Eq. (1).

newRank = ET X / Residual Energy, (@D)]

the node whose rank is lower is selected as the master node in the
cluster.

In industrial networks, the number of connected devices or scala-
bility increases rapidly. This forces IoT protocols to face routing and
security issues. Classic routing protocols are poorly adapted to the IoT
environment due to resource limitations and heterogeneity. In addition
to the RPL protocol, we propose to use a hybrid objective function
that combines more than one metric in an additive manner to select
the optimal route. The metric to determine the rank of a node uses
parameters such as latency D,, and the probability of packet loss
Z,. For the convenience of further analysis, the probability of losing
packets Z, will consider such a parameter as the logarithm of the
probability of passing packets X, = In(1 — Z,).

To find the rank of a node, we propose using the following convo-
lution:
r= Ds,

~ pmax

XSJ
X min’

@
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where D,; means the delay for each sensor node, X,; stands for
the probability of packet loss for each sensor node, D™** represents
the maximum permissible delay, and X" is the minimum acceptable
losses.

After receiving a DIO (RPL protocol) message, each node generates a
list of possible parent nodes. During the selection procedure, the parent
node with the minimum rank value r (Eq. (2)) is selected. In RPL, a
node’s rank is based on its parent rank and base rank.

3.2. Problem statement and STGaAN architecture

We mathematically define the target problem as follows. The train-
ing data is composed of sensor values from N sensors over Ti.i,
(1) Tirain )]

train "’ “train

time ticks and the sensor data is denoted s;,;, = [s

t
The sensor values s
train

dimensional vector.
The test data, denoted as Sy = [s

€ RV at each time point ¢ constitute an N

(Thest )
> Stest

(1)

st 2 ], consists of

sensor data values from N sensors at Ty time points. The model
outputs a collection of Ty binary labels representing whether each of
the time point is anomalous during the inference stage, i.e. a(t) € {0, 1},
where a(t) = 1 show that time ¢ is anomalous.

STGaAN is designed to represent sensors in an Internet of things
system as a graph, where sensors are treated as nodes and the learned
relationships between them are represented as edges. By incorporating
spatiotemporal relationship modeling into anomaly detection, STGaAN
enhances the effectiveness of anomaly detection. The framework of
STGaAN, illustrated in Fig. 1, consists of six components:

Node Embedding: Utilize node embeddings to acquire unique
features for each sensor.

Graph Structure Learning: Learn a graph structure that repre-
sents the interconnections among sensors.

Gated Graph Attention Aggregator: Use gated graph attention
network to extract spatial dimension features [28].

Temporal Convolution Layer: Use time convolutional network
to extract time dimension features [29].

Joint Optimization: Combined optimization with prediction-
based model and reconstruction-based model.

Anomaly Score: Verify if the anomaly score surpasses the prede-
fined threshold to determine if the system is abnormal.

3.3. Node embedding

In a large IIoT system, the data gathered from various types of sen-
sors form a multivariate time series. Different time series (sensors) may
manifest highly diverse properties and exhibit complex interrelations
among each other. For instance, in a water tank [oT system, decisions to
activate valves or water pumps may be based on the readings of liquid
level sensors observing the tank’s water level. Consequently, sensors
within the same water tank often exhibit high correlation.

To capture these correlations, we model the sensors and their rela-
tionships as a graph, where each sensor represents a node. We then
randomly initialize node embeddings for each sensor to capture its
inherent properties:

v; eR%, forie {1,2,...,N},

where v; denotes the embedding for node i, d; denotes the dimension-
ality of the embedding v;, and N stands for the amount of sensor nodes.
The resemblance between node embedding vectors v; represents the
resemblance of behaviors, hence sensors with similar node embedding
vectors exhibit high correlations. The node embeddings will be used for
graph structure learning of sensors in [oT systems and gated attention
networks.
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Node Embeddings

Top K

Cosine
Similarity

N Sensors

Gated Graph Attention Aggregator

Alexandria Engineering Journal 106 (2024) 560-570

Joint Optimization

f Temporal Convolution \ E— >
Model pred
3 Anomaly
2 Score

[Reconstruction-based)/
Model

Lrec

Fig. 1. The framework of STGaAN. STGaAN is composed of Node embeddings, Graph structure learning, Gated graph attention aggregator, Temporal convolution layer, Joint

optimization, and anomaly score.
3.4. Graph structure learning

In this section, we will introduce how to define the edges of the
sensor relationship graph.

First and foremost, it is essential to clarify that the sensors relation-
ship graph we are modeling is a directed graph. The choice of using a
directed graph stems from the fact that the dependency relationships
between sensors do not need to be symmetric. The nodes in the graph
represent sensors, therefore, we define edges as dependencies between
sensors. If there is a directed edge from one sensor to another, it means
that the state of this sensor is influenced by the state of another sensor.
The adjacency matrix A is used to represent this oriented graph, where
A;; indicates that there is an oriented edge from node i to node ;.

In an IIoT system with numerous sensors, there might be some
prior information that can be used to determine node dependencies.
For example, the IIoT system may be divided into multiple subsystems
with minimal interaction between sensors in different parts. When such
prior information exists, it can be flexibly expressed as a collection of
potential relationship candidate C; for each sensor i, representing the
potential neighboring sensor set that may exhibit dependencies with
sensor i as shown in Eq. (3):

N}

when this prior information does not exist, the candidate relation of
sensor i is the entire set of sensors.

To choose the dependency of node i from the set of candidate
nodes, cosine similarity is used to calculate the similarity between the
embedding vector of sensor i and the embedding vector of its candidate
sensor j € C; as shown in Eq. (4):

¢, c{,2..,N 3)

VTV

ej; =
Il ] H

where, e;; is the cosine similarity of node j and node i. Then the
calculated similarity is sorted in descending order and the first k nodes
are selected, i.e., the first k nodes with the greatest similarity to sensor
node i are connected to node i with a directed edge. The sparsity of the

graph can be controlled by specifying the size of k as shown in Eq. (5):

ec,. @

A

ji= 1{i€TopK ({e,; : ke C})}.

()

where, A;; = 1. It signifies that there is a directed edge between node
Jj and node i; otherwise, A;; = 0. TopK denotes the index set of nodes
with the greatest e selected from the candidate set C;.
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3.5. Gated graph attention aggregator

3.5.1. Notion

We represent the single fully connected layer of a nonlinear activa-
tion function a(-) as FC = a(Wx+b), where § = {W, b} is the parameter.
Different subscripts of # indicate different transformation parameters.
For the activation function, we represent the sigmoid activation func-
tion as o(-) and the LeakyReLU activation function with a negative
slope equal to 0.1 as A(-). If the nonlinear transformation is performed
without the activation function after the linear transformation, it is
expressed as FCy(x). At time tick 7, we define the input of the Gated
Graph Attention Aggregator on the historical time series data of dataset
using a sliding window of size w as shown in Eq. (6):

x0 =

(6)

[s(t—w)’ S(t—w+1)’ o S(t—l)] ,
where, s~ represents all sensor data at time ¢ —w. The present sensor
readings, indicated as s, is the expected output that our model needs
to forecast.

3.5.2. Feature aggregator

In some of the latest studies, researchers have used multi-head GAT
to explore features in different representation subspaces to provide
more modeling capabilities. However, although multi-head GAT can
explore multiple representation subspaces between a central node and
its neighborhood, the importance of all subspaces is not the same; some
subspaces may even be irrelevant for specific nodes. The model’s final
predictive performance may decrease because it incorporates outputs
from attention heads that capture irrelevant representations.

Therefore, in this paper, we use Gated Attention Networks (GaAN)
to capture the relationships between sensors. Unlike existing graph
attention mechanisms, GaAN not only uses multiple attention heads
to explore features in different representation subspaces to provide
more modeling capabilities but also calculates a gate value between
0 and 1 through a convolutional network to control the importance of
each attention head. Since only a simple and effective lightweight sub-
network is introduced when constructing the gates, the computational
overhead is negligible, and the model is easy to train.

First, we concatenate the node embedding v; and the corresponding
linear transformed x(’) as shown in Eq. (7):

( =v; GBFC(/;)(()), 7)

o®

where @ denotes concatenation operation; i) is the parameter of the

bth head, and the dimension of the linear transformation of xf.’) is d,.
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In the second step, by applying softmax function to the inner
product value, we calculate the bth attention coefficient § between node
i and node j as shown in Egs. (8) and (9) :

— ().
i 27
exp< (b))

(b)
Zle/\/(r)u €xXp ( )

where (-,-) is a vector inner product, N (i) is the collection of adjacent
nodes of node i.

In the third step, after obtaining the normalized attention coefficient
between nodes, we can calculate the linear combination of their corre-
sponding features as the aggregate representation y; of each node as
shown in Egs. (10) and (11):

(b)
ij

@ ®

(b) _
Bij (C)]

b b
v =FCy | 12, |6 X, pFCh, ()] 10)
JEN (i) dy
1 b
g = [g( ). )] =y, (u,(-’),uy)), an
where @ denotes concatenation operation. We denote ||&  as sequen-

1
tially concatenation. B is the amount of attention heads [;md ﬂ(b ) is the
bth attention coefficient between nodes i and j. 0( ) is the parameter of
the bth head, and the dimension is d,. Concatenate 'these B outputs with
vector u;, and pass them through a fully connected layer parameterized
by 6, to obtain the final output y;, which has a dimension of d,.

gfb) is a scalar that is the gate value of the sth head of node i.
To prevent the added gate from introducing an excessive number of
additional parameters, a convolutional network y, is employed, which
utilizes the sensor node i and its neighboring sensor nodes to generate
the gate value. There are many possible designs for network y,. In our
work, we combine maximum and average pooling to build the network
as shown in Eq. (12).

z jEN (i) u)
=FC? [« ® m FC, (u? === 12
5= | @ mu ({rcy, (4)})e IV (12
where 6,, is responsible for projecting the neighboring features into a

d,, dimensional vector prior to selecting the maximum element, while
0, is tasked with mapping the concatenated features to the ultimate B
gate. By setting a smaller d,,, for the subnet computing the gate, the
computational overhead will be negligible. N (i) is the set of neighbor-
ing nodes of sensor node i, | N'(i)| represents the number of neighboring
nodes of sensor node i.

3.6. Temporal convolution layer

The gated attention aggregator aggregates information from neigh-
bor nodes in the spatial dimension for each node, and next, the time
convolutional network is leveraged to aggregate the information of the
time dimension. The input of the time convolutional network consists
of the graph representation y/stcaan  derived from the preceding aggre-
gation step, where Lgpg.ay 1S the number of layers of STGaAN. Then
we make T = y’stcaaN, The time-level representation is calculated as
follows (Eq. (13)):

T*! = ReLU (@ = (ReLU (T'))), (13)

where T'*! represents the time dimension representation of layer / + 1,
ReLU represents the activation function, @ represents the convolu-
tion kernel, * represents the standard convolution operation, and T’
represents the time dimension representation of layer /.

Time convolutional networks update node features by merging
information from neighboring time steps, thus capturing time dy-
namics effectively. In numerous applications, convolutional networks
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demonstrate superior performance compared to RNNs, circumvent-
ing common drawbacks of recursive models, such as gradient explo-
sion/vanishing and memory retention deficiencies. Moreover, utiliz-
ing convolutional networks instead of recursive models can enhance
performance by enabling parallel computation of outputs.

3.7. Joint optimization

Both prediction-based models and reconstruction-based models
show their advantages in some particular cases. Our model comprises
a predictive model for forecasting the next time step value and a
reconstructive model for capturing the data distribution of the entire
time series. During the training phase, the weights of both models are
updated concurrently. The loss function is formulated as the sum of the
loss functions of two optimization modules as shown in Eq. (14):

L= Vll:pred + (1 - J’l) X Liec > 14)

where £,oq signifies the loss function of the model based on predic-
tion, L. signifies the loss function of the model based on reconstruc-
tion, and y, is the hyperparameter that balances the prediction and
reconstruction modules.

3.7.1. Prediction-based model

Prediction-based models predict the value of the next timestamp.
We pass the result of the temporal convolutional network into a multi-
layer perceptron (MLP) and use the root mean square error (RMSE) as
the loss function as shown in Eq. (15):

Mirain

1 2
1 50 — 502,
Mipain —w 2 ( )

t=w+1

L (15)

pred =
where, M.,;, is the amount of samples in the training set processed
by the sliding window, w represents the size of sliding Windows, §¢)
denotes the model’s prediction at time tick 7, and s denotes the real
value at time tick 7.

3.7.2. Reconstruction-based model

By reconstructing the initial input s using a few latent variables
z, the reconstruction-based model acquires the representation of the
whole time series. We adopt variational autoencoders (VAE), which
encode inputs not as single points in hidden space, but as probability
distributions in hidden space. VAE can catch the data distribution
of the whole time series by processing the values of time series as
variate. Given an input s, it should be made a conditional distribution
p(s | z) reconstruction, z € R? represents a potential space of vector
representation, and d is latent space dimension of the VAE model. The
optimization objective is to identify the optimal model parameters that
can most effectively reconstruct the data distribution to approximate s.
The following Eq. (16) is the real posterior density:

p(z | s) = p(s | 2)p(z)/p(s), (16)
where the marginal density is expressed as Eq. (17)
ps) = /P(z)P(s|z)dZ- a7)

And actually, due to the computational intractability of the posterior
distribution p(z | s), we approximate this posterior distribution with
q(z | s). Given the encoder ¢(z | s) and decoder p(s | z), the loss function
can be calculated as Eq. (18):

Lree = =By [logp(s | 2)] + Dgp (a(z | 9) Il p(2)), 18)

where the first term is the expected negative log-likelihood of the given
input s. The second term is the Kullback-Leibler divergence between
the encoders distribution ¢(z | s) and p(z), serves as a regularization
term.
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Algorithm 1 Training stage

Require: training epochs
[S(]). e S(Ttrain)
train

* “train
1: Initiate the parameter W with random values, which encompasses
all learnable parameters in STGaAN;

:fori=1-1do

Compute y’caaN in spatial dimension by GaAN;

Compute Tlen in temporal dimension by TCN;

Compute the prediction value via prediction module;

Compute the reconstruction probability via reconstruction
module;

Minimize the joint loss function for optimal tuning of parameter
w;
: end for
: return W.

I’
], hyperparameters y,, y, and batch size M

sensor training data

Strain

AN AN

3.8. Anomaly score

At each timestamp ¢, there are two inferred results corresponding
to the joint optimization goal. The prediction-based model and the
reconstruction-based model generate predicted values s and p;, re-
spectively, where s denotes the prediction of the time series, and p;
corresponds to the reconstruction probability derived from a model
based on reconstruction. The final anomaly score harmonizes their
respective strengths, greatly improving the effectiveness of detection
effect. The anomaly score at each time tick ¢ is the accumulation of the
anomaly scores of N time series. Precisely, the formula for the anomaly
score is shown in Eq. (19):

2
(fl(.t) - sl@) +7 (1 —p,—)

1+}’2

N

score = 2
i=1

where (§E') — s‘(.'))2 is the square error between the forecast 51(.’) and
the observed value sf.’), signifying the extent of departure of feature
i from the predicted value. y, is a hyperparameter used on the test
set to balance the deviation from prediction and the likelihood of
reconstruction. 1 — p; denotes the likelihood of encountering anomalies
for feature i based on the reconstruction model, and N is the overall
amount of sensors.

We employ the Peak Over Threshold (POT) algorithm [30] for deter-
mining the anomaly threshold on the test set. If the anomaly score for a
timestamp exceeds a pre-defined threshold, the timestamp is labeled as
anomalous. Ultimately, Alg. 1 encapsulates the comprehensive training
phase of STGaAN, while Alg. 2 delineates the Inference stage.

, 19)

Algorithm 2 Inference stage

(1)

Require: Sensor testing data sy est

= S

(Tiest )
» Stest , model

parameter W and hyperparameters y,, y,.

. (i)
1: for each s, do '
2: Compute the anomaly score of sg;st
3: if anomaly score < threshold then
. (1> 1 3. 2
4: Siest — @ normal point
5: else
. (1> —_—11 99
6: Siest = an anomaly
7: end if
8: end for
9:

return result binary label vector.

4. Experiments and analysis

To illustrate the efficiency of STGaAN, we conducted thorough
experiments. We first introduced four commonly used public datasets
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Table 1
The four datasets’ statistics.

Datasets Features Train Test Anomalies (%)
MSL 27 58317 73729 10.27

SMAP 55 135183 427617 13.13

SWaT 51 47520 44991 11.96

WADI 127 102697 17 280 6.00

alongside eight widely used anomaly detection methods. Subsequently,
we described the evaluation metrics and experimental settings. Fi-
nally, we assessed the effectiveness of our proposed STGaAN on these
datasets. The experimental results indicate that STGaAN performs com-
parably to or better than a range of baseline methods. We also per-
formed ablation studies on each component of our model. Additionally,
we provided insights into the interpretability of STGaAN by analyzing
a case study of an IloT system.

4.1. Datasets

Secure Water Treatment (SWaT) [31] is a water treatment experi-
mental platform used for research in the field of cybersecurity. The 11
days of continuous operational data that make up the SWaT dataset are
divided into 4 days of data collected during attacks and 7 days under
normal operational conditions were included in the SWaT dataset. The
data collection process included monitoring all network traffic, sensors,
and actuators. The Water Distribution Experimentation (WADI) [32]
serves as a natural extension of the SWaT platform, The combination
of these two testing platforms enables researchers to observe the cas-
cading effects of network attacks across multiple testing platforms. The
WADI dataset consists of 14 days of continuous normal operational data
and 2 days of data collected during attack scenarios.

The Mars Science Laboratory Rover (MSL) [33] and Soil Moisture
Active Passive Satellite (SMAP) [33] are real datasets collected by
NASA’s spacecraft. NASA experts utilize these datasets to mitigate
unexpected events that may pose risks to the spacecraft during post-
launch operations. The training set comprises normal data, while the
testing set contains annotated anomalies.

In Table 1, we show the statistics for the four public datasets
utilized.

4.2. Baselines

4.2.1. PCA

Principal Component Analysis [34] is utilized in anomaly detection
by reducing the dimensionality of the data while preserving its key
features. Data points that show significant departures from the principal
components in this lower-dimensional space are classified as anomalies.

4.2.2. AE

Autoencoders [35] are employed in anomaly detection by training
a neural network to reconstruct input data. The reconstruction error
must surpass a predetermined threshold in order for anomalies to be
identified, which makes AE a valuable method for finding odd patterns
in a variety of data kinds.

4.2.3. DAGMM

Deep Autoencoding Gaussian Mixture Model [16] learns a proba-
bilistic representation of the data to detect anomalies. It models normal
data as a Gaussian mixture and identifies anomalies based on their
deviation from this learned distribution, making it effective in detecting
subtle anomalies in complex datasets.
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4.2.4. LSTM-VAE

By employing LSTM to encode sequential data and learning a prob-
abilistic latent space representation, Long Short-Term Memory Vari-
ational Autoencoder [18] is used in anomaly detection. It detects
anomalies by measuring the reconstruction error or the deviation of
data points from the learned probabilistic model, making it suitable for
time-series and sequential data anomaly detection tasks.

4.2.5. MAD-GAN

The Multiple Anomaly Detection Generative Adversarial Network
[9] is a deep learning framework employed in anomaly detection.
It operates by training a GAN-like architecture to produce data that
closely mimics the distribution of normal data. Anomalies are detected
when the generated data differs significantly from the actual data
distribution, enabling effective detection of rare and unusual instances
in various datasets.

4.2.6. OmniAnomaly

OmniAnomaly [36] is an anomaly detection framework designed for
multi-modal data, which leverages both temporal and non-temporal in-
formation to detect anomalies in complex and diverse datasets. It com-
bines techniques like convolutional autoencoders, LSTM networks, and
probabilistic modeling to provide robust anomaly detection capabilities
across different data modalities.

4.2.7. GDN

Graph Deviation Network [6] utilizes graph attention mechanisms
for structural learning in multivariate time series data as an unsuper-
vised anomaly detection approach. It explains detected anomalies based
on attention scores. The goal of the GDN approach is to learn the
connections between sensors as a graph. Deviations from the learned
patterns are then recognized and explained.

4.3. Evaluation metrics

The evaluation metrics that we employ are precision (Prec), recall
(Rec), Fl-score (F1), and the area under the ROC curve (AUC). The
percentage of samples that are truly positive out of all the samples the
model predicts is referred to as precision. It gauges the proportion of
the sample that is truly positive among those predicted to be positive
by the model. The recall rate, also called sensitivity, is the percentage
of samples that are truly positive among all samples that the model
correctly predicted to be positive. This metric measures how well the
model can identify positive samples. An increased recall rate suggests
that the model is more effective at identifying genuine positive samples.
The F1-score is the weighted harmonic mean of precision and recall,
providing a combined metric for precision and recall. It is appropriate
for assessing the model’s balance on both positive and negative sam-
ples, taking accuracy and recall rate into account in a comprehensive
manner. The following are the formulas of precision, recall rate and
F1-score:

TP
Prec = ——— 2
= TP EP 0
Rec = L, 21
TP + FN
Fl = 2 X Prec X Rec (22)

Prec + Rec

where, TP, FP, and FN represent true positives, false positives, and false
negatives, respectively.
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4.4. Experimental setup

The approach of STGaAN was developed in PyTorch [37] version
1.5.1 with NVIDIA Corporation GP102 [GeForce GTX 1080 Ti] graphics
cards for server training, Intel(R) Xeon(R) W-2133 CPU @ 3.60 GHz x
12 and PyTorch Library version 1.5.0. The training set-up involved the
Adam optimizer with a 1 x 1073 learning rate. A total of 50 epochs and
32 batch sizes are used to train the entire network. The embedding
dimension d, is set to 128 for all data sets. We empirically set the
number of attention heads per dataset to 4, the sliding window size to
32, and the time convolution kernel size to 16. For MSL, SMAP, SWaT,
and WADI, we have K set to 15, 30, 15, and 30 correspondingly. Grid
search yielded the values of y; and y, as 0.4 and 0.8 for the model
hyperparameters. On the validation data set, we established an excep-
tion threshold using the POT algorithm [30]. Any timestamp where the
outlier score surpasses the threshold will be deemed “abnormal” during
the inference stage.

4.5. Results and analysis

Table 2 presents the comparative results of accuracy, recall, and
F1 score between STGaAN and baseline methods on four datasets.
The results indicate that STGaAN demonstrates outstanding gener-
alization ability, achieving the best performance across the datasets
used in the experiments. It can be seen in Table 2 that Fl-score (%)
of STGaAN on the MSL and SMAP datasets is 1.36 and 1.77 higher
than the best baseline, respectively. The majority of baseline methods
demonstrate better performance on the MSL and SMAP datasets, since
they involve relatively simple anomaly patterns and spatiotemporal
dynamics. In contrast, the SWaT and WADI datasets encompass more
intricate anomaly scenarios, resulting in diminished performance of
most baseline methods on these two datasets. However, it is observed
in Table 2, STGaAN achieves F1 scores (%) on the SWaT and WADI
datasets that are 3.24 and 3.02 higher, respectively, compared to the
best-performing baselines.

The limitation of traditional methods (such as PCA) and the majority
of deep learning approaches lies in their failure to simultaneously
consider the temporal and spatial associations of time series data. Om-
niAnomaly, for example, does not explicitly address spatial correlation
in the model, which is a crucial factor for successful anomaly detection
in multivariate time series. In this paper, the proposed GaAN layer
is dedicated to solving this problem. The experiment results validate
the superiority of this layer, since it significantly and consistently
outperforms OmniAnomaly across all four datasets. Meanwhile, the
time information is also very important for the anomaly detection of
multivariate time series. For example, the DAGMM algorithm performs
inadequately because it does not take time information into account.
In STGaAN, TCN is utilized to grasp long-term temporal interdepen-
dencies. This design helps achieve better performance than DAGMM.
Recently, GDN has achieved superior efficiency in comparison to other
benchmarks. However, GDN lacks effectiveness in capturing temporal
features from time series data, and GAT has limited ability to generalize
attention mechanisms. Building upon the foundation of multi-head
attention in our STGaAN, we allocate significance to attention heads
and leverage TCN to capture temporal dependencies.

We further computed the AUC on the MSL and SMAP datasets as
a performance metric, as shown in Fig. 2. Through the use of GaAN,
TCN, and joint optimization techniques within STGaAN, our proposed
model consistently outperforms other baseline methods. By incorporat-
ing GaAN and time convolutional networks, we consider both spatial
and temporal dependencies and capture the spatiotemporal relation-
ships between time series. Additionally, the combination of prediction-
based and reconstruction-based models improves the accuracy of model
parameters in STGaAN.



Y. Fan et al.

Table 2
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The evaluation metrics of accuracy (%), recall (%), and Fl-score are contrasted with those of existing methods across four datasets. The superior performance is emphasized by

highlighting the finest results, while the second-finest results are underscored.

Method MSL SMAP SWaT WADI
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
PCA 28.69 2453  26.45 27.93 20.44  23.61 25.13 22.18  23.56 38.72 5.41 9.49
AE 72.47 51.38  60.13 73.12 78.94 7592 71.95 53.04  61.06 35.21 3418  34.69
DAGMM 50.53 92.37  65.32 59.64 89.43  71.56 27.46 69.52  39.37 52.84 27.31  36.01
LSTM-VAE 51.48 93.72  66.46 85.51 63.66  72.98 96.24 59.91  73.85 86.34 15.58  26.40
MAD-GAN 85.17 89.91  87.48 80.49 82.14  81.31 98.97 63.74  77.54 42.19 33.54  37.37
OmniAnomaly 88.67 91.17  89.89 74.16 97.76  84.34 98.36 6512  78.36 98.15 13.22 2331
GDN 90.21 85.25  87.66 90.12 88.03  89.06 99.35 68.12  80.82 94.57 4161  57.79
STGaAN 94.83 87.93  91.25 92.15 89.54  90.83 98.82 73.13  84.06 98.13 44.05  60.81
100 93.98 Table 3
90 87.91 89.83 The ablation experiment on MSL.
Method Precision Recall F1
80
STGaAN 94.83 87.93 91.25
70 - Soft gate 93.25 87.43 90.25
60 - TCN 92.61 86.15 89.26
2 -Jo 90.18 85.52 87.79
g 50
=
< 40
30 . S . L
from the joint optimization module and only using the prediction
20 - - -
module. Table 3 summarizes the experimental findings:
10
0 + Substituting GaAN with a conventional multi-head GAT resulted
S S in a decline in the model’s effectiveness. This indicates that utiliz-
© %/\C?'b ing a small convolutional subnet to compute a soft gate for each
attention head to regulate its significance is advantageous for en-
hancing the model’s efficacy. Employing multiple attention heads
enables exploration of features across different representational
subspaces, thereby inherently providing increased modeling ca-
pacity. Yet, treating each attention head equally results in missing
out on the opportunity to benefit from those attention heads
100 9005 9359 that are inherently more important than others. The final predic-
a0 tive performance of the model might degrade due to the input
- containing outputs from attention heads that capture irrelevant
representations.
0 + STGaAN with TCN outperforms the model without TCN, indi-
60 cating that the time convolutional network effectively captures
s0 478 temporal dependencies.

AUC(%)

40
30
20
10

(b) SMAP dataset

Fig. 2. AUC (%) performance on MSL and SMAP datasets.

4.6. Ablation experiment

To investigate the necessity of the three components—GaAN, TCN,
and joint optimization—we investigated the impact of these compo-
nents through ablation experiments. First, we assessed the effect of
replacing GaAN with a standard multi-head GAT by removing the soft
gates that control the importance of different heads. Next, we evaluated
the impact of removing the time convolution module in STGaAN.
Lastly, we analyzed the effect of removing the reconstruction module
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Removing the reconstruction module from the joint optimization
module and using only the prediction module also results in a
decline in model performance. While the prediction-based model
is susceptible to the randomness inherent in time series data, mak-
ing deterministic predictions about the subsequent timestamp’s
actual value, the reconstruction model learns the distribution of
random variables, thereby mitigating this issue and improving
robustness against noise and perturbations. Therefore, employ-
ing joint optimization methods is beneficial for enhancing the
effectiveness of anomaly detection.

4.7. Hyperparameter y, and y, analysis

We conducted additional experiments on the MSL dataset to analyze
the impact of balancing the values of y, and y,, based on prediction
error and reconstruction probability, respectively, which are used in
the proposed loss function and anomaly score. Table 4 shows the F1-
scores for all combinations of y; values from 0.2 to 0.8 in increments
of 0.2 and y,, values from 0.2 to 1 in increments of 0.2. We ob-
served that different settings of y, and y, achieved similar performance
across all Fl-score evaluation metrics. Specifically, we achieved the
best performance when y; = 0.4 and y, = 0.8. The results indicate
that the proposed STGaAN is not sensitive to the values of y; and
v,, demonstrating robustness to different hyperparameter settings. By
setting y; and y, values between 0.4 and 0.8, we consistently achieved
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Fig. 3. Graph structure visualization of SWaT data sets. This is a directed graph with 51 nodes, each having 15 directed edges. Nodes represent sensors, and edges indicate the
correlations between sensors by specifying which sensors are related to each other within the graph.
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(a) SWaT’s six-stage processes[38]

(b) the graph structure of stage P1

Fig. 4. The left figure depicts the process diagram of the water treatment system that generated the SWaT dataset, illustrating six phases of the water treatment process and the
associated sensors. The right figure represents a subgraph of the SWaT graph structure that we learned, focusing on the P1 processing phase. The thickness of the lines in the
graph indicates the magnitude of the graph attention coefficients, with thicker lines representing higher attention coefficients and stronger correlations among sensors.

better results compared to other state-of-the-art anomaly detection
methods listed in Table 2.

4.8. Graph structure visualization

We visualized the graph structure learnt by STGaAN on the SWaT
dataset in Fig. 3. This is a directed graph containing 51 nodes, each
connected by 15 directed edges (with an out-degree of 15). The nodes
in the graph denote sensors, while the edges denote the correlations
between them. For instance, Node O corresponds to the FIT101 sensor,
installed on the flow indicator transmitter. Node 1 is the LIT101 sensor,
installed on the liquid level indicator transmitter. Node 2 represents the
MV101 sensor, attached to an electric valve. And Node 3 corresponds
to the P101 sensor, which is installed on a water pump. We observed
that in the learnt graph structure, these sensors are interconnected, as
indicated by the red lines. Referring to the water treatment system’s
process diagram [38] shown in Fig. 4(a), the first four sensor nodes
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are all part of the first process stage, P1, which explains their strong
correlations. We isolated the graph structure of stage P1 in Fig. 4(b) and
further examined the attention scores calculated by GaAN for Node 0,
revealing significant attention scores for Nodes 1, 2, and 3, indicating
a strong correlation among these nodes. In reality, when the liquid
level sensor LIT101 experiences an anomaly, it leads to anomalies in
the flow sensor FIT101, valve sensor MV101, and pump sensor P101,
as changes in liquid level affect flow, which in turn impacts valve and
pump operations. Therefore, when a sensor malfunctions but is difficult
to detect, we can utilize the sensor network obtained from the graph
structure learning method. By observing the status of the sensors most
relevant to the faulty one, we can infer the fault in that sensor, thereby
enhancing the effectiveness of fault detection.

5. Conclusion

In this paper, we present STGaAN, a spatiotemporal graph neural
network with gated attention mechanisms, designed for anomaly and
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Table 4
Different values of y; and y, on the MSL dataset’s F1-score. The superior performance
is emphasized by highlighting the finest results.

141 72

0.2 0.4 0.6 0.8 1
0.2 88.87 89.42 90.69 91.08 89.42
0.4 89.52 90.75 91.04 91.25 90.97
0.6 89.65 90.27 90.98 91.01 90.02
0.8 88.92 90.18 90.62 90.87 89.95

fault detection. STGaAN learns the correlation between sensors and
node embeddings to obtain the graph structure. It utilizes the Gated
Attention Network (GaAN) to capture spatial dependencies and Tempo-
ral Convolutional Networks (TCN) to capture temporal dependencies.
Finally, model parameters are jointly optimized using both prediction-
based and reconstruction-based approaches. We perform comparative
experiments on four public datasets. The results indicate that STGaAN
outperforms other advanced baseline methods and provides good inter-
pretability for the detection outcomes. Furthermore, we conduct abla-
tion experiments to confirm the necessity of each module in STGaAN,
demonstrating that each module is crucial for the final prediction per-
formance. We also visualize the learned graph structure to illustrate the
interpretability of STGaAN. Future work could include addressing the
imbalance in heterogeneous data and anomalous data from devices. Ad-
ditionally, investigating the interpretability of graph neural networks in
anomaly detection for industrial IoT systems is also worthwhile.
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