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Models and Algorithms for the Diagnosis of 
Parkinson's Disease and their Realization on the 

Internet of Things Network
Uladzimir, Vishniakou α & Yiwei, Xia σ

Abstract- This article aims to investigate an innovative 
approach utilizing model, algorithms and IoT technology for 
early Parkinson's disease detection. It introduces the 
comprehensive IoT network that has the IoT platform, enabling 
the collection of voice data via mobile phones, extraction of 
relevant features and data processing. Within this process, a 
Fully Connected Neural Network (FCNN) model is employed 
to calculate the probability of Parkinson's disease, potentially 
providing healthcare professionals and patients with a 
convenient, accurate, and early diagnostic tool. The study 
delves into the structure, algorithms, and the integral role of 
the FCNN within the IoT network, emphasizing its potential 
impact on the healthcare sector. 
Keywords: parkinson's disease, IoT technology, early 
detection, voice data, noise reduction, fully connected 
neural network, IT-diagnosis. 

I. Introduction 

s society continues to evolve and science and 
technology advance, there is an increasing 
emphasis on early detection and diagnosis of 

health issues. Parkinson's disease, as a chronic 
neurological condition, profoundly impacts the quality of 
life for affected individuals. Early diagnosis is crucial in 
providing more effective treatment and care [1]. This 
paper focuses on exploring a novel approach using IoT 
technology for early detection of Parkinson's disease [2]. 
Authors [3] proposed approach to early Parkinson's 
disease detection on voice analythis base. We will 
introduce a comprehensive IoT network that collects 
voice data through mobile phones, extracts relevant 
features, facilitates data transmission and processing, 
and ultimately outputs the probability of Parkinson's 
disease. The implementation of this method holds the 
promise of providing a more convenient, accurate, and 
early diagnostic tool for both medical professionals and 
patients. In this paper, we will delve into the structure 
and algorithms of this IoT network and discuss its 
potential impact in the field of healthcare. It is our hope 
that this innovative approach will be a significant step 
forward in early intervention and treatment of Parkinson's 
disease. 
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Initially, voice data is collected and pre-
processed using a mobile phone. This involves 
capturing speech data from Parkinson's disease (PD) 
patients for a duration of 5 seconds at a sampling 
frequency of 44.1 kHz. To enhance signal quality, the 
spectral subtraction algorithm [4] is employed to 
eliminate ambient noise. 

Subsequently, features are extracted from the 
pre-processed speech data after noise reduction. The 
data is then transmitted to the voice channel an IoT 
platform. The data is fed into a Matlab analysis function. 

The Matlab analysis module plays a pivotal role 
in interpreting the data by loading a 3-layer FCNN model 
deployed in the cloud. It processes the data and 
generates a probability value indicating the likelihood of 
a possible Parkinson's disease diagnosis. 

Finally, the results are relayed from the IoT 
platform to a mobile phone and the outcomes are 
displayed on a screen for further examination and 
evaluation. 

II. Data Collection and Pre-Processing 

Use the spectrum subtraction algorithm for the 
voice data, the specific process is as follows: 

1. Split the original sound signal into frames, the length 
of each frame is 256 samples, using 50% overlap to 
split the frames and get a series of frames of signal. 

Let the original sound signal be denoted as 
𝑠𝑠[𝑛𝑛], where 𝑛𝑛 is the sample index. - Let the frame length 
be 𝐿𝐿 =  256  samples and the overlap percentage be 
50%. 

Define the frame index k such that the start 
index of the k-th frame is given by: 

𝑛𝑛𝑘𝑘 = (𝑘𝑘 − 1) ∗ 𝐿𝐿
2

,𝑘𝑘 = 1,2,3                                          (1) 

The k-th frame of the signal is then given by: 

𝑠𝑠𝑘𝑘 [𝑛𝑛] = 𝑠𝑠[𝑛𝑛𝑘𝑘 + 𝑛𝑛𝑘𝑘+1], 0 ≤ 𝑛𝑛 < 𝐿𝐿                               (2) 

2. Perform Fourier transform on each frame of signal to 
get the corresponding spectrum. 

Let 𝑠𝑠𝑘𝑘 [𝑛𝑛] be the k-th frame of the signal. Apply a 
window function 𝑤𝑤[𝑛𝑛] to the frame to reduce spectral 
leakage, such as a Hamming window. 
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Compute the Fourier transform of the windowed frame to get the complex spectrum 𝑋𝑋𝑘𝑘 [𝑓𝑓]: 

𝑋𝑋𝑘𝑘 [𝑓𝑓] = 𝑠𝑠𝑠𝑠𝑠𝑠�𝑤𝑤[𝑛𝑛] ∗ 𝑠𝑠𝑘𝑘 [𝑛𝑛] ∗ 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑗𝑗 ∗ 2 ∗ 𝑒𝑒𝑝𝑝 ∗ 𝑓𝑓 ∗ 𝑛𝑛
𝐿𝐿
�� , 0 <= 𝑓𝑓 <= 𝐿𝐿

2
                                                                     (3)

Use spectral subtraction algorithm 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 [𝑓𝑓] as the basis to calculate the noise spectrum. 

3. Wiener filter the noise spectrum to obtain a more 
accurate noise estimate. 

Let 𝑋𝑋𝑛𝑛𝑛𝑛𝑝𝑝𝑠𝑠𝑒𝑒 [𝑓𝑓] be the noise spectrum estimated 
from 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 [𝑓𝑓]. 

Apply a Wiener filter to 𝑋𝑋𝑛𝑛𝑛𝑛𝑝𝑝𝑠𝑠𝑒𝑒 [𝑓𝑓]  to obtain a 
more accurate estimate: 

𝑋𝑋𝑛𝑛𝑛𝑛𝑝𝑝𝑠𝑠𝑒𝑒
𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑓𝑓 [𝑓𝑓] = 𝑋𝑋𝑛𝑛𝑛𝑛𝑝𝑝𝑠𝑠𝑒𝑒 [𝑓𝑓]

(𝑋𝑋𝑛𝑛𝑛𝑛𝑝𝑝𝑠𝑠𝑒𝑒 [𝑓𝑓]+  𝛼𝛼 ∗𝑋𝑋𝑠𝑠[𝑓𝑓])                                     (4) 

where 𝛼𝛼  is a smoothing parameter and 𝑋𝑋𝑠𝑠[𝑓𝑓]  is the 
spectrum of the original signal. 

4. Compare the spectrum of each frame with the 
Wiener filtered noise spectrum, calculate the signal-
to-noise ratio and consider the frequency 
components with a signal-to-noise ratio lower than 
10 dB as noise components [5]. 

Let 𝑋𝑋𝑘𝑘 [𝑓𝑓] be the complex spectrum of the k-th 
frame of the signal. 

Compute the signal-to-noise ratio (SNR) for 
each frequency component as: 

𝑆𝑆𝑆𝑆𝑆𝑆[𝑓𝑓] = 10 ∗ 𝑓𝑓𝑛𝑛𝑎𝑎10� |𝑋𝑋𝑘𝑘 [𝑓𝑓]|2

�𝑋𝑋𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑓𝑓 [𝑓𝑓]�2
�                             (5) 

Consider the frequency components with SNR 
< 10 dB as noise components. 

5. Subtract the noise frequency components by 
adjusting the coefficient to 0.5 to obtain the noise 
removed spectrum. 

Let be the noiseless spectrum of the k-th frame 
of the signal. 

For each frequency component 𝑓𝑓, if 𝑆𝑆𝑆𝑆𝑆𝑆[𝑓𝑓] < 
10 dB, then set the magnitude of 𝑋𝑋𝑘𝑘𝑛𝑛𝑛𝑛𝑝𝑝𝑠𝑠𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠𝑠𝑠 [𝑓𝑓] to: 

�𝑋𝑋𝑘𝑘𝑛𝑛𝑛𝑛𝑝𝑝𝑠𝑠𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠𝑠𝑠 [𝑓𝑓]� = 0.5 ∗ �𝑋𝑋𝑘𝑘 [𝑓𝑓]− 𝑋𝑋𝑛𝑛𝑛𝑛𝑝𝑝𝑠𝑠𝑒𝑒
𝑓𝑓𝑝𝑝𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑓𝑓 [𝑓𝑓]�              (6) 

To obtain the complete signal after removing 
noise, we need to convert the noise-removed spectrum 
back to the time domain and superimpose each frame. 

Let 𝑋𝑋𝑘𝑘𝑛𝑛𝑛𝑛𝑝𝑝𝑠𝑠𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠𝑠𝑠 [𝑓𝑓] be the noiseless signal in the 
frequency domain of the k-th frame of the signal, and 
𝑋𝑋𝑘𝑘𝑛𝑛𝑛𝑛𝑝𝑝𝑠𝑠𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠𝑠𝑠 [𝑛𝑛]  be the corresponding signal in the time 
domain. Similarly, let 𝑌𝑌𝑘𝑘 [𝑓𝑓]  be the noise-removed 
spectrum of the k-th frame, and 𝑌𝑌𝑘𝑘  [𝑛𝑛]  be the 
corresponding signal in the time domain. 

To convert the noise-removed spectrum back to 
the time domain, we can apply the inverse Fourier 
transform to 𝑌𝑌𝑘𝑘 [𝑓𝑓], which gives us 𝑌𝑌𝑘𝑘 [𝑛𝑛]: 
 

𝑌𝑌𝑘𝑘 [𝑛𝑛] = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑌𝑌𝑘𝑘 [𝑓𝑓])                                                     (7) 

Then, we can combine the noise-removed 
signal of each frame to obtain the complete signal 
without noise: 

𝑒𝑒𝑛𝑛𝑛𝑛𝑝𝑝𝑠𝑠𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠𝑠𝑠 [𝑛𝑛] = 𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘�𝑒𝑒𝑘𝑘𝑛𝑛𝑛𝑛𝑝𝑝𝑠𝑠𝑒𝑒𝑓𝑓𝑒𝑒𝑠𝑠𝑠𝑠 [𝑛𝑛] ∗ 𝑤𝑤𝑘𝑘 [𝑛𝑛]�                 (8) 

where 𝑤𝑤𝑘𝑘 [𝑛𝑛] is a window function applied to each frame, 
and the sum is taken over all frames. 

The Figure 1 shows the algorithms of data pre-
processing. 

Start

  Read Audio File 

Split Audio Data 
into Frames 

Perform Fourier 
Transform on Each 

Frame to Get 
Spectrum 

 Calculate Average 
Spectrum of  All 

Frames and Use It to 
Calculate Noise 

Spectrum 

Wiener Filter the 
Noise Spectrum

 Subtract Noise 
Spectrum from Each 

Frame

Convert Spectrum back 
to Time Domain and 

Overlap-Add to Obtain 
Output Signal

 Convert Output 
Signal to Bytes and 
Write Output File

End
 

Figure 1: Algorithms of data pre-processing 

The voice data after removing the noise is 
windowed. The main advantage of using the Hamming 
window [6] to extract the signal window is that it can 
reduce the oscillation effect at the edge of the window 
while retaining the main components of the signal inside 
the window. The window size is 1024 and the frequency 
of the voice data is 44.1 khz. The frequency of the voice 
data is 44.1 khz and the overlap rate of the window is 
50%, so the speech time of a window is about 23 ms. 
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Let 𝑒𝑒[𝑛𝑛] be the original signal in the time 
domain with a sampling frequency of 𝑓𝑓𝑠𝑠 = 44.1 𝑘𝑘𝑘𝑘𝑘𝑘.
Let 𝑤𝑤[𝑛𝑛] be the Hamming window of size 𝑆𝑆 = 1024.

The windowed signal 𝑒𝑒𝑤𝑤 [𝑛𝑛] is obtained by 
multiplying 𝑒𝑒[𝑛𝑛] with the window 𝑤𝑤[𝑛𝑛] and shifting the 
window by a hop size of 𝑘𝑘 = 𝑆𝑆

2
:

where 𝑛𝑛0 = 𝑘𝑘 ∗ 𝑘𝑘  for some integer 𝑘𝑘.

The Hamming window 𝑤𝑤[𝑛𝑛] is defined as:

                                                                                                                

The duration of each windowed segment is
𝐼𝐼 = 𝑆𝑆

𝑓𝑓𝑠𝑠
= 1024

44100
, 𝑠𝑠 = 0.023 sec(23 𝑠𝑠𝑠𝑠) , and the overlap 

between adjacent segments is 𝑘𝑘
𝐼𝐼

= 2.

III. Feature Extraction

Feature extraction of the voice data [7] is 
performed within the specified window, as illustrated in 
Table 1 below.

Table 1: Extraction of all features

nNum Feature Name Description
1 MDVP:Fo(Hz) Average vocal fundamental frequency
2 MDVP:Fhi(Hz) Maximum vocal fundamental frequency
3 MDVP:Flo(Hz) Minimum vocal fundamental frequency
4 MDVP:Jitter(%) Measure of variation in fundamental frequency (percentage)
5 MDVP:Jitter(Abs) Measure of variation in fundamental frequency (absolute value)
6 MDVP:RAP Measure of variation in fundamental frequency (relative amplitude perturbation)
7 MDVP:PPQ Measure of variation in fundamental frequency (pitch period perturbation quotient)

8 Jitter:DDP
Measure of variation in fundamental frequency (average of absolute differences of 
differences between adjacent periods)

9 MDVP:Shimmer Measure of variation in amplitude (local variation in amplitude)
10 MDVP:Shimmer(dB) Measure of variation in amplitude (local variation in amplitude in dB)
11 Shimmer:APQ3 Measure of variation in amplitude (amplitude perturbation quotient, 3-point method)
12 Shimmer:APQ5 Measure of variation in amplitude (amplitude perturbation quotient, 5-point method)
13 MDVP:APQ Measure of variation in amplitude (average amplitude perturbation quotient)

14 Shimmer:DDA
Measure of variation in amplitude (average absolute difference of amplitudes 
between consecutive periods)

15 NHR Ratio of noise to tonal components in the voice
16 HNR Ratio of harmonics to noise in the voice
17 RPDE Nonlinear dynamical complexity measure
18 D2 Nonlinear dynamical complexity measure
19 DFA Signal fractal scaling exponent
20 spread1 Nonlinear measure of fundamental frequency variation
21 spread2 Nonlinear measure of fundamental frequency variation
22 PPE Nonlinear measure of fundamental frequency variation

IV. Data Transmission and Processing

To upload the 22 features to Thingspeak [8] IoT for analysis.

1. Creating a Channel. Figure 2 below shows the setup of the VOICE channel.

𝑒𝑒𝑤𝑤 [𝑛𝑛] = 𝑒𝑒[𝑛𝑛] ∗ 𝑤𝑤[𝑛𝑛 − 𝑛𝑛0]                                            (9)

      

(10)
𝑤𝑤[𝑛𝑛] = 0.54 − 0.46∗cos�2∗𝑝𝑝𝑝𝑝 ∗

𝑛𝑛
𝑁𝑁 − 1

� , 0 ≤ 𝑛𝑛 ≤ 𝑁𝑁−1
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Figure 2: The voice channel settings

2. Getting the voice channel write/read API key and channel ID. The figure 3 below shows the voice channel 
write/read API key and channel ID.

Figure 3: The write/read API key and channel ID of the voice channel

3. Useing the API in the phone. The API library code uses the HTTP protocol to upload 22 voice features to the 
voice channel. The Figure 4 shows the ThingSpeak API data upload algorithm.



 

 

  

 
 
 

 

 

 

  
  

  
  

  
  
  

  
 

  
 
 
 

Start

Prepare Data for 
Upload   

Construct API URL   

Send HTTP POST 
Request 

Process Respons

End

Figure 4: ThingSpeak API data upload algorithm

Figure 5: Schematics of 3-Layer FCNN

Table 2: Hyperparameters of 3-layer FCNN

Name Hyperparameters
First Layer Size 10

Second Layer Size 10
Third Layer Size 10

Activation Function ReLU
Iteration Limit 1000
Learning Rate 0.01

Learning Rate Update Algorithm SGD
Regularization Strength (Lambda) 0

Standardize Data Yes
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4. To load the pre-trained FCNN [9] model in Matlab Analysis module and to input the 22 data into the model for 
analysis to obtain the results. The model was trained using a publicly available dataset for Parkinson's Disease 
[10]. The Figure 5 shows the schematics of 3-Layer FCNN. Table 2 shows hyperparameters of 3-layer FCNN.



In Thingspeak, store the result value to file1 in 
the voice channel, and then the phone reads the value 
of file1 in the voice channel. 

V. Results and Discussion 

The process begins with receiving the initial 
signal from the microphone, then the signal goes 
through a number of preprocessing stages, including 
high-frequency isolation, noise suppression and 
segmentation of the speech frame using a Hamming 
window. Key characteristics are then extracted from 

these processed data and compiled into datasets. 
These data sets are transmitted to a neural network for 
training and optimization of the model, visually 
represented in the figure as a multi-layered structure. 
The completion of training and optimization is the 
creation of a model file capable of classifying voice input 
data. The experiment was conducted on an international 
dataset [11]. The results of test experiments in the IV 
network for the diagnosis of PD in patients with speech 
changes are shown in Table 3. 

Table 3: The data of test experiments for speech recognition

Набор данных/ 
Показатели 

Средняя 
точность 

Средняя 
чувствительность 

Средняя 
F1 оценка 

Точность  
тестирования 

БП по речи_ 92,95% 92,95% 92,95% 94,7% 
 

The IoT network achieved 94.7% accuracy in 
diagnosing Parkinson's disease based on speech data 
and an F1 score of 92.95%. On the same data set, one 
of the best indicators of foreign studies is 95.8% [12], 
which indicates both good recognition results and the 
possibility of implementing an IV network for domestic 
PD diagnostics. 

VI.
 Conclusions 

In summary, the IoT network efficiently collects 
voice data from PD patients, processes it to remove 
noise, extracts essential features, and utilizes a 3-layer 
FCNN model to provide probability-based diagnostic 
outcomes, offering a viable solution for the timely 
detection of Parkinson's disease. Our work underscores 
the pivotal role of the IoT advancing healthcare. By 
seamlessly connecting devices and systems, IoT not 
only enables remote diagnostics but also promotes 
patient empowerment, personalized medicine, and 
enhanced healthcare delivery.
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network, 94.7% accuracy was achieved in diagnosing
Parkinson's disease based on speech data.
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